]> git.uio.no Git - u/mrichter/AliRoot.git/blame - TRD/AliTRDv1.cxx
fixing wrong EOL
[u/mrichter/AliRoot.git] / TRD / AliTRDv1.cxx
CommitLineData
4c039060 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
4c039060 17
030b4415 18////////////////////////////////////////////////////////////////////////////
19// //
20// Transition Radiation Detector version 1 -- slow simulator //
21// //
22////////////////////////////////////////////////////////////////////////////
fe4da5cc 23
769257f4 24#include <stdlib.h>
25
793ff80c 26#include <TF1.h>
1819f4bb 27#include <TLorentzVector.h>
88cb7938 28#include <TMath.h>
29#include <TRandom.h>
30#include <TVector.h>
31#include <TVirtualMC.h>
f57bb418 32#include <TGeoManager.h>
fe4da5cc 33
d3f347ff 34#include "AliConst.h"
45160b1f 35#include "AliLog.h"
36#include "AliMC.h"
88cb7938 37#include "AliRun.h"
030b4415 38
88cb7938 39#include "AliTRDgeometry.h"
793ff80c 40#include "AliTRDhit.h"
793ff80c 41#include "AliTRDsim.h"
88cb7938 42#include "AliTRDv1.h"
851d3db9 43
fe4da5cc 44ClassImp(AliTRDv1)
8230f242 45
46//_____________________________________________________________________________
030b4415 47AliTRDv1::AliTRDv1()
48 :AliTRD()
49 ,fTRon(kFALSE)
50 ,fTR(NULL)
51 ,fTypeOfStepManager(0)
52 ,fStepSize(0)
53 ,fDeltaE(NULL)
54 ,fDeltaG(NULL)
55 ,fTrackLength0(0)
56 ,fPrimaryTrackPid(0)
8230f242 57{
58 //
59 // Default constructor
60 //
61
8230f242 62}
63
fe4da5cc 64//_____________________________________________________________________________
65AliTRDv1::AliTRDv1(const char *name, const char *title)
030b4415 66 :AliTRD(name,title)
67 ,fTRon(kTRUE)
68 ,fTR(NULL)
67c47633 69 ,fTypeOfStepManager(2)
030b4415 70 ,fStepSize(0.1)
71 ,fDeltaE(NULL)
72 ,fDeltaG(NULL)
73 ,fTrackLength0(0)
74 ,fPrimaryTrackPid(0)
fe4da5cc 75{
76 //
851d3db9 77 // Standard constructor for Transition Radiation Detector version 1
fe4da5cc 78 //
82bbf98a 79
5c7f4665 80 SetBufferSize(128000);
81
82}
83
84//_____________________________________________________________________________
85AliTRDv1::~AliTRDv1()
86{
dd9a6ee3 87 //
88 // AliTRDv1 destructor
89 //
82bbf98a 90
030b4415 91 if (fDeltaE) {
92 delete fDeltaE;
93 fDeltaE = 0;
94 }
95
96 if (fDeltaG) {
97 delete fDeltaG;
98 fDeltaG = 0;
99 }
100
101 if (fTR) {
102 delete fTR;
103 fTR = 0;
104 }
82bbf98a 105
fe4da5cc 106}
107
f57bb418 108//_____________________________________________________________________________
109void AliTRDv1::AddAlignableVolumes() const
110{
111 //
112 // Create entries for alignable volumes associating the symbolic volume
113 // name with the corresponding volume path. Needs to be syncronized with
114 // eventual changes in the geometry.
115 //
116
117 TString volPath;
118 TString symName;
119
120 TString vpStr = "ALIC_1/B077_1/BSEGMO";
121 TString vpApp1 = "_1/BTRD";
122 TString vpApp2 = "_1";
123 TString vpApp3 = "/UTR1_1/UTS1_1/UTI1_1/UT";
124
125 TString snStr = "TRD/sm";
126 TString snApp1 = "/st";
127 TString snApp2 = "/pl";
128
129 //
130 // The super modules
131 // The symbolic names are: TRD/sm00
132 // ...
133 // TRD/sm17
134 //
135 for (Int_t isect = 0; isect < AliTRDgeometry::Nsect(); isect++) {
136
137 volPath = vpStr;
138 volPath += isect;
139 volPath += vpApp1;
140 volPath += isect;
141 volPath += vpApp2;
142
143 symName = snStr;
144 symName += Form("%02d",isect);
145
146 gGeoManager->SetAlignableEntry(symName.Data(),volPath.Data());
147
148 }
149
150 //
151 // The readout chambers
152 // The symbolic names are: TRD/sm00/st0/pl0
153 // ...
154 // TRD/sm17/st4/pl5
155 //
156 for (Int_t isect = 0; isect < AliTRDgeometry::Nsect(); isect++) {
157 for (Int_t icham = 0; icham < AliTRDgeometry::Ncham(); icham++) {
158 for (Int_t iplan = 0; iplan < AliTRDgeometry::Nplan(); iplan++) {
159
160 Int_t idet = AliTRDgeometry::GetDetectorSec(iplan,icham);
161
162 volPath = vpStr;
163 volPath += isect;
164 volPath += vpApp1;
165 volPath += isect;
166 volPath += vpApp2;
167 volPath += vpApp3;
168 volPath += Form("%02d",idet);
169 volPath += vpApp2;
170
171 symName = snStr;
172 symName += Form("%02d",isect);
173 symName += snApp1;
174 symName += icham;
175 symName += snApp2;
176 symName += iplan;
177
f57bb418 178 gGeoManager->SetAlignableEntry(symName.Data(),volPath.Data());
179
180 }
181 }
182 }
183
184}
185
fe4da5cc 186//_____________________________________________________________________________
187void AliTRDv1::CreateGeometry()
188{
189 //
851d3db9 190 // Create the GEANT geometry for the Transition Radiation Detector - Version 1
5c7f4665 191 // This version covers the full azimuth.
d3f347ff 192 //
193
82bbf98a 194 // Check that FRAME is there otherwise we have no place where to put the TRD
8230f242 195 AliModule* frame = gAlice->GetModule("FRAME");
030b4415 196 if (!frame) {
197 AliError("TRD needs FRAME to be present\n");
198 return;
199 }
d3f347ff 200
82bbf98a 201 // Define the chambers
202 AliTRD::CreateGeometry();
d3f347ff 203
fe4da5cc 204}
205
206//_____________________________________________________________________________
207void AliTRDv1::CreateMaterials()
208{
209 //
851d3db9 210 // Create materials for the Transition Radiation Detector version 1
fe4da5cc 211 //
82bbf98a 212
d3f347ff 213 AliTRD::CreateMaterials();
82bbf98a 214
fe4da5cc 215}
216
793ff80c 217//_____________________________________________________________________________
218void AliTRDv1::CreateTRhit(Int_t det)
219{
220 //
221 // Creates an electron cluster from a TR photon.
222 // The photon is assumed to be created a the end of the radiator. The
223 // distance after which it deposits its energy takes into account the
224 // absorbtion of the entrance window and of the gas mixture in drift
225 // volume.
226 //
227
793ff80c 228 // Ionization energy
bc327ce2 229 const Float_t kWion = 23.53;
793ff80c 230
231 // Maximum number of TR photons per track
232 const Int_t kNTR = 50;
233
030b4415 234 TLorentzVector mom;
235 TLorentzVector pos;
793ff80c 236
ce0d6231 237 Float_t eTR[kNTR];
238 Int_t nTR;
793ff80c 239
ce0d6231 240 // Create TR photons
241 gMC->TrackMomentum(mom);
242 Float_t pTot = mom.Rho();
243 fTR->CreatePhotons(11,pTot,nTR,eTR);
244 if (nTR > kNTR) {
245 AliFatal(Form("Boundary error: nTR = %d, kNTR = %d",nTR,kNTR));
246 }
f73816f5 247
ce0d6231 248 // Loop through the TR photons
249 for (Int_t iTR = 0; iTR < nTR; iTR++) {
793ff80c 250
ce0d6231 251 Float_t energyMeV = eTR[iTR] * 0.001;
252 Float_t energyeV = eTR[iTR] * 1000.0;
253 Float_t absLength = 0.0;
254 Float_t sigma = 0.0;
793ff80c 255
ce0d6231 256 // Take the absorbtion in the entrance window into account
257 Double_t muMy = fTR->GetMuMy(energyMeV);
258 sigma = muMy * fFoilDensity;
259 if (sigma > 0.0) {
260 absLength = gRandom->Exp(1.0/sigma);
261 if (absLength < AliTRDgeometry::MyThick()) {
842287f2 262 continue;
263 }
ce0d6231 264 }
265 else {
266 continue;
267 }
793ff80c 268
ce0d6231 269 // The absorbtion cross sections in the drift gas
270 // Gas-mixture (Xe/CO2)
271 Double_t muXe = fTR->GetMuXe(energyMeV);
272 Double_t muCO = fTR->GetMuCO(energyMeV);
273 sigma = (0.85 * muXe + 0.15 * muCO) * fGasDensity * fTR->GetTemp();
274
275 // The distance after which the energy of the TR photon
276 // is deposited.
277 if (sigma > 0.0) {
278 absLength = gRandom->Exp(1.0/sigma);
279 if (absLength > (AliTRDgeometry::DrThick()
280 + AliTRDgeometry::AmThick())) {
842287f2 281 continue;
282 }
ce0d6231 283 }
284 else {
285 continue;
286 }
793ff80c 287
ce0d6231 288 // The position of the absorbtion
289 Float_t posHit[3];
290 gMC->TrackPosition(pos);
291 posHit[0] = pos[0] + mom[0] / pTot * absLength;
292 posHit[1] = pos[1] + mom[1] / pTot * absLength;
293 posHit[2] = pos[2] + mom[2] / pTot * absLength;
793ff80c 294
ce0d6231 295 // Create the charge
296 Int_t q = ((Int_t) (energyeV / kWion));
793ff80c 297
ce0d6231 298 // Add the hit to the array. TR photon hits are marked
299 // by negative charge
300 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber()
301 ,det
302 ,posHit
303 ,-q
304 ,kTRUE);
793ff80c 305
306 }
307
308}
309
5c7f4665 310//_____________________________________________________________________________
311void AliTRDv1::Init()
312{
313 //
314 // Initialise Transition Radiation Detector after geometry has been built.
5c7f4665 315 //
316
317 AliTRD::Init();
318
45160b1f 319 AliDebug(1,"Slow simulator\n");
bd0f8685 320
321 // Switch on TR simulation as default
322 if (!fTRon) {
45160b1f 323 AliInfo("TR simulation off");
bd0f8685 324 }
325 else {
326 fTR = new AliTRDsim();
327 }
5c7f4665 328
329 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
330 const Float_t kPoti = 12.1;
331 // Maximum energy (50 keV);
332 const Float_t kEend = 50000.0;
333 // Ermilova distribution for the delta-ray spectrum
030b4415 334 Float_t poti = TMath::Log(kPoti);
335 Float_t eEnd = TMath::Log(kEend);
a328fff9 336
337 // Ermilova distribution for the delta-ray spectrum
c4214bc0 338 fDeltaE = new TF1("deltae" ,Ermilova ,poti,eEnd,0);
a328fff9 339
340 // Geant3 distribution for the delta-ray spectrum
c4214bc0 341 fDeltaG = new TF1("deltag",IntSpecGeant,2.421257,28.536469,0);
5c7f4665 342
45160b1f 343 AliDebug(1,"+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++");
5c7f4665 344
fe4da5cc 345}
346
5c7f4665 347//_____________________________________________________________________________
348void AliTRDv1::StepManager()
a328fff9 349{
350 //
c4214bc0 351 // Slow simulator. Every charged track produces electron cluster as hits
a328fff9 352 // along its path across the drift volume.
353 //
354
355 switch (fTypeOfStepManager) {
a6dd11e9 356 case 0:
357 StepManagerErmilova();
358 break;
359 case 1:
360 StepManagerGeant();
361 break;
362 case 2:
363 StepManagerFixedStep();
364 break;
365 default:
366 AliWarning("Not a valid Step Manager.");
a328fff9 367 }
368
369}
370
371//_____________________________________________________________________________
372void AliTRDv1::SelectStepManager(Int_t t)
373{
374 //
375 // Selects a step manager type:
376 // 0 - Ermilova
377 // 1 - Geant3
378 // 2 - Fixed step size
379 //
380
a328fff9 381 fTypeOfStepManager = t;
45160b1f 382 AliInfo(Form("Step Manager type %d was selected",fTypeOfStepManager));
a328fff9 383
384}
385
386//_____________________________________________________________________________
387void AliTRDv1::StepManagerGeant()
388{
389 //
c4214bc0 390 // Slow simulator. Every charged track produces electron cluster as hits
a328fff9 391 // along its path across the drift volume. The step size is set acording
392 // to Bethe-Bloch. The energy distribution of the delta electrons follows
393 // a spectrum taken from Geant3.
394 //
f2e3a0b5 395 // Version by A. Bercuci
396 //
397
c4214bc0 398 Int_t pla = 0;
399 Int_t cha = 0;
400 Int_t sec = 0;
401 Int_t det = 0;
402 Int_t iPdg;
403 Int_t qTot;
404
405 Float_t hits[3];
406 Float_t charge;
407 Float_t aMass;
408
030b4415 409 Double_t pTot = 0;
c4214bc0 410 Double_t eDelta;
030b4415 411 Double_t betaGamma;
412 Double_t pp;
f2e3a0b5 413 Double_t stepSize = 0;
c4214bc0 414
415 Bool_t drRegion = kFALSE;
416 Bool_t amRegion = kFALSE;
417
2c8bf4aa 418 TString cIdPath;
419 Char_t cIdSector[3];
420 cIdSector[2] = 0;
421
c4214bc0 422 TString cIdCurrent;
423 TString cIdSensDr = "J";
424 TString cIdSensAm = "K";
425 Char_t cIdChamber[3];
426 cIdChamber[2] = 0;
427
030b4415 428 TLorentzVector pos;
429 TLorentzVector mom;
c4214bc0 430
030b4415 431 TArrayI processes;
f2e3a0b5 432
c4214bc0 433 const Int_t kNplan = AliTRDgeometry::Nplan();
434 const Int_t kNcham = AliTRDgeometry::Ncham();
435 const Int_t kNdetsec = kNplan * kNcham;
436
030b4415 437 const Double_t kBig = 1.0e+12; // Infinitely big
bc327ce2 438 const Float_t kWion = 23.53; // Ionization energy
c4214bc0 439 const Float_t kPTotMaxEl = 0.002; // Maximum momentum for e+ e- g
440
441 // Minimum energy for the step size adjustment
442 const Float_t kEkinMinStep = 1.0e-5;
443 // energy threshold for production of delta electrons
f2e3a0b5 444 const Float_t kECut = 1.0e4;
445 // Parameters entering the parametrized range for delta electrons
030b4415 446 const Float_t kRa = 5.37e-4;
f2e3a0b5 447 const Float_t kRb = 0.9815;
030b4415 448 const Float_t kRc = 3.123e-3;
f2e3a0b5 449 // Gas density -> To be made user adjustable !
030b4415 450 // [0.85*0.00549+0.15*0.00186 (Xe-CO2 85-15)]
451 const Float_t kRho = 0.004945 ;
a328fff9 452
c4214bc0 453 // Plateau value of the energy-loss for electron in xenon
030b4415 454 // The averaged value (26/3/99)
c4214bc0 455 const Float_t kPlateau = 1.55;
030b4415 456 // dN1/dx|min for the gas mixture (90% Xe + 10% CO2)
457 const Float_t kPrim = 19.34;
c4214bc0 458 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
459 const Float_t kPoti = 12.1;
030b4415 460 // PDG code electron
461 const Int_t kPdgElectron = 11;
c4214bc0 462
463 // Set the maximum step size to a very large number for all
464 // neutral particles and those outside the driftvolume
465 gMC->SetMaxStep(kBig);
466
467 // Use only charged tracks
468 if (( gMC->TrackCharge() ) &&
c4214bc0 469 (!gMC->IsTrackDisappeared())) {
470
471 // Inside a sensitive volume?
472 drRegion = kFALSE;
473 amRegion = kFALSE;
474 cIdCurrent = gMC->CurrentVolName();
475 if (cIdSensDr == cIdCurrent[1]) {
476 drRegion = kTRUE;
477 }
478 if (cIdSensAm == cIdCurrent[1]) {
479 amRegion = kTRUE;
480 }
481 if (drRegion || amRegion) {
a328fff9 482
c4214bc0 483 // The hit coordinates and charge
484 gMC->TrackPosition(pos);
485 hits[0] = pos[0];
486 hits[1] = pos[1];
487 hits[2] = pos[2];
488
2c8bf4aa 489 // The sector number (0 - 17), according to standard coordinate system
490 cIdPath = gGeoManager->GetPath();
491 cIdSector[0] = cIdPath[21];
492 cIdSector[1] = cIdPath[22];
493 sec = atoi(cIdSector);
c4214bc0 494
495 // The plane and chamber number
030b4415 496 cIdChamber[0] = cIdCurrent[2];
497 cIdChamber[1] = cIdCurrent[3];
c4214bc0 498 Int_t idChamber = (atoi(cIdChamber) % kNdetsec);
499 cha = kNcham - ((Int_t) idChamber / kNplan) - 1;
500 pla = ((Int_t) idChamber % kNplan);
501
ce0d6231 502 // The detector number
503 det = fGeometry->GetDetector(pla,cha,sec);
c4214bc0 504
ce0d6231 505 // Special hits only in the drift region
506 if ((drRegion) &&
507 (gMC->IsTrackEntering())) {
c4214bc0 508
ce0d6231 509 // Create a track reference at the entrance of each
510 // chamber that contains the momentum components of the particle
511 gMC->TrackMomentum(mom);
512 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
c4214bc0 513
ce0d6231 514 // Create the hits from TR photons if electron/positron is
515 // entering the drift volume
516 if ((fTR) &&
517 (TMath::Abs(gMC->TrackPid()) == kPdgElectron)) {
518 CreateTRhit(det);
519 }
f2e3a0b5 520
ce0d6231 521 }
522 else if ((amRegion) &&
523 (gMC->IsTrackExiting())) {
f2e3a0b5 524
ce0d6231 525 // Create a track reference at the exit of each
526 // chamber that contains the momentum components of the particle
527 gMC->TrackMomentum(mom);
528 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
c4214bc0 529
ce0d6231 530 }
c4214bc0 531
ce0d6231 532 // Calculate the energy of the delta-electrons
533 // modified by Alex Bercuci (A.Bercuci@gsi.de) on 26.01.06
534 // take into account correlation with the underlying GEANT tracking
535 // mechanism. see
536 // http://www-linux.gsi.de/~abercuci/Contributions/TRD/index.html
537 //
538 // determine the most significant process (last on the processes list)
539 // which caused this hit
540 gMC->StepProcesses(processes);
541 Int_t nofprocesses = processes.GetSize();
542 Int_t pid;
543 if (!nofprocesses) {
544 pid = 0;
545 }
546 else {
547 pid = processes[nofprocesses-1];
548 }
f2e3a0b5 549
ce0d6231 550 // Generate Edep according to GEANT parametrisation
551 eDelta = TMath::Exp(fDeltaG->GetRandom()) - kPoti;
552 eDelta = TMath::Max(eDelta,0.0);
553 Float_t prRange = 0.0;
554 Float_t range = gMC->TrackLength() - fTrackLength0;
555 // merge GEANT tracker information with locally cooked one
556 if (gAlice->GetMCApp()->GetCurrentTrackNumber() == fPrimaryTrackPid) {
557 if (pid == 27) {
558 if (eDelta >= kECut) {
559 prRange = kRa * eDelta * 0.001
560 * (1.0 - kRb / (1.0 + kRc * eDelta * 0.001)) / kRho;
561 if (prRange >= (3.7 - range)) {
562 eDelta *= 0.1;
563 }
564 }
565 }
566 else if (pid == 1) {
567 if (eDelta < kECut) {
568 eDelta *= 0.5;
569 }
570 else {
571 prRange = kRa * eDelta * 0.001
572 * (1.0 - kRb / (1.0 + kRc * eDelta * 0.001)) / kRho;
573 if (prRange >= ((AliTRDgeometry::DrThick()
574 + AliTRDgeometry::AmThick()) - range)) {
575 eDelta *= 0.05;
576 }
577 else {
f2e3a0b5 578 eDelta *= 0.5;
ce0d6231 579 }
580 }
581 }
f2e3a0b5 582 else {
583 eDelta = 0.0;
ce0d6231 584 }
585 }
586 else {
587 eDelta = 0.0;
588 }
c4214bc0 589
ce0d6231 590 // Generate the electron cluster size
591 if (eDelta > 0.0) {
f2e3a0b5 592
ce0d6231 593 qTot = ((Int_t) (eDelta / kWion) + 1);
594
595 // Create a new dEdx hit
030b4415 596 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber()
597 ,det
598 ,hits
599 ,qTot
600 ,drRegion);
c4214bc0 601
ce0d6231 602 }
603
604 // Calculate the maximum step size for the next tracking step
605 // Produce only one hit if Ekin is below cutoff
606 aMass = gMC->TrackMass();
607 if ((gMC->Etot() - aMass) > kEkinMinStep) {
608
609 // The energy loss according to Bethe Bloch
610 iPdg = TMath::Abs(gMC->TrackPid());
611 if ((iPdg != kPdgElectron) ||
612 ((iPdg == kPdgElectron) &&
613 (pTot < kPTotMaxEl))) {
614 gMC->TrackMomentum(mom);
615 pTot = mom.Rho();
616 betaGamma = pTot / aMass;
617 pp = BetheBlochGeant(betaGamma);
618 // Take charge > 1 into account
619 charge = gMC->TrackCharge();
620 if (TMath::Abs(charge) > 1) {
621 pp = pp * charge*charge;
622 }
623 }
624 else {
625 // Electrons above 20 Mev/c are at the plateau
626 pp = kPrim * kPlateau;
627 }
f2e3a0b5 628
ce0d6231 629 Int_t nsteps = 0;
630 do {
631 nsteps = gRandom->Poisson(pp);
632 } while(!nsteps);
633 stepSize = 1.0 / nsteps;
634 gMC->SetMaxStep(stepSize);
f2e3a0b5 635
c4214bc0 636 }
f2e3a0b5 637
c4214bc0 638 }
f2e3a0b5 639
c4214bc0 640 }
f2e3a0b5 641
a328fff9 642}
643
644//_____________________________________________________________________________
645void AliTRDv1::StepManagerErmilova()
5c7f4665 646{
647 //
5c7f4665 648 // Slow simulator. Every charged track produces electron cluster as hits
649 // along its path across the drift volume. The step size is set acording
650 // to Bethe-Bloch. The energy distribution of the delta electrons follows
651 // a spectrum taken from Ermilova et al.
652 //
653
851d3db9 654 Int_t pla = 0;
655 Int_t cha = 0;
656 Int_t sec = 0;
793ff80c 657 Int_t det = 0;
851d3db9 658 Int_t iPdg;
793ff80c 659 Int_t qTot;
5c7f4665 660
793ff80c 661 Float_t hits[3];
a5cadd36 662 Double_t random[1];
5c7f4665 663 Float_t charge;
664 Float_t aMass;
665
030b4415 666 Double_t pTot = 0.0;
5c7f4665 667 Double_t eDelta;
030b4415 668 Double_t betaGamma;
669 Double_t pp;
f73816f5 670 Double_t stepSize;
5c7f4665 671
332e9569 672 Bool_t drRegion = kFALSE;
673 Bool_t amRegion = kFALSE;
674
2c8bf4aa 675 TString cIdPath;
676 Char_t cIdSector[3];
677 cIdSector[2] = 0;
678
332e9569 679 TString cIdCurrent;
680 TString cIdSensDr = "J";
681 TString cIdSensAm = "K";
593a9fc3 682 Char_t cIdChamber[3];
683 cIdChamber[2] = 0;
332e9569 684
030b4415 685 TLorentzVector pos;
686 TLorentzVector mom;
82bbf98a 687
332e9569 688 const Int_t kNplan = AliTRDgeometry::Nplan();
e644678a 689 const Int_t kNcham = AliTRDgeometry::Ncham();
690 const Int_t kNdetsec = kNplan * kNcham;
691
030b4415 692 const Double_t kBig = 1.0e+12; // Infinitely big
bc327ce2 693 const Float_t kWion = 23.53; // Ionization energy
a328fff9 694 const Float_t kPTotMaxEl = 0.002; // Maximum momentum for e+ e- g
5c7f4665 695
f73816f5 696 // Minimum energy for the step size adjustment
697 const Float_t kEkinMinStep = 1.0e-5;
a328fff9 698
5c7f4665 699 // Plateau value of the energy-loss for electron in xenon
030b4415 700 // The averaged value (26/3/99)
a3c76cdc 701 const Float_t kPlateau = 1.55;
030b4415 702 // dN1/dx|min for the gas mixture (90% Xe + 10% CO2)
703 const Float_t kPrim = 48.0;
5c7f4665 704 // First ionization potential (eV) for the gas mixture (90% Xe + 10% CO2)
a3c76cdc 705 const Float_t kPoti = 12.1;
030b4415 706 // PDG code electron
707 const Int_t kPdgElectron = 11;
5c7f4665 708
709 // Set the maximum step size to a very large number for all
710 // neutral particles and those outside the driftvolume
711 gMC->SetMaxStep(kBig);
712
713 // Use only charged tracks
714 if (( gMC->TrackCharge() ) &&
5c7f4665 715 (!gMC->IsTrackDisappeared())) {
fe4da5cc 716
5c7f4665 717 // Inside a sensitive volume?
332e9569 718 drRegion = kFALSE;
719 amRegion = kFALSE;
720 cIdCurrent = gMC->CurrentVolName();
e6674585 721 if (cIdSensDr == cIdCurrent[1]) {
332e9569 722 drRegion = kTRUE;
723 }
e6674585 724 if (cIdSensAm == cIdCurrent[1]) {
332e9569 725 amRegion = kTRUE;
726 }
727 if (drRegion || amRegion) {
fe4da5cc 728
5c7f4665 729 // The hit coordinates and charge
730 gMC->TrackPosition(pos);
731 hits[0] = pos[0];
732 hits[1] = pos[1];
733 hits[2] = pos[2];
5c7f4665 734
2c8bf4aa 735 // The sector number (0 - 17), according to standard coordinate system
736 cIdPath = gGeoManager->GetPath();
737 cIdSector[0] = cIdPath[21];
738 cIdSector[1] = cIdPath[22];
739 sec = atoi(cIdSector);
82bbf98a 740
332e9569 741 // The plane and chamber number
742 cIdChamber[0] = cIdCurrent[2];
743 cIdChamber[1] = cIdCurrent[3];
e644678a 744 Int_t idChamber = (atoi(cIdChamber) % kNdetsec);
a5cadd36 745 cha = kNcham - ((Int_t) idChamber / kNplan) - 1;
332e9569 746 pla = ((Int_t) idChamber % kNplan);
82bbf98a 747
ce0d6231 748 // The detector number
749 det = fGeometry->GetDetector(pla,cha,sec);
5c7f4665 750
ce0d6231 751 // Special hits only in the drift region
752 if ((drRegion) &&
753 (gMC->IsTrackEntering())) {
5c7f4665 754
ce0d6231 755 // Create a track reference at the entrance of each
756 // chamber that contains the momentum components of the particle
757 gMC->TrackMomentum(mom);
758 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
793ff80c 759
ce0d6231 760 // Create the hits from TR photons if electron/positron is
761 // entering the drift volume
762 if ((fTR) &&
763 (TMath::Abs(gMC->TrackPid()) == kPdgElectron)) {
764 CreateTRhit(det);
765 }
f73816f5 766
ce0d6231 767 }
768 else if ((amRegion) &&
769 (gMC->IsTrackExiting())) {
f73816f5 770
ce0d6231 771 // Create a track reference at the exit of each
772 // chamber that contains the momentum components of the particle
773 gMC->TrackMomentum(mom);
774 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
f73816f5 775
ce0d6231 776 }
777
778 // Calculate the energy of the delta-electrons
779 eDelta = TMath::Exp(fDeltaE->GetRandom()) - kPoti;
780 eDelta = TMath::Max(eDelta,0.0);
781
782 // Generate the electron cluster size
783 if (eDelta > 0.0) {
784
785 qTot = ((Int_t) (eDelta / kWion) + 1);
f73816f5 786
030b4415 787 // Create a new dEdx hit
332e9569 788 if (drRegion) {
a328fff9 789 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber()
030b4415 790 ,det
791 ,hits
792 ,qTot
793 ,kTRUE);
794 }
5c7f4665 795 else {
a328fff9 796 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber()
030b4415 797 ,det
798 ,hits
799 ,qTot
800 ,kFALSE);
801 }
f73816f5 802
ce0d6231 803 }
804
805 // Calculate the maximum step size for the next tracking step
806 // Produce only one hit if Ekin is below cutoff
807 aMass = gMC->TrackMass();
808 if ((gMC->Etot() - aMass) > kEkinMinStep) {
809
810 // The energy loss according to Bethe Bloch
811 iPdg = TMath::Abs(gMC->TrackPid());
812 if ((iPdg != kPdgElectron) ||
813 ((iPdg == kPdgElectron) &&
814 (pTot < kPTotMaxEl))) {
815 gMC->TrackMomentum(mom);
816 pTot = mom.Rho();
817 betaGamma = pTot / aMass;
818 pp = kPrim * BetheBloch(betaGamma);
819 // Take charge > 1 into account
820 charge = gMC->TrackCharge();
821 if (TMath::Abs(charge) > 1) {
822 pp = pp * charge*charge;
f73816f5 823 }
ce0d6231 824 }
825 else {
826 // Electrons above 20 Mev/c are at the plateau
827 pp = kPrim * kPlateau;
828 }
f73816f5 829
ce0d6231 830 if (pp > 0.0) {
831 do {
832 gMC->GetRandom()->RndmArray(1,random);
030b4415 833 }
ce0d6231 834 while ((random[0] == 1.0) ||
835 (random[0] == 0.0));
836 stepSize = - TMath::Log(random[0]) / pp;
837 gMC->SetMaxStep(stepSize);
838 }
030b4415 839
5c7f4665 840 }
030b4415 841
d3f347ff 842 }
030b4415 843
5c7f4665 844 }
030b4415 845
5c7f4665 846}
847
a328fff9 848//_____________________________________________________________________________
849void AliTRDv1::StepManagerFixedStep()
850{
851 //
852 // Slow simulator. Every charged track produces electron cluster as hits
853 // along its path across the drift volume. The step size is fixed in
854 // this version of the step manager.
855 //
856
ce0d6231 857 // PDG code electron
858 const Int_t kPdgElectron = 11;
859
a328fff9 860 Int_t pla = 0;
861 Int_t cha = 0;
862 Int_t sec = 0;
863 Int_t det = 0;
864 Int_t qTot;
865
866 Float_t hits[3];
867 Double_t eDep;
868
869 Bool_t drRegion = kFALSE;
870 Bool_t amRegion = kFALSE;
871
2c8bf4aa 872 TString cIdPath;
873 Char_t cIdSector[3];
874 cIdSector[2] = 0;
875
a328fff9 876 TString cIdCurrent;
877 TString cIdSensDr = "J";
878 TString cIdSensAm = "K";
879 Char_t cIdChamber[3];
2c8bf4aa 880 cIdChamber[2] = 0;
a328fff9 881
030b4415 882 TLorentzVector pos;
883 TLorentzVector mom;
a328fff9 884
885 const Int_t kNplan = AliTRDgeometry::Nplan();
886 const Int_t kNcham = AliTRDgeometry::Ncham();
887 const Int_t kNdetsec = kNplan * kNcham;
888
030b4415 889 const Double_t kBig = 1.0e+12;
a328fff9 890
bc327ce2 891 const Float_t kWion = 23.53; // Ionization energy
a328fff9 892 const Float_t kEkinMinStep = 1.0e-5; // Minimum energy for the step size adjustment
893
894 // Set the maximum step size to a very large number for all
895 // neutral particles and those outside the driftvolume
896 gMC->SetMaxStep(kBig);
897
898 // If not charged track or already stopped or disappeared, just return.
899 if ((!gMC->TrackCharge()) ||
ce0d6231 900 gMC->IsTrackDisappeared()) {
901 return;
902 }
a328fff9 903
904 // Inside a sensitive volume?
905 cIdCurrent = gMC->CurrentVolName();
906
ce0d6231 907 if (cIdSensDr == cIdCurrent[1]) {
908 drRegion = kTRUE;
909 }
910 if (cIdSensAm == cIdCurrent[1]) {
911 amRegion = kTRUE;
912 }
a328fff9 913
030b4415 914 if ((!drRegion) &&
915 (!amRegion)) {
916 return;
917 }
a328fff9 918
919 // The hit coordinates and charge
920 gMC->TrackPosition(pos);
921 hits[0] = pos[0];
922 hits[1] = pos[1];
923 hits[2] = pos[2];
924
2c8bf4aa 925 // The sector number (0 - 17), according to standard coordinate system
926 cIdPath = gGeoManager->GetPath();
927 cIdSector[0] = cIdPath[21];
928 cIdSector[1] = cIdPath[22];
929 sec = atoi(cIdSector);
a328fff9 930
931 // The plane and chamber number
030b4415 932 cIdChamber[0] = cIdCurrent[2];
933 cIdChamber[1] = cIdCurrent[3];
a328fff9 934 Int_t idChamber = (atoi(cIdChamber) % kNdetsec);
a5cadd36 935 cha = kNcham - ((Int_t) idChamber / kNplan) - 1;
a328fff9 936 pla = ((Int_t) idChamber % kNplan);
e0d47c25 937
030b4415 938 // The detector number
939 det = fGeometry->GetDetector(pla,cha,sec);
940
941 // 0: InFlight 1:Entering 2:Exiting
942 Int_t trkStat = 0;
a328fff9 943
944 // Special hits only in the drift region
ce0d6231 945 if ((drRegion) &&
946 (gMC->IsTrackEntering())) {
a328fff9 947
ce0d6231 948 // Create a track reference at the entrance of each
949 // chamber that contains the momentum components of the particle
950 gMC->TrackMomentum(mom);
951 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
952 trkStat = 1;
a328fff9 953
ce0d6231 954 // Create the hits from TR photons if electron/positron is
955 // entering the drift volume
956 if ((fTR) &&
957 (TMath::Abs(gMC->TrackPid()) == kPdgElectron)) {
030b4415 958 CreateTRhit(det);
959 }
a328fff9 960
ce0d6231 961 }
962 else if ((amRegion) &&
963 (gMC->IsTrackExiting())) {
964
965 // Create a track reference at the exit of each
966 // chamber that contains the momentum components of the particle
967 gMC->TrackMomentum(mom);
968 AddTrackReference(gAlice->GetMCApp()->GetCurrentTrackNumber());
969 trkStat = 2;
970
a328fff9 971 }
972
973 // Calculate the charge according to GEANT Edep
974 // Create a new dEdx hit
975 eDep = TMath::Max(gMC->Edep(),0.0) * 1.0e+09;
976 qTot = (Int_t) (eDep / kWion);
ce0d6231 977 if ((qTot) ||
978 (trkStat)) {
979 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber()
980 ,det
981 ,hits
982 ,qTot
983 ,drRegion);
984 }
a328fff9 985
986 // Set Maximum Step Size
987 // Produce only one hit if Ekin is below cutoff
030b4415 988 if ((gMC->Etot() - gMC->TrackMass()) < kEkinMinStep) {
989 return;
990 }
a328fff9 991 gMC->SetMaxStep(fStepSize);
992
993}
994
5c7f4665 995//_____________________________________________________________________________
996Double_t AliTRDv1::BetheBloch(Double_t bg)
997{
998 //
999 // Parametrization of the Bethe-Bloch-curve
1000 // The parametrization is the same as for the TPC and is taken from Lehrhaus.
1001 //
1002
1003 // This parameters have been adjusted to averaged values from GEANT
f57bb418 1004 const Double_t kP1 = 7.17960e-02;
1005 const Double_t kP2 = 8.54196;
1006 const Double_t kP3 = 1.38065e-06;
1007 const Double_t kP4 = 5.30972;
1008 const Double_t kP5 = 2.83798;
5c7f4665 1009
f73816f5 1010 // Lower cutoff of the Bethe-Bloch-curve to limit step sizes
1011 const Double_t kBgMin = 0.8;
1012 const Double_t kBBMax = 6.83298;
f73816f5 1013
1014 if (bg > kBgMin) {
030b4415 1015 Double_t yy = bg / TMath::Sqrt(1.0 + bg*bg);
5c7f4665 1016 Double_t aa = TMath::Power(yy,kP4);
030b4415 1017 Double_t bb = TMath::Power((1.0/bg),kP5);
5c7f4665 1018 bb = TMath::Log(kP3 + bb);
030b4415 1019 return ((kP2 - aa - bb) * kP1 / aa);
5c7f4665 1020 }
f73816f5 1021 else {
1022 return kBBMax;
1023 }
d3f347ff 1024
fe4da5cc 1025}
5c7f4665 1026
a328fff9 1027//_____________________________________________________________________________
c4214bc0 1028Double_t AliTRDv1::BetheBlochGeant(Double_t bg)
a328fff9 1029{
1030 //
1031 // Return dN/dx (number of primary collisions per centimeter)
1032 // for given beta*gamma factor.
1033 //
1034 // Implemented by K.Oyama according to GEANT 3 parametrization shown in
1035 // A.Andronic's webpage: http://www-alice.gsi.de/trd/papers/dedx/dedx.html
1036 // This must be used as a set with IntSpecGeant.
1037 //
1038
030b4415 1039 Int_t i = 0;
a328fff9 1040
030b4415 1041 Double_t arrG[20] = { 1.100000, 1.200000, 1.300000, 1.500000
1042 , 1.800000, 2.000000, 2.500000, 3.000000
1043 , 4.000000, 7.000000, 10.000000, 20.000000
1044 , 40.000000, 70.000000, 100.000000, 300.000000
1045 , 600.000000, 1000.000000, 3000.000000, 10000.000000 };
a328fff9 1046
030b4415 1047 Double_t arrNC[20] = { 75.009056, 45.508083, 35.299252, 27.116327
1048 , 22.734999, 21.411915, 19.934095, 19.449375
1049 , 19.344431, 20.185553, 21.027925, 22.912676
1050 , 24.933352, 26.504053, 27.387468, 29.566597
1051 , 30.353779, 30.787134, 31.129285, 31.157350 };
1052
1053 // Betagamma to gamma
1054 Double_t g = TMath::Sqrt(1.0 + bg*bg);
a328fff9 1055
1056 // Find the index just before the point we need.
030b4415 1057 for (i = 0; i < 18; i++) {
1058 if ((arrG[i] < g) &&
1059 (arrG[i+1] > g)) {
a328fff9 1060 break;
030b4415 1061 }
1062 }
a328fff9 1063
1064 // Simple interpolation.
030b4415 1065 Double_t pp = ((arrNC[i+1] - arrNC[i]) / (arrG[i+1] - arrG[i]))
1066 * (g - arrG[i]) + arrNC[i];
a328fff9 1067
030b4415 1068 return pp;
a328fff9 1069
1070}
1071
5c7f4665 1072//_____________________________________________________________________________
1073Double_t Ermilova(Double_t *x, Double_t *)
1074{
1075 //
1076 // Calculates the delta-ray energy distribution according to Ermilova.
1077 // Logarithmic scale !
1078 //
1079
1080 Double_t energy;
1081 Double_t dpos;
1082 Double_t dnde;
1083
030b4415 1084 Int_t pos1;
1085 Int_t pos2;
5c7f4665 1086
8230f242 1087 const Int_t kNv = 31;
5c7f4665 1088
030b4415 1089 Float_t vxe[kNv] = { 2.3026, 2.9957, 3.4012, 3.6889, 3.9120
1090 , 4.0943, 4.2485, 4.3820, 4.4998, 4.6052
1091 , 4.7005, 5.0752, 5.2983, 5.7038, 5.9915
1092 , 6.2146, 6.5221, 6.9078, 7.3132, 7.6009
1093 , 8.0064, 8.5172, 8.6995, 8.9872, 9.2103
1094 , 9.4727, 9.9035, 10.3735, 10.5966, 10.8198
1095 , 11.5129 };
1096
1097 Float_t vye[kNv] = { 80.0, 31.0, 23.3, 21.1, 21.0
1098 , 20.9, 20.8, 20.0, 16.0, 11.0
1099 , 8.0, 6.0, 5.2, 4.6, 4.0
1100 , 3.5, 3.0, 1.4, 0.67, 0.44
1101 , 0.3, 0.18, 0.12, 0.08, 0.056
1102 , 0.04, 0.023, 0.015, 0.011, 0.01
1103 , 0.004 };
5c7f4665 1104
1105 energy = x[0];
1106
1107 // Find the position
030b4415 1108 pos1 = 0;
1109 pos2 = 0;
5c7f4665 1110 dpos = 0;
1111 do {
1112 dpos = energy - vxe[pos2++];
1113 }
1114 while (dpos > 0);
1115 pos2--;
030b4415 1116 if (pos2 > kNv) {
1117 pos2 = kNv - 1;
1118 }
5c7f4665 1119 pos1 = pos2 - 1;
1120
1121 // Differentiate between the sampling points
1122 dnde = (vye[pos1] - vye[pos2]) / (vxe[pos2] - vxe[pos1]);
1123
1124 return dnde;
1125
1126}
a328fff9 1127
1128//_____________________________________________________________________________
1129Double_t IntSpecGeant(Double_t *x, Double_t *)
1130{
1131 //
1132 // Integrated spectrum from Geant3
1133 //
1134
96efaf83 1135 const Int_t npts = 83;
030b4415 1136 Double_t arre[npts] = { 2.421257, 2.483278, 2.534301, 2.592230
1137 , 2.672067, 2.813299, 3.015059, 3.216819
1138 , 3.418579, 3.620338, 3.868209, 3.920198
1139 , 3.978284, 4.063923, 4.186264, 4.308605
1140 , 4.430946, 4.553288, 4.724261, 4.837736
1141 , 4.999842, 5.161949, 5.324056, 5.486163
1142 , 5.679688, 5.752998, 5.857728, 5.962457
1143 , 6.067185, 6.171914, 6.315653, 6.393674
1144 , 6.471694, 6.539689, 6.597658, 6.655627
1145 , 6.710957, 6.763648, 6.816338, 6.876198
1146 , 6.943227, 7.010257, 7.106285, 7.252151
1147 , 7.460531, 7.668911, 7.877290, 8.085670
1148 , 8.302979, 8.353585, 8.413120, 8.483500
1149 , 8.541030, 8.592857, 8.668865, 8.820485
1150 , 9.037086, 9.253686, 9.470286, 9.686887
1151 , 9.930838, 9.994655, 10.085822, 10.176990
1152 , 10.268158, 10.359325, 10.503614, 10.627565
1153 , 10.804637, 10.981709, 11.158781, 11.335854
1154 , 11.593397, 11.781165, 12.049404, 12.317644
1155 , 12.585884, 12.854123, 14.278421, 16.975889
1156 , 20.829416, 24.682943, 28.536469 };
1157
1158 Double_t arrdnde[npts] = { 10.960000, 10.960000, 10.359500, 9.811340
1159 , 9.1601500, 8.206670, 6.919630, 5.655430
1160 , 4.6221300, 3.777610, 3.019560, 2.591950
1161 , 2.5414600, 2.712920, 3.327460, 4.928240
1162 , 7.6185300, 10.966700, 12.225800, 8.094750
1163 , 3.3586900, 1.553650, 1.209600, 1.263840
1164 , 1.3241100, 1.312140, 1.255130, 1.165770
1165 , 1.0594500, 0.945450, 0.813231, 0.699837
1166 , 0.6235580, 2.260990, 2.968350, 2.240320
1167 , 1.7988300, 1.553300, 1.432070, 1.535520
1168 , 1.4429900, 1.247990, 1.050750, 0.829549
1169 , 0.5900280, 0.395897, 0.268741, 0.185320
1170 , 0.1292120, 0.103545, 0.0949525, 0.101535
1171 , 0.1276380, 0.134216, 0.123816, 0.104557
1172 , 0.0751843, 0.0521745, 0.0373546, 0.0275391
1173 , 0.0204713, 0.0169234, 0.0154552, 0.0139194
1174 , 0.0125592, 0.0113638, 0.0107354, 0.0102137
1175 , 0.00845984, 0.00683338, 0.00556836, 0.00456874
1176 , 0.0036227, 0.00285991, 0.00226664, 0.00172234
1177 , 0.00131226, 0.00100284, 0.000465492, 7.26607e-05
1178 , 3.63304e-06, 0.0000000, 0.0000000 };
1179
1180 Int_t i;
a328fff9 1181 Double_t energy = x[0];
a328fff9 1182
030b4415 1183 for (i = 0; i < npts; i++) {
1184 if (energy < arre[i]) {
1185 break;
1186 }
1187 }
a328fff9 1188
030b4415 1189 if (i == 0) {
1190 AliErrorGeneral("AliTRDv1::IntSpecGeant","Given energy value is too small or zero");
1191 }
a328fff9 1192
f57bb418 1193 return arrdnde[i];
a328fff9 1194
1195}