]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDv1.cxx
- Adding classes AliMpArrayI, AliMpDetElementm, AliMpDEStore, AliMpDDL,
[u/mrichter/AliRoot.git] / TRD / AliTRDv1.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
4c039060 17
030b4415 18////////////////////////////////////////////////////////////////////////////
19// //
20// Transition Radiation Detector version 1 -- slow simulator //
21// //
22////////////////////////////////////////////////////////////////////////////
fe4da5cc 23
769257f4 24#include <stdlib.h>
25
793ff80c 26#include <TF1.h>
1819f4bb 27#include <TLorentzVector.h>
88cb7938 28#include <TMath.h>
29#include <TRandom.h>
30#include <TVector.h>
31#include <TVirtualMC.h>
f57bb418 32#include <TGeoManager.h>
fe4da5cc 33
d3f347ff 34#include "AliConst.h"
45160b1f 35#include "AliLog.h"
36#include "AliMC.h"
88cb7938 37#include "AliRun.h"
030b4415 38
88cb7938 39#include "AliTRDgeometry.h"
793ff80c 40#include "AliTRDhit.h"
793ff80c 41#include "AliTRDsim.h"
88cb7938 42#include "AliTRDv1.h"
851d3db9 43
fe4da5cc 44ClassImp(AliTRDv1)
8230f242 45
46//_____________________________________________________________________________
030b4415 47AliTRDv1::AliTRDv1()
48 :AliTRD()
49 ,fTRon(kFALSE)
50 ,fTR(NULL)
51 ,fTypeOfStepManager(0)
52 ,fStepSize(0)
53 ,fDeltaE(NULL)
54 ,fDeltaG(NULL)
55 ,fTrackLength0(0)
56 ,fPrimaryTrackPid(0)
8230f242 57{
58 //
59 // Default constructor
60 //
61
8230f242 62}
63
fe4da5cc 64//_____________________________________________________________________________
65AliTRDv1::AliTRDv1(const char *name, const char *title)
030b4415 66 :AliTRD(name,title)
67 ,fTRon(kTRUE)
68 ,fTR(NULL)
67c47633 69 ,fTypeOfStepManager(2)
030b4415 70 ,fStepSize(0.1)
71 ,fDeltaE(NULL)
72 ,fDeltaG(NULL)
73 ,fTrackLength0(0)
74 ,fPrimaryTrackPid(0)
fe4da5cc 75{
76 //
851d3db9 77 // Standard constructor for Transition Radiation Detector version 1
fe4da5cc 78 //
82bbf98a 79
5c7f4665 80 SetBufferSize(128000);
81
82}
83
84//_____________________________________________________________________________
85AliTRDv1::~AliTRDv1()
86{
dd9a6ee3 87 //
88 // AliTRDv1 destructor
89 //
82bbf98a 90
030b4415 91 if (fDeltaE) {
92 delete fDeltaE;
93 fDeltaE = 0;
94 }
95
96 if (fDeltaG) {
97 delete fDeltaG;
98 fDeltaG = 0;
99 }
100
101 if (fTR) {
102 delete fTR;
103 fTR = 0;
104 }
82bbf98a 105
fe4da5cc 106}
107
f57bb418 108//_____________________________________________________________________________
109void AliTRDv1::AddAlignableVolumes() const
110{
111 //
112 // Create entries for alignable volumes associating the symbolic volume
113 // name with the corresponding volume path. Needs to be syncronized with
114 // eventual changes in the geometry.
115 //
116
117 TString volPath;
118 TString symName;
119
120 TString vpStr = "ALIC_1/B077_1/BSEGMO";
121 TString vpApp1 = "_1/BTRD";
122 TString vpApp2 = "_1";
123 TString vpApp3 = "/UTR1_1/UTS1_1/UTI1_1/UT";
124
125 TString snStr = "TRD/sm";
126 TString snApp1 = "/st";
127 TString snApp2 = "/pl";
128
129 //
130 // The super modules
131 // The symbolic names are: TRD/sm00
132 // ...
133 // TRD/sm17
134 //
135 for (Int_t isect = 0; isect < AliTRDgeometry::Nsect(); isect++) {
136
137 volPath = vpStr;
138 volPath += isect;
139 volPath += vpApp1;
140 volPath += isect;
141 volPath += vpApp2;
142
143 symName = snStr;
144 symName += Form("%02d",isect);
145
146 gGeoManager->SetAlignableEntry(symName.Data(),volPath.Data());
147
148 }
149
150 //
151 // The readout chambers
152 // The symbolic names are: TRD/sm00/st0/pl0
153 // ...
154 // TRD/sm17/st4/pl5
155 //
156 for (Int_t isect = 0; isect < AliTRDgeometry::Nsect(); isect++) {
157 for (Int_t icham = 0; icham < AliTRDgeometry::Ncham(); icham++) {
158 for (Int_t iplan = 0; iplan < AliTRDgeometry::Nplan(); iplan++) {
159
160 Int_t idet = AliTRDgeometry::GetDetectorSec(iplan,icham);
161
162 volPath = vpStr;
163 volPath += isect;
164 volPath += vpApp1;
165 volPath += isect;
166 volPath += vpApp2;
167 volPath += vpApp3;
168 volPath += Form("%02d",idet);
169 volPath += vpApp2;
170
171 symName = snStr;
172 symName += Form("%02d",isect);
173 symName += snApp1;
174 symName += icham;
175 symName += snApp2;
176 symName += iplan;
177
f57bb418 178 gGeoManager->SetAlignableEntry(symName.Data(),volPath.Data());
179
180 }
181 }
182 }
183
184}
185
fe4da5cc 186//_____________________________________________________________________________
187void AliTRDv1::CreateGeometry()
188{
189 //
851d3db9 190 // Create the GEANT geometry for the Transition Radiation Detector - Version 1
5c7f4665 191 // This version covers the full azimuth.
d3f347ff 192 //
193
82bbf98a 194 // Check that FRAME is there otherwise we have no place where to put the TRD
8230f242 195 AliModule* frame = gAlice->GetModule("FRAME");
030b4415 196 if (!frame) {
197 AliError("TRD needs FRAME to be present\n");
198 return;
199 }
d3f347ff 200
82bbf98a 201 // Define the chambers
202 AliTRD::CreateGeometry();
d3f347ff 203
fe4da5cc 204}
205
206//_____________________________________________________________________________
207void AliTRDv1::CreateMaterials()
208{
209 //
851d3db9 210 // Create materials for the Transition Radiation Detector version 1
fe4da5cc 211 //
82bbf98a 212
d3f347ff 213 AliTRD::CreateMaterials();
82bbf98a 214
fe4da5cc 215}
216
793ff80c 217//_____________________________________________________________________________
218void AliTRDv1::CreateTRhit(Int_t det)
219{
220 //
221 // Creates an electron cluster from a TR photon.
222 // The photon is assumed to be created a the end of the radiator. The
223 // distance after which it deposits its energy takes into account the
224 // absorbtion of the entrance window and of the gas mixture in drift
225 // volume.
226 //
227
793ff80c 228 // Ionization energy
bc327ce2 229 const Float_t kWion = 23.53;
793ff80c 230
231 // Maximum number of TR photons per track
232 const Int_t kNTR = 50;
233
030b4415 234 TLorentzVector mom;
235 TLorentzVector pos;
793ff80c 236
ce0d6231 237 Float_t eTR[kNTR];
238 Int_t nTR;
793ff80c 239
ce0d6231 240 // Create TR photons
241 gMC->TrackMomentum(mom);
242 Float_t pTot = mom.Rho();
243 fTR->CreatePhotons(11,pTot,nTR,eTR);
244 if (nTR > kNTR) {
245 AliFatal(Form("Boundary error: nTR = %d, kNTR = %d",nTR,kNTR));
246 }
f73816f5 247
ce0d6231 248 // Loop through the TR photons
249 for (Int_t iTR = 0; iTR < nTR; iTR++) {
793ff80c 250
ce0d6231 251 Float_t energyMeV = eTR[iTR] * 0.001;
252 Float_t energyeV = eTR[iTR] * 1000.0;
253 Float_t absLength = 0.0;
254 Float_t sigma = 0.0;
793ff80c 255
ce0d6231 256 // Take the absorbtion in the entrance window into account
257 Double_t muMy = fTR->GetMuMy(energyMeV);
258 sigma = muMy * fFoilDensity;
259 if (sigma > 0.0) {
260 absLength = gRandom->Exp(1.0/sigma);
261 if (absLength < AliTRDgeometry::MyThick()) {
842287f2 262 continue;
263 }
ce0d6231 264 }
265 else {
266 continue;
267 }
793ff80c 268
ce0d6231 269 // The absorbtion cross sections in the drift gas
270 // Gas-mixture (Xe/CO2)
271 Double_t muXe = fTR->GetMuXe(energyMeV);
272 Double_t muCO = fTR->GetMuCO(energyMeV);
273 sigma = (0.85 * muXe + 0.15 * muCO) * fGasDensity * fTR->GetTemp();
274
275 // The distance after which the energy of the TR photon
276 // is deposited.
277 if (sigma > 0.0) {
278 absLength = gRandom->Exp(1.0/sigma);
279 if (absLength > (AliTRDgeometry::DrThick()
280 + AliTRDgeometry::AmThick())) {
842287f2 281 continue;
282 }
ce0d6231 283 }
284 else {
285 continue;
286 }
793ff80c 287
ce0d6231 288 // The position of the absorbtion
289 Float_t posHit[3];
290 gMC->TrackPosition(pos);
291 posHit[0] = pos[0] + mom[0] / pTot * absLength;
292 posHit[1] = pos[1] + mom[1] / pTot * absLength;
293 posHit[2] = pos[2] + mom[2] / pTot * absLength;
793ff80c 294
ce0d6231 295 // Create the charge
296 Int_t q = ((Int_t) (energyeV / kWion));
793ff80c 297
ce0d6231 298 // Add the hit to the array. TR photon hits are marked
299 // by negative charge
300 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber()
301 ,det
302 ,posHit
303 ,-q
304 ,kTRUE);
793ff80c 305
306 }
307
308}
309
5c7f4665 310//_____________________________________________________________________________
311void AliTRDv1::Init()
312{
313 //
314 // Initialise Transition Radiation Detector after geometry has been built.
5c7f4665 315 //
316
317 AliTRD::Init();
318
45160b1f 319 AliDebug(1,"Slow simulator\n");
bd0f8685 320
321 // Switch on TR simulation as default
322 if (!fTRon) {
45160b1f 323 AliInfo("TR simulation off");
bd0f8685 324 }
325 else {
326 fTR = new AliTRDsim();
327 }
5c7f4665 328
329 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
330 const Float_t kPoti = 12.1;
331 // Maximum energy (50 keV);
332 const Float_t kEend = 50000.0;
333 // Ermilova distribution for the delta-ray spectrum
030b4415 334 Float_t poti = TMath::Log(kPoti);
335 Float_t eEnd = TMath::Log(kEend);
a328fff9 336
337 // Ermilova distribution for the delta-ray spectrum
c4214bc0 338 fDeltaE = new TF1("deltae" ,Ermilova ,poti,eEnd,0);
a328fff9 339
340 // Geant3 distribution for the delta-ray spectrum
c4214bc0 341 fDeltaG = new TF1("deltag",IntSpecGeant,2.421257,28.536469,0);
5c7f4665 342
45160b1f 343 AliDebug(1,"+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++");
5c7f4665 344
fe4da5cc 345}
346
5c7f4665 347//_____________________________________________________________________________
348void AliTRDv1::StepManager()
a328fff9 349{
350 //
c4214bc0 351 // Slow simulator. Every charged track produces electron cluster as hits
a328fff9 352 // along its path across the drift volume.
353 //
354
355 switch (fTypeOfStepManager) {
a6dd11e9 356 case 0:
357 StepManagerErmilova();
358 break;
359 case 1:
360 StepManagerGeant();
361 break;
362 case 2:
363 StepManagerFixedStep();
364 break;
365 default:
366 AliWarning("Not a valid Step Manager.");
a328fff9 367 }
368
369}
370
371//_____________________________________________________________________________
372void AliTRDv1::SelectStepManager(Int_t t)
373{
374 //
375 // Selects a step manager type:
376 // 0 - Ermilova
377 // 1 - Geant3
378 // 2 - Fixed step size
379 //
380
a328fff9 381 fTypeOfStepManager = t;
45160b1f 382 AliInfo(Form("Step Manager type %d was selected",fTypeOfStepManager));
a328fff9 383
384}
385
386//_____________________________________________________________________________
387void AliTRDv1::StepManagerGeant()
388{
389 //
c4214bc0 390 // Slow simulator. Every charged track produces electron cluster as hits
a328fff9 391 // along its path across the drift volume. The step size is set acording
392 // to Bethe-Bloch. The energy distribution of the delta electrons follows
393 // a spectrum taken from Geant3.
394 //
f2e3a0b5 395 // Version by A. Bercuci
396 //
397
c4214bc0 398 Int_t pla = 0;
399 Int_t cha = 0;
400 Int_t sec = 0;
401 Int_t det = 0;
402 Int_t iPdg;
403 Int_t qTot;
404
405 Float_t hits[3];
406 Float_t charge;
407 Float_t aMass;
408
030b4415 409 Double_t pTot = 0;
c4214bc0 410 Double_t eDelta;
030b4415 411 Double_t betaGamma;
412 Double_t pp;
f2e3a0b5 413 Double_t stepSize = 0;
c4214bc0 414
415 Bool_t drRegion = kFALSE;
416 Bool_t amRegion = kFALSE;
417
418 TString cIdCurrent;
419 TString cIdSensDr = "J";
420 TString cIdSensAm = "K";
421 Char_t cIdChamber[3];
422 cIdChamber[2] = 0;
423
030b4415 424 TLorentzVector pos;
425 TLorentzVector mom;
c4214bc0 426
030b4415 427 TArrayI processes;
f2e3a0b5 428
c4214bc0 429 const Int_t kNplan = AliTRDgeometry::Nplan();
430 const Int_t kNcham = AliTRDgeometry::Ncham();
431 const Int_t kNdetsec = kNplan * kNcham;
432
030b4415 433 const Double_t kBig = 1.0e+12; // Infinitely big
bc327ce2 434 const Float_t kWion = 23.53; // Ionization energy
c4214bc0 435 const Float_t kPTotMaxEl = 0.002; // Maximum momentum for e+ e- g
436
437 // Minimum energy for the step size adjustment
438 const Float_t kEkinMinStep = 1.0e-5;
439 // energy threshold for production of delta electrons
f2e3a0b5 440 const Float_t kECut = 1.0e4;
441 // Parameters entering the parametrized range for delta electrons
030b4415 442 const Float_t kRa = 5.37e-4;
f2e3a0b5 443 const Float_t kRb = 0.9815;
030b4415 444 const Float_t kRc = 3.123e-3;
f2e3a0b5 445 // Gas density -> To be made user adjustable !
030b4415 446 // [0.85*0.00549+0.15*0.00186 (Xe-CO2 85-15)]
447 const Float_t kRho = 0.004945 ;
a328fff9 448
c4214bc0 449 // Plateau value of the energy-loss for electron in xenon
030b4415 450 // The averaged value (26/3/99)
c4214bc0 451 const Float_t kPlateau = 1.55;
030b4415 452 // dN1/dx|min for the gas mixture (90% Xe + 10% CO2)
453 const Float_t kPrim = 19.34;
c4214bc0 454 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
455 const Float_t kPoti = 12.1;
030b4415 456 // PDG code electron
457 const Int_t kPdgElectron = 11;
c4214bc0 458
459 // Set the maximum step size to a very large number for all
460 // neutral particles and those outside the driftvolume
461 gMC->SetMaxStep(kBig);
462
463 // Use only charged tracks
464 if (( gMC->TrackCharge() ) &&
c4214bc0 465 (!gMC->IsTrackDisappeared())) {
466
467 // Inside a sensitive volume?
468 drRegion = kFALSE;
469 amRegion = kFALSE;
470 cIdCurrent = gMC->CurrentVolName();
471 if (cIdSensDr == cIdCurrent[1]) {
472 drRegion = kTRUE;
473 }
474 if (cIdSensAm == cIdCurrent[1]) {
475 amRegion = kTRUE;
476 }
477 if (drRegion || amRegion) {
a328fff9 478
c4214bc0 479 // The hit coordinates and charge
480 gMC->TrackPosition(pos);
481 hits[0] = pos[0];
482 hits[1] = pos[1];
483 hits[2] = pos[2];
484
485 // The sector number (0 - 17)
486 // The numbering goes clockwise and starts at y = 0
487 Float_t phi = kRaddeg*TMath::ATan2(pos[0],pos[1]);
030b4415 488 if (phi < 90.0) {
489 phi = phi + 270.0;
490 }
491 else {
492 phi = phi - 90.0;
493 }
494 sec = ((Int_t) (phi / 20.0));
c4214bc0 495
496 // The plane and chamber number
030b4415 497 cIdChamber[0] = cIdCurrent[2];
498 cIdChamber[1] = cIdCurrent[3];
c4214bc0 499 Int_t idChamber = (atoi(cIdChamber) % kNdetsec);
500 cha = kNcham - ((Int_t) idChamber / kNplan) - 1;
501 pla = ((Int_t) idChamber % kNplan);
502
ce0d6231 503 // The detector number
504 det = fGeometry->GetDetector(pla,cha,sec);
c4214bc0 505
ce0d6231 506 // Special hits only in the drift region
507 if ((drRegion) &&
508 (gMC->IsTrackEntering())) {
c4214bc0 509
ce0d6231 510 // Create a track reference at the entrance of each
511 // chamber that contains the momentum components of the particle
512 gMC->TrackMomentum(mom);
513 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
c4214bc0 514
ce0d6231 515 // Create the hits from TR photons if electron/positron is
516 // entering the drift volume
517 if ((fTR) &&
518 (TMath::Abs(gMC->TrackPid()) == kPdgElectron)) {
519 CreateTRhit(det);
520 }
f2e3a0b5 521
ce0d6231 522 }
523 else if ((amRegion) &&
524 (gMC->IsTrackExiting())) {
f2e3a0b5 525
ce0d6231 526 // Create a track reference at the exit of each
527 // chamber that contains the momentum components of the particle
528 gMC->TrackMomentum(mom);
529 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
c4214bc0 530
ce0d6231 531 }
c4214bc0 532
ce0d6231 533 // Calculate the energy of the delta-electrons
534 // modified by Alex Bercuci (A.Bercuci@gsi.de) on 26.01.06
535 // take into account correlation with the underlying GEANT tracking
536 // mechanism. see
537 // http://www-linux.gsi.de/~abercuci/Contributions/TRD/index.html
538 //
539 // determine the most significant process (last on the processes list)
540 // which caused this hit
541 gMC->StepProcesses(processes);
542 Int_t nofprocesses = processes.GetSize();
543 Int_t pid;
544 if (!nofprocesses) {
545 pid = 0;
546 }
547 else {
548 pid = processes[nofprocesses-1];
549 }
f2e3a0b5 550
ce0d6231 551 // Generate Edep according to GEANT parametrisation
552 eDelta = TMath::Exp(fDeltaG->GetRandom()) - kPoti;
553 eDelta = TMath::Max(eDelta,0.0);
554 Float_t prRange = 0.0;
555 Float_t range = gMC->TrackLength() - fTrackLength0;
556 // merge GEANT tracker information with locally cooked one
557 if (gAlice->GetMCApp()->GetCurrentTrackNumber() == fPrimaryTrackPid) {
558 if (pid == 27) {
559 if (eDelta >= kECut) {
560 prRange = kRa * eDelta * 0.001
561 * (1.0 - kRb / (1.0 + kRc * eDelta * 0.001)) / kRho;
562 if (prRange >= (3.7 - range)) {
563 eDelta *= 0.1;
564 }
565 }
566 }
567 else if (pid == 1) {
568 if (eDelta < kECut) {
569 eDelta *= 0.5;
570 }
571 else {
572 prRange = kRa * eDelta * 0.001
573 * (1.0 - kRb / (1.0 + kRc * eDelta * 0.001)) / kRho;
574 if (prRange >= ((AliTRDgeometry::DrThick()
575 + AliTRDgeometry::AmThick()) - range)) {
576 eDelta *= 0.05;
577 }
578 else {
f2e3a0b5 579 eDelta *= 0.5;
ce0d6231 580 }
581 }
582 }
f2e3a0b5 583 else {
584 eDelta = 0.0;
ce0d6231 585 }
586 }
587 else {
588 eDelta = 0.0;
589 }
c4214bc0 590
ce0d6231 591 // Generate the electron cluster size
592 if (eDelta > 0.0) {
f2e3a0b5 593
ce0d6231 594 qTot = ((Int_t) (eDelta / kWion) + 1);
595
596 // Create a new dEdx hit
030b4415 597 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber()
598 ,det
599 ,hits
600 ,qTot
601 ,drRegion);
c4214bc0 602
ce0d6231 603 }
604
605 // Calculate the maximum step size for the next tracking step
606 // Produce only one hit if Ekin is below cutoff
607 aMass = gMC->TrackMass();
608 if ((gMC->Etot() - aMass) > kEkinMinStep) {
609
610 // The energy loss according to Bethe Bloch
611 iPdg = TMath::Abs(gMC->TrackPid());
612 if ((iPdg != kPdgElectron) ||
613 ((iPdg == kPdgElectron) &&
614 (pTot < kPTotMaxEl))) {
615 gMC->TrackMomentum(mom);
616 pTot = mom.Rho();
617 betaGamma = pTot / aMass;
618 pp = BetheBlochGeant(betaGamma);
619 // Take charge > 1 into account
620 charge = gMC->TrackCharge();
621 if (TMath::Abs(charge) > 1) {
622 pp = pp * charge*charge;
623 }
624 }
625 else {
626 // Electrons above 20 Mev/c are at the plateau
627 pp = kPrim * kPlateau;
628 }
f2e3a0b5 629
ce0d6231 630 Int_t nsteps = 0;
631 do {
632 nsteps = gRandom->Poisson(pp);
633 } while(!nsteps);
634 stepSize = 1.0 / nsteps;
635 gMC->SetMaxStep(stepSize);
f2e3a0b5 636
c4214bc0 637 }
f2e3a0b5 638
c4214bc0 639 }
f2e3a0b5 640
c4214bc0 641 }
f2e3a0b5 642
a328fff9 643}
644
645//_____________________________________________________________________________
646void AliTRDv1::StepManagerErmilova()
5c7f4665 647{
648 //
5c7f4665 649 // Slow simulator. Every charged track produces electron cluster as hits
650 // along its path across the drift volume. The step size is set acording
651 // to Bethe-Bloch. The energy distribution of the delta electrons follows
652 // a spectrum taken from Ermilova et al.
653 //
654
851d3db9 655 Int_t pla = 0;
656 Int_t cha = 0;
657 Int_t sec = 0;
793ff80c 658 Int_t det = 0;
851d3db9 659 Int_t iPdg;
793ff80c 660 Int_t qTot;
5c7f4665 661
793ff80c 662 Float_t hits[3];
a5cadd36 663 Double_t random[1];
5c7f4665 664 Float_t charge;
665 Float_t aMass;
666
030b4415 667 Double_t pTot = 0.0;
5c7f4665 668 Double_t eDelta;
030b4415 669 Double_t betaGamma;
670 Double_t pp;
f73816f5 671 Double_t stepSize;
5c7f4665 672
332e9569 673 Bool_t drRegion = kFALSE;
674 Bool_t amRegion = kFALSE;
675
676 TString cIdCurrent;
677 TString cIdSensDr = "J";
678 TString cIdSensAm = "K";
593a9fc3 679 Char_t cIdChamber[3];
680 cIdChamber[2] = 0;
332e9569 681
030b4415 682 TLorentzVector pos;
683 TLorentzVector mom;
82bbf98a 684
332e9569 685 const Int_t kNplan = AliTRDgeometry::Nplan();
e644678a 686 const Int_t kNcham = AliTRDgeometry::Ncham();
687 const Int_t kNdetsec = kNplan * kNcham;
688
030b4415 689 const Double_t kBig = 1.0e+12; // Infinitely big
bc327ce2 690 const Float_t kWion = 23.53; // Ionization energy
a328fff9 691 const Float_t kPTotMaxEl = 0.002; // Maximum momentum for e+ e- g
5c7f4665 692
f73816f5 693 // Minimum energy for the step size adjustment
694 const Float_t kEkinMinStep = 1.0e-5;
a328fff9 695
5c7f4665 696 // Plateau value of the energy-loss for electron in xenon
030b4415 697 // The averaged value (26/3/99)
a3c76cdc 698 const Float_t kPlateau = 1.55;
030b4415 699 // dN1/dx|min for the gas mixture (90% Xe + 10% CO2)
700 const Float_t kPrim = 48.0;
5c7f4665 701 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
a3c76cdc 702 const Float_t kPoti = 12.1;
030b4415 703 // PDG code electron
704 const Int_t kPdgElectron = 11;
5c7f4665 705
706 // Set the maximum step size to a very large number for all
707 // neutral particles and those outside the driftvolume
708 gMC->SetMaxStep(kBig);
709
710 // Use only charged tracks
711 if (( gMC->TrackCharge() ) &&
5c7f4665 712 (!gMC->IsTrackDisappeared())) {
fe4da5cc 713
5c7f4665 714 // Inside a sensitive volume?
332e9569 715 drRegion = kFALSE;
716 amRegion = kFALSE;
717 cIdCurrent = gMC->CurrentVolName();
e6674585 718 if (cIdSensDr == cIdCurrent[1]) {
332e9569 719 drRegion = kTRUE;
720 }
e6674585 721 if (cIdSensAm == cIdCurrent[1]) {
332e9569 722 amRegion = kTRUE;
723 }
724 if (drRegion || amRegion) {
fe4da5cc 725
5c7f4665 726 // The hit coordinates and charge
727 gMC->TrackPosition(pos);
728 hits[0] = pos[0];
729 hits[1] = pos[1];
730 hits[2] = pos[2];
5c7f4665 731
851d3db9 732 // The sector number (0 - 17)
733 // The numbering goes clockwise and starts at y = 0
e15eb584 734 Float_t phi = kRaddeg*TMath::ATan2(pos[0],pos[1]);
030b4415 735 if (phi < 90.0) {
736 phi = phi + 270.0;
737 }
738 else {
739 phi = phi - 90.0;
740 }
741 sec = ((Int_t) (phi / 20.0));
82bbf98a 742
332e9569 743 // The plane and chamber number
744 cIdChamber[0] = cIdCurrent[2];
745 cIdChamber[1] = cIdCurrent[3];
e644678a 746 Int_t idChamber = (atoi(cIdChamber) % kNdetsec);
a5cadd36 747 cha = kNcham - ((Int_t) idChamber / kNplan) - 1;
332e9569 748 pla = ((Int_t) idChamber % kNplan);
82bbf98a 749
ce0d6231 750 // The detector number
751 det = fGeometry->GetDetector(pla,cha,sec);
5c7f4665 752
ce0d6231 753 // Special hits only in the drift region
754 if ((drRegion) &&
755 (gMC->IsTrackEntering())) {
5c7f4665 756
ce0d6231 757 // Create a track reference at the entrance of each
758 // chamber that contains the momentum components of the particle
759 gMC->TrackMomentum(mom);
760 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
793ff80c 761
ce0d6231 762 // Create the hits from TR photons if electron/positron is
763 // entering the drift volume
764 if ((fTR) &&
765 (TMath::Abs(gMC->TrackPid()) == kPdgElectron)) {
766 CreateTRhit(det);
767 }
f73816f5 768
ce0d6231 769 }
770 else if ((amRegion) &&
771 (gMC->IsTrackExiting())) {
f73816f5 772
ce0d6231 773 // Create a track reference at the exit of each
774 // chamber that contains the momentum components of the particle
775 gMC->TrackMomentum(mom);
776 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
f73816f5 777
ce0d6231 778 }
779
780 // Calculate the energy of the delta-electrons
781 eDelta = TMath::Exp(fDeltaE->GetRandom()) - kPoti;
782 eDelta = TMath::Max(eDelta,0.0);
783
784 // Generate the electron cluster size
785 if (eDelta > 0.0) {
786
787 qTot = ((Int_t) (eDelta / kWion) + 1);
f73816f5 788
030b4415 789 // Create a new dEdx hit
332e9569 790 if (drRegion) {
a328fff9 791 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber()
030b4415 792 ,det
793 ,hits
794 ,qTot
795 ,kTRUE);
796 }
5c7f4665 797 else {
a328fff9 798 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber()
030b4415 799 ,det
800 ,hits
801 ,qTot
802 ,kFALSE);
803 }
f73816f5 804
ce0d6231 805 }
806
807 // Calculate the maximum step size for the next tracking step
808 // Produce only one hit if Ekin is below cutoff
809 aMass = gMC->TrackMass();
810 if ((gMC->Etot() - aMass) > kEkinMinStep) {
811
812 // The energy loss according to Bethe Bloch
813 iPdg = TMath::Abs(gMC->TrackPid());
814 if ((iPdg != kPdgElectron) ||
815 ((iPdg == kPdgElectron) &&
816 (pTot < kPTotMaxEl))) {
817 gMC->TrackMomentum(mom);
818 pTot = mom.Rho();
819 betaGamma = pTot / aMass;
820 pp = kPrim * BetheBloch(betaGamma);
821 // Take charge > 1 into account
822 charge = gMC->TrackCharge();
823 if (TMath::Abs(charge) > 1) {
824 pp = pp * charge*charge;
f73816f5 825 }
ce0d6231 826 }
827 else {
828 // Electrons above 20 Mev/c are at the plateau
829 pp = kPrim * kPlateau;
830 }
f73816f5 831
ce0d6231 832 if (pp > 0.0) {
833 do {
834 gMC->GetRandom()->RndmArray(1,random);
030b4415 835 }
ce0d6231 836 while ((random[0] == 1.0) ||
837 (random[0] == 0.0));
838 stepSize = - TMath::Log(random[0]) / pp;
839 gMC->SetMaxStep(stepSize);
840 }
030b4415 841
5c7f4665 842 }
030b4415 843
d3f347ff 844 }
030b4415 845
5c7f4665 846 }
030b4415 847
5c7f4665 848}
849
a328fff9 850//_____________________________________________________________________________
851void AliTRDv1::StepManagerFixedStep()
852{
853 //
854 // Slow simulator. Every charged track produces electron cluster as hits
855 // along its path across the drift volume. The step size is fixed in
856 // this version of the step manager.
857 //
858
ce0d6231 859 // PDG code electron
860 const Int_t kPdgElectron = 11;
861
a328fff9 862 Int_t pla = 0;
863 Int_t cha = 0;
864 Int_t sec = 0;
865 Int_t det = 0;
866 Int_t qTot;
867
868 Float_t hits[3];
869 Double_t eDep;
870
871 Bool_t drRegion = kFALSE;
872 Bool_t amRegion = kFALSE;
873
874 TString cIdCurrent;
875 TString cIdSensDr = "J";
876 TString cIdSensAm = "K";
877 Char_t cIdChamber[3];
878 cIdChamber[2] = 0;
879
030b4415 880 TLorentzVector pos;
881 TLorentzVector mom;
a328fff9 882
883 const Int_t kNplan = AliTRDgeometry::Nplan();
884 const Int_t kNcham = AliTRDgeometry::Ncham();
885 const Int_t kNdetsec = kNplan * kNcham;
886
030b4415 887 const Double_t kBig = 1.0e+12;
a328fff9 888
bc327ce2 889 const Float_t kWion = 23.53; // Ionization energy
a328fff9 890 const Float_t kEkinMinStep = 1.0e-5; // Minimum energy for the step size adjustment
891
892 // Set the maximum step size to a very large number for all
893 // neutral particles and those outside the driftvolume
894 gMC->SetMaxStep(kBig);
895
896 // If not charged track or already stopped or disappeared, just return.
897 if ((!gMC->TrackCharge()) ||
ce0d6231 898 gMC->IsTrackDisappeared()) {
899 return;
900 }
a328fff9 901
902 // Inside a sensitive volume?
903 cIdCurrent = gMC->CurrentVolName();
904
ce0d6231 905 if (cIdSensDr == cIdCurrent[1]) {
906 drRegion = kTRUE;
907 }
908 if (cIdSensAm == cIdCurrent[1]) {
909 amRegion = kTRUE;
910 }
a328fff9 911
030b4415 912 if ((!drRegion) &&
913 (!amRegion)) {
914 return;
915 }
a328fff9 916
917 // The hit coordinates and charge
918 gMC->TrackPosition(pos);
919 hits[0] = pos[0];
920 hits[1] = pos[1];
921 hits[2] = pos[2];
922
923 // The sector number (0 - 17)
924 // The numbering goes clockwise and starts at y = 0
ce0d6231 925 Float_t phi = kRaddeg * TMath::ATan2(pos[0],pos[1]);
030b4415 926 if (phi < 90.0) {
927 phi = phi + 270.0;
928 }
929 else {
930 phi = phi - 90.0;
931 }
932 sec = ((Int_t) (phi / 20.0));
a328fff9 933
934 // The plane and chamber number
030b4415 935 cIdChamber[0] = cIdCurrent[2];
936 cIdChamber[1] = cIdCurrent[3];
a328fff9 937 Int_t idChamber = (atoi(cIdChamber) % kNdetsec);
a5cadd36 938 cha = kNcham - ((Int_t) idChamber / kNplan) - 1;
a328fff9 939 pla = ((Int_t) idChamber % kNplan);
e0d47c25 940
030b4415 941 // The detector number
942 det = fGeometry->GetDetector(pla,cha,sec);
943
944 // 0: InFlight 1:Entering 2:Exiting
945 Int_t trkStat = 0;
a328fff9 946
947 // Special hits only in the drift region
ce0d6231 948 if ((drRegion) &&
949 (gMC->IsTrackEntering())) {
a328fff9 950
ce0d6231 951 // Create a track reference at the entrance of each
952 // chamber that contains the momentum components of the particle
953 gMC->TrackMomentum(mom);
954 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
955 trkStat = 1;
a328fff9 956
ce0d6231 957 // Create the hits from TR photons if electron/positron is
958 // entering the drift volume
959 if ((fTR) &&
960 (TMath::Abs(gMC->TrackPid()) == kPdgElectron)) {
030b4415 961 CreateTRhit(det);
962 }
a328fff9 963
ce0d6231 964 }
965 else if ((amRegion) &&
966 (gMC->IsTrackExiting())) {
967
968 // Create a track reference at the exit of each
969 // chamber that contains the momentum components of the particle
970 gMC->TrackMomentum(mom);
971 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
972 trkStat = 2;
973
a328fff9 974 }
975
976 // Calculate the charge according to GEANT Edep
977 // Create a new dEdx hit
978 eDep = TMath::Max(gMC->Edep(),0.0) * 1.0e+09;
979 qTot = (Int_t) (eDep / kWion);
ce0d6231 980 if ((qTot) ||
981 (trkStat)) {
982 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber()
983 ,det
984 ,hits
985 ,qTot
986 ,drRegion);
987 }
a328fff9 988
989 // Set Maximum Step Size
990 // Produce only one hit if Ekin is below cutoff
030b4415 991 if ((gMC->Etot() - gMC->TrackMass()) < kEkinMinStep) {
992 return;
993 }
a328fff9 994 gMC->SetMaxStep(fStepSize);
995
996}
997
5c7f4665 998//_____________________________________________________________________________
999Double_t AliTRDv1::BetheBloch(Double_t bg)
1000{
1001 //
1002 // Parametrization of the Bethe-Bloch-curve
1003 // The parametrization is the same as for the TPC and is taken from Lehrhaus.
1004 //
1005
1006 // This parameters have been adjusted to averaged values from GEANT
f57bb418 1007 const Double_t kP1 = 7.17960e-02;
1008 const Double_t kP2 = 8.54196;
1009 const Double_t kP3 = 1.38065e-06;
1010 const Double_t kP4 = 5.30972;
1011 const Double_t kP5 = 2.83798;
5c7f4665 1012
f73816f5 1013 // Lower cutoff of the Bethe-Bloch-curve to limit step sizes
1014 const Double_t kBgMin = 0.8;
1015 const Double_t kBBMax = 6.83298;
f73816f5 1016
1017 if (bg > kBgMin) {
030b4415 1018 Double_t yy = bg / TMath::Sqrt(1.0 + bg*bg);
5c7f4665 1019 Double_t aa = TMath::Power(yy,kP4);
030b4415 1020 Double_t bb = TMath::Power((1.0/bg),kP5);
5c7f4665 1021 bb = TMath::Log(kP3 + bb);
030b4415 1022 return ((kP2 - aa - bb) * kP1 / aa);
5c7f4665 1023 }
f73816f5 1024 else {
1025 return kBBMax;
1026 }
d3f347ff 1027
fe4da5cc 1028}
5c7f4665 1029
a328fff9 1030//_____________________________________________________________________________
c4214bc0 1031Double_t AliTRDv1::BetheBlochGeant(Double_t bg)
a328fff9 1032{
1033 //
1034 // Return dN/dx (number of primary collisions per centimeter)
1035 // for given beta*gamma factor.
1036 //
1037 // Implemented by K.Oyama according to GEANT 3 parametrization shown in
1038 // A.Andronic's webpage: http://www-alice.gsi.de/trd/papers/dedx/dedx.html
1039 // This must be used as a set with IntSpecGeant.
1040 //
1041
030b4415 1042 Int_t i = 0;
a328fff9 1043
030b4415 1044 Double_t arrG[20] = { 1.100000, 1.200000, 1.300000, 1.500000
1045 , 1.800000, 2.000000, 2.500000, 3.000000
1046 , 4.000000, 7.000000, 10.000000, 20.000000
1047 , 40.000000, 70.000000, 100.000000, 300.000000
1048 , 600.000000, 1000.000000, 3000.000000, 10000.000000 };
a328fff9 1049
030b4415 1050 Double_t arrNC[20] = { 75.009056, 45.508083, 35.299252, 27.116327
1051 , 22.734999, 21.411915, 19.934095, 19.449375
1052 , 19.344431, 20.185553, 21.027925, 22.912676
1053 , 24.933352, 26.504053, 27.387468, 29.566597
1054 , 30.353779, 30.787134, 31.129285, 31.157350 };
1055
1056 // Betagamma to gamma
1057 Double_t g = TMath::Sqrt(1.0 + bg*bg);
a328fff9 1058
1059 // Find the index just before the point we need.
030b4415 1060 for (i = 0; i < 18; i++) {
1061 if ((arrG[i] < g) &&
1062 (arrG[i+1] > g)) {
a328fff9 1063 break;
030b4415 1064 }
1065 }
a328fff9 1066
1067 // Simple interpolation.
030b4415 1068 Double_t pp = ((arrNC[i+1] - arrNC[i]) / (arrG[i+1] - arrG[i]))
1069 * (g - arrG[i]) + arrNC[i];
a328fff9 1070
030b4415 1071 return pp;
a328fff9 1072
1073}
1074
5c7f4665 1075//_____________________________________________________________________________
1076Double_t Ermilova(Double_t *x, Double_t *)
1077{
1078 //
1079 // Calculates the delta-ray energy distribution according to Ermilova.
1080 // Logarithmic scale !
1081 //
1082
1083 Double_t energy;
1084 Double_t dpos;
1085 Double_t dnde;
1086
030b4415 1087 Int_t pos1;
1088 Int_t pos2;
5c7f4665 1089
8230f242 1090 const Int_t kNv = 31;
5c7f4665 1091
030b4415 1092 Float_t vxe[kNv] = { 2.3026, 2.9957, 3.4012, 3.6889, 3.9120
1093 , 4.0943, 4.2485, 4.3820, 4.4998, 4.6052
1094 , 4.7005, 5.0752, 5.2983, 5.7038, 5.9915
1095 , 6.2146, 6.5221, 6.9078, 7.3132, 7.6009
1096 , 8.0064, 8.5172, 8.6995, 8.9872, 9.2103
1097 , 9.4727, 9.9035, 10.3735, 10.5966, 10.8198
1098 , 11.5129 };
1099
1100 Float_t vye[kNv] = { 80.0, 31.0, 23.3, 21.1, 21.0
1101 , 20.9, 20.8, 20.0, 16.0, 11.0
1102 , 8.0, 6.0, 5.2, 4.6, 4.0
1103 , 3.5, 3.0, 1.4, 0.67, 0.44
1104 , 0.3, 0.18, 0.12, 0.08, 0.056
1105 , 0.04, 0.023, 0.015, 0.011, 0.01
1106 , 0.004 };
5c7f4665 1107
1108 energy = x[0];
1109
1110 // Find the position
030b4415 1111 pos1 = 0;
1112 pos2 = 0;
5c7f4665 1113 dpos = 0;
1114 do {
1115 dpos = energy - vxe[pos2++];
1116 }
1117 while (dpos > 0);
1118 pos2--;
030b4415 1119 if (pos2 > kNv) {
1120 pos2 = kNv - 1;
1121 }
5c7f4665 1122 pos1 = pos2 - 1;
1123
1124 // Differentiate between the sampling points
1125 dnde = (vye[pos1] - vye[pos2]) / (vxe[pos2] - vxe[pos1]);
1126
1127 return dnde;
1128
1129}
a328fff9 1130
1131//_____________________________________________________________________________
1132Double_t IntSpecGeant(Double_t *x, Double_t *)
1133{
1134 //
1135 // Integrated spectrum from Geant3
1136 //
1137
96efaf83 1138 const Int_t npts = 83;
030b4415 1139 Double_t arre[npts] = { 2.421257, 2.483278, 2.534301, 2.592230
1140 , 2.672067, 2.813299, 3.015059, 3.216819
1141 , 3.418579, 3.620338, 3.868209, 3.920198
1142 , 3.978284, 4.063923, 4.186264, 4.308605
1143 , 4.430946, 4.553288, 4.724261, 4.837736
1144 , 4.999842, 5.161949, 5.324056, 5.486163
1145 , 5.679688, 5.752998, 5.857728, 5.962457
1146 , 6.067185, 6.171914, 6.315653, 6.393674
1147 , 6.471694, 6.539689, 6.597658, 6.655627
1148 , 6.710957, 6.763648, 6.816338, 6.876198
1149 , 6.943227, 7.010257, 7.106285, 7.252151
1150 , 7.460531, 7.668911, 7.877290, 8.085670
1151 , 8.302979, 8.353585, 8.413120, 8.483500
1152 , 8.541030, 8.592857, 8.668865, 8.820485
1153 , 9.037086, 9.253686, 9.470286, 9.686887
1154 , 9.930838, 9.994655, 10.085822, 10.176990
1155 , 10.268158, 10.359325, 10.503614, 10.627565
1156 , 10.804637, 10.981709, 11.158781, 11.335854
1157 , 11.593397, 11.781165, 12.049404, 12.317644
1158 , 12.585884, 12.854123, 14.278421, 16.975889
1159 , 20.829416, 24.682943, 28.536469 };
1160
1161 Double_t arrdnde[npts] = { 10.960000, 10.960000, 10.359500, 9.811340
1162 , 9.1601500, 8.206670, 6.919630, 5.655430
1163 , 4.6221300, 3.777610, 3.019560, 2.591950
1164 , 2.5414600, 2.712920, 3.327460, 4.928240
1165 , 7.6185300, 10.966700, 12.225800, 8.094750
1166 , 3.3586900, 1.553650, 1.209600, 1.263840
1167 , 1.3241100, 1.312140, 1.255130, 1.165770
1168 , 1.0594500, 0.945450, 0.813231, 0.699837
1169 , 0.6235580, 2.260990, 2.968350, 2.240320
1170 , 1.7988300, 1.553300, 1.432070, 1.535520
1171 , 1.4429900, 1.247990, 1.050750, 0.829549
1172 , 0.5900280, 0.395897, 0.268741, 0.185320
1173 , 0.1292120, 0.103545, 0.0949525, 0.101535
1174 , 0.1276380, 0.134216, 0.123816, 0.104557
1175 , 0.0751843, 0.0521745, 0.0373546, 0.0275391
1176 , 0.0204713, 0.0169234, 0.0154552, 0.0139194
1177 , 0.0125592, 0.0113638, 0.0107354, 0.0102137
1178 , 0.00845984, 0.00683338, 0.00556836, 0.00456874
1179 , 0.0036227, 0.00285991, 0.00226664, 0.00172234
1180 , 0.00131226, 0.00100284, 0.000465492, 7.26607e-05
1181 , 3.63304e-06, 0.0000000, 0.0000000 };
1182
1183 Int_t i;
a328fff9 1184 Double_t energy = x[0];
a328fff9 1185
030b4415 1186 for (i = 0; i < npts; i++) {
1187 if (energy < arre[i]) {
1188 break;
1189 }
1190 }
a328fff9 1191
030b4415 1192 if (i == 0) {
1193 AliErrorGeneral("AliTRDv1::IntSpecGeant","Given energy value is too small or zero");
1194 }
a328fff9 1195
f57bb418 1196 return arrdnde[i];
a328fff9 1197
1198}