]> git.uio.no Git - u/mrichter/AliRoot.git/blame - VZERO/AliVZEROv4.cxx
New geometry
[u/mrichter/AliRoot.git] / VZERO / AliVZEROv4.cxx
CommitLineData
79b41939 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//////////////////////////////////////////////////////////////////////
19// //
20// (V-zero) detector version 4 as designed by the Lyon group //
21// All comments should be sent to Brigitte CHEYNIS : //
22// b.cheynis@ipnl.in2p3.fr //
23// Geometry of the 24th of february 2004 //
24// (now 4 rings instead of 3 rings as in previous version) //
25// V0R (now V0C) sits between Z values -89.4 and -84.9 cm //
26// V0L (now V0A) sits between Z values +350.0 and +352.0 cm //
27// New coordinate system has been implemented in october 2003 //
28// //
29//////////////////////////////////////////////////////////////////////
30
31// --- Standard libraries ---
32#include <Riostream.h>
33#include <stdlib.h>
34#include <string.h>
35
36// --- ROOT libraries ---
37#include <TClonesArray.h>
38#include <TGeant3.h>
39#include <TGeometry.h>
40#include <TLorentzVector.h>
41#include <TMath.h>
42#include <TNode.h>
43#include <TObjectTable.h>
44#include <TTUBE.h>
45#include <TTUBS.h>
46#include <TVirtualMC.h>
47#include <TParticle.h>
48
49// --- AliRoot header files ---
50#include "AliRun.h"
51#include "AliMC.h"
52#include "AliConst.h"
53#include "AliMagF.h"
54#include "AliVZEROLoader.h"
55#include "AliVZEROdigit.h"
56#include "AliVZEROhit.h"
57#include "AliVZEROv4.h"
58
59ClassImp(AliVZEROv4)
60
61//_____________________________________________________________________________
62AliVZEROv4:: AliVZEROv4():AliVZERO()
63{
64// Standard default constructor
65}
66
67//_____________________________________________________________________________
68AliVZEROv4::AliVZEROv4(const char *name, const char *title):
69 AliVZERO(name,title)
70{
71
72// Standard constructor for V-zero Detector version 2
73
74 Int_t i;
75
76 printf("\n");
77 for(i=0;i<26;i++) printf("*");
78 printf(" Create VZERO object ");
79 for(i=0;i<26;i++) printf("*");
80 printf("\n");
81
82 fLightYield = 93.75; // Light yield in BC408 (93.75 eV per photon)
83 fLightAttenuation = 0.05; // Light attenuation in fiber (0.05 per meter)
84 fnMeters = 15.0; // Number of meters of clear fibers to PM
85 fFibToPhot = 0.3; // Attenuation at fiber-photocathode interface
86}
87
88//_____________________________________________________________________________
89void AliVZEROv4::CreateGeometry()
90{
91
92// Creates the GEANT geometry of the V-zero Detector version 3
93
94 Int_t i;
95
96 printf("\n");
97 for(i=0;i<26;i++) printf("*");
98 printf(" Create VZERO Geometry ");
99 for(i=0;i<26;i++) printf("*");
100 printf("\n");
101
102 Int_t *idtmed = fIdtmed->GetArray()-2999;
103
104 Int_t ndetR = 1;
105 Int_t ndetL = 1;
106
107 Int_t ncellsR = 1;
108 Int_t ncellsL = 1;
109
110 Int_t idrotm[999];
111
112 Float_t height1Right, height2Right, height3Right, height4Right;
113 Float_t heightRight;
114 Float_t theta;
115
116 Float_t halfThickQua;
117
118 Float_t zdet;
119 Float_t r0Right, r4Right;
120 Float_t pi = TMath::Pi();
121
122 height1Right = 3.42; // height of cell 1, in cm
123 height2Right = 6.78; // height of cell 2, in cm
124 height3Right = 7.11; // height of cell 3, in cm
125 height4Right = 10.91; // height of cell 4, in cm
126
127 theta = pi/6.0/2.0; // half angular opening = 15 degrees
128
129 halfThickQua= fThickness1/2.0; // half thickness of elementary cell (inner ring)
130
131// distance 0.6 cm in zdet accounts for the fact V0R box back lid sits 0.6 away from
132// absorber nose sitting at 90 cm. Will use -zdet later...
133// size of V0R box (fThickness) is increased by 1 mm as compared to version v2
134
135 fThickness = fThickness + 0.1;
136 zdet = 90.0 - 0.6 - fThickness/2.0; // distance to vertex (along Z axis)
137 r0Right = 4.05; // closest distance to center of the beam pipe
138 heightRight = height1Right + height2Right + height3Right + height4Right;
139 r4Right = r0Right + heightRight;
140
141// Creation of mother volume v0LE - left part - :
142// Entrance face at +350.0 cm (new coordinate system) ...
143
144 Float_t partube[3];
145
146 partube[0] = 4.3;
147 partube[1] = 45.0;
148 partube[2] = fThickness1/2.0;
149
150 gMC->Gsvolu("V0LE","TUBE",idtmed[3005],partube,3);
151
152// Creation of five rings - left part - :
153// Entrance face at +350.0 cm (new coordinate system) ...
154
155// Mother volume v0L0 in which will be set 5 scintillator cells
156
157 Float_t partubs[5];
158
159 Float_t r0Left = 4.3;
160 Float_t height1Left = 3.6;
161 Float_t height2Left = 6.4;
162 Float_t height3Left = 14.9;
163 Float_t height4Left = 14.4;
164 Float_t heightLeft = height1Left + height2Left + height3Left + height4Left;
165
166 Float_t r4Left = r0Left + heightLeft;
167
168 partubs[0] = r0Left;
169 partubs[1] = r4Left;
170 partubs[2] = fThickness1/2.0;
171 partubs[3] = 90.0-15.0;
172 partubs[4] = 120.0-15.0;
173
174 gMC->Gsvolu("V0L0","TUBS",idtmed[3010],partubs,5); // air volume
175
176 Float_t r1Left = r0Left + height1Left;
177
178 partubs[0] = r0Left;
179 partubs[1] = r1Left;
180
181 gMC->Gsvolu("V0L1","TUBS",idtmed[3005],partubs,5); // quartz volume
182 gMC->Gspos("V0L1",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY");
183
184 Float_t r2Left = r1Left + height2Left;
185
186 partubs[0] = r1Left;
187 partubs[1] = r2Left;
188
189 gMC->Gsvolu("V0L2","TUBS",idtmed[3005],partubs,5); // quartz volume
190 gMC->Gspos("V0L2",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY");
191
192 Float_t r3Left = r2Left + height3Left;
193
194 partubs[0] = r2Left;
195 partubs[1] = r3Left;
196
197 gMC->Gsvolu("V0L3","TUBS",idtmed[3005],partubs,5); // quartz volume
198 gMC->Gspos("V0L3",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY");
199
200 partubs[0] = r3Left;
201 partubs[1] = r4Left;
202
203 gMC->Gsvolu("V0L4","TUBS",idtmed[3005],partubs,5); // quartz volume
204 gMC->Gspos("V0L4",1,"V0L0", 0.0, 0.0 , 0.0, 0,"ONLY");
205
206// Creation of mother volume v0RI - right part - :
207
208 partube[0] = r0Right - 0.2;
209 partube[1] = r4Right + 1.0;
210 partube[2] = fThickness/2.0;
211
212 gMC->Gsvolu("V0RI","TUBE",idtmed[3010],partube,3);
213
214// Creation of carbon lids (3.5 mm thick) to keep v0RI box shut...
215
216 Float_t lidThickness = 0.35;
217
218 partube[0] = r0Right;
219 partube[1] = r4Right;
220 partube[2] = +lidThickness/2.0;
221
222 gMC->Gsvolu("V0CA","TUBE",idtmed[3001],partube,3);
223 gMC->Gspos("V0CA",1,"V0RI",0.0,0.0, fThickness/2.0-partube[2],0,"ONLY");
224 gMC->Gspos("V0CA",2,"V0RI",0.0,0.0,-fThickness/2.0+partube[2],0,"ONLY");
225
226// Creation of aluminum rings to maintain the v0RI pieces ...
227
228 partube[0] = r0Right - 0.2;
229 partube[1] = r0Right;
230 partube[2] = +fThickness/2.0;
231
232 gMC->Gsvolu("V0IR","TUBE",idtmed[3003],partube,3);
233 gMC->Gspos("V0IR",1,"V0RI",0.0,0.0,0.0,0,"ONLY");
234
235 partube[0] = r4Right;
236 partube[1] = r4Right + 1.0;
237 partube[2] = +fThickness/2.0;
238
239 gMC->Gsvolu("V0ER","TUBE",idtmed[3003],partube,3);
240 gMC->Gspos("V0ER",1,"V0RI",0.0,0.0,0.0,0,"ONLY");
241
242// Mother volume v0R0 in which will be set 4 scintillator cells
243
244 partubs[0] = r0Right;
245 partubs[1] = r4Right;
246 partubs[2] = fThickness/2.0;
247 partubs[3] = 90.0-15.0;
248 partubs[4] = 120.0-15.0;
249
250 gMC->Gsvolu("V0R0","TUBS",idtmed[3010],partubs,5); // air volume
251
252// Elementary cell of ring 1 :
253// (cells of ring 1 will be shifted by 1.7 cm towards vertex to output fibers)
254
255 Float_t offsetFibers = 1.7;
256 Float_t offset = fThickness/2.0 - lidThickness - fThickness1/2.0;
257 Float_t r1Right = r0Right + height1Right;
258
259 partubs[0] = r0Right;
260 partubs[1] = r1Right;
261 partubs[2] = fThickness1/2.0;
262
263 gMC->Gsvolu("V0R1","TUBS",idtmed[3005],partubs,5); // scintillator volume
264 gMC->Gspos("V0R1",1,"V0R0", 0.0, 0.0 , -offset + offsetFibers, 0,"ONLY");
265
266// Elementary cell of ring 2 :
267
268 Float_t r2Right = r1Right + height2Right;
269
270 partubs[0] = r1Right;
271 partubs[1] = r2Right;
272
273 gMC->Gsvolu("V0R2","TUBS",idtmed[3005],partubs,5); // scintillator volume
274 gMC->Gspos("V0R2",1,"V0R0", 0.0, 0.0 , -offset, 0,"ONLY");
275
276
277// Elementary cell of ring 3 :
278
279 Float_t r3Right = r2Right + height3Right;
280
281 partubs[0] = r2Right;
282 partubs[1] = r3Right;
283
284 gMC->Gsvolu("V0R3","TUBS",idtmed[3005],partubs,5); // scintillator volume
285 gMC->Gspos("V0R3",1,"V0R0", 0.0, 0.0 , -offset, 0,"ONLY");
286
287// Elementary cell of ring 4 :
288
289 partubs[0] = r3Right;
290 partubs[1] = r4Right;
291
292 gMC->Gsvolu("V0R4","TUBS",idtmed[3005],partubs,5); // scintillator volume
293 gMC->Gspos("V0R4",1,"V0R0", 0.0, 0.0 , -offset, 0,"ONLY");
294
295 Float_t phiDeg = 180./6.;
296
297// Right part :
298
299 for(Float_t phi = 15.0 ; phi < 360.0; phi = phi + phiDeg)
300 {
301 AliMatrix(idrotm[902], 90.0, phi, 90.0, 90.0 +phi, 0.0 , 0.0);
302 gMC->Gspos("V0R0",ndetR,"V0RI",0.0,
303 0.0,0.0,idrotm[902],"ONLY");
304 ndetR++;
305 }
306
307 gMC->Gspos("V0RI",1,"ALIC",0.0,0.0,-zdet,0,"ONLY");
308
309 ncellsR = (ndetR - 1) * 4;
310 printf(" Number of cells on Right side = %d\n", ncellsR);
311
312// Left part :
313
314 for(Float_t phi = 15.0 ; phi < 360.0; phi = phi + phiDeg)
315 {
316 AliMatrix(idrotm[902], 90.0, phi, 90.0, 90.0 +phi, 0.0 , 0.0);
317 gMC->Gspos("V0L0",ndetL,"V0LE",0.0,
318 0.0,0.0,idrotm[902],"ONLY");
319 ndetL++;
320 }
321
322 gMC->Gspos("V0LE",1,"ALIC",0.0,0.0,350.0+fThickness1/2.0,0,"ONLY");
323
324 ncellsL = (ndetL - 1) * 4;
325 printf(" Number of cells on Left side = %d\n", ncellsL);
326 for(i=0;i<75;i++) printf("*");
327 printf("\n");
328
329}
330
331//_____________________________________________________________________________
332void AliVZEROv4::BuildGeometry()
333{
334
335// Builds simple ROOT TNode geometry for event display
336
337 Int_t i;
338
339 printf("\n");
340 for(i=0;i<30;i++) printf("*");
341 printf(" VZERO BuildGeometry ");
342 for(i=0;i<30;i++) printf("*");
343 printf("\n");
344
345 TNode *top;
346
347 TNode *v0Rnode, *v0Rnode0, *v0Rnode6 , *v0Rnode7, *v0Rnode8, *v0Rnode9;
348 TNode *v0Rnode1, *v0Rnode2, *v0Rnode3, *v0Rnode4;
349 TNode *v0Lnode, *v0Lnode0;
350 TNode *v0Lnode1, *v0Lnode2, *v0Lnode3, *v0Lnode4;
351
352 const int kColorVZERO = kGreen;
353
354 top = gAlice->GetGeometry()->GetNode("alice");
355
356 Float_t height1Right, height2Right, height3Right, height4Right;
357 Float_t heightRight;
358 Float_t theta;
359
360 Float_t halfThickQua;
361 Float_t zdet;
362 Float_t r0Right, r4Right;
363 Float_t pi = TMath::Pi();
364
365 height1Right = 3.42; // height of cell 1, in cm
366 height2Right = 6.78; // height of cell 2, in cm
367 height3Right = 7.11; // height of cell 3, in cm
368 height4Right = 10.91; // height of cell 4, in cm
369
370 theta = pi/6.0/2.0;
371
372 halfThickQua = fThickness1/2.0;
373
374 zdet = 90.0 - 0.6 - fThickness/2.0;
375 r0Right = 4.05;
376 heightRight = height1Right + height2Right + height3Right + height4Right;
377 r4Right = r0Right + heightRight;
378
379 Int_t ndiv = 1;
380
381 Float_t partube[3];
382
383 partube[0] = r0Right - 0.2;
384 partube[1] = r4Right + 1.0;
385 partube[2] = fThickness/2.0;
386
387 TTUBE *v0RI = new TTUBE("V0RI", "V0RI", "void", partube[0], partube[1], partube[2]);
388
389 top->cd();
390
391 v0Rnode = new TNode("V0RI","V0RI",v0RI,0.0,0.0,-zdet,0);
392
393 v0Rnode->SetLineColor(kYellow);
394 fNodes->Add(v0Rnode);
395 v0Rnode->SetVisibility(2);
396
397// Rondelles de carbone (epaisseur 3.5 mm) de maintien des cellules ...
398
399 Float_t lidThickness = 0.35;
400
401 partube[0] = r0Right;
402 partube[1] = r4Right;
403 partube[2] = +lidThickness/2.0;
404
405 TTUBE *v0CA = new TTUBE("V0CA", "V0CA", "void",partube[0], partube[1], partube[2]);
406
407 v0Rnode->cd();
408 v0Rnode6 = new TNode("V0CA", "V0CA",v0CA,0.0,0.0, fThickness/2.0-partube[2],0);
409 v0Rnode6->SetLineColor(kYellow);
410 fNodes->Add(v0Rnode6);
411 v0Rnode->cd();
412 v0Rnode7 = new TNode("V0CA", "V0CA",v0CA,0.0,0.0,-fThickness/2.0+partube[2],0);
413 v0Rnode7->SetLineColor(kYellow);
414 fNodes->Add(v0Rnode7);
415
416 partube[0] = r0Right - 0.2;
417 partube[1] = r0Right;
418 partube[2] = +fThickness/2.0;
419
420 TTUBE *v0IR = new TTUBE("V0IR","V0IR","void", partube[0], partube[1], partube[2]);
421
422 v0Rnode->cd();
423 v0Rnode8 = new TNode("V0IR", "V0IR",v0IR,0.0,0.0,0.0,0);
424 v0Rnode8->SetLineColor(kYellow);
425 fNodes->Add(v0Rnode8);
426
427 partube[0] = r4Right;
428 partube[1] = r4Right + 1.0;
429 partube[2] = +fThickness/2.0;
430
431 TTUBE *v0ER = new TTUBE("V0ER","V0ER","void", partube[0], partube[1], partube[2]);
432
433 v0Rnode->cd();
434 v0Rnode9 = new TNode("V0ER", "V0ER",v0ER,0.0,0.0,0.0,0);
435 v0Rnode9->SetLineColor(kYellow);
436 fNodes->Add(v0Rnode9);
437
438 Float_t partubs[5];
439
440 partubs[0] = r0Right;
441 partubs[1] = r4Right;
442 partubs[2] = fThickness/2.0;
443 partubs[3] = 90.0-15.0;
444 partubs[4] = 120.0-15.0;
445
446 TTUBS *v0R0 = new TTUBS("V0R0", "V0R0", "void",partubs[0], partubs[1], partubs[2],
447 partubs[3], partubs[4]);
448
449 v0R0->SetNumberOfDivisions(ndiv);
450
451 Float_t r1Right = r0Right + height1Right;
452 Float_t offset = fThickness/2.0 - lidThickness - fThickness1/2.0;
453 Float_t offsetFibers = 1.7;
454
455 partubs[0] = r0Right;
456 partubs[1] = r1Right;
457 partubs[2] = fThickness1/2.0;
458
459 TTUBS *v0R1 = new TTUBS("V0R1", "V0R1", "void", partubs[0], partubs[1], partubs[2],
460 partubs[3], partubs[4]);
461
462 v0R1->SetNumberOfDivisions(ndiv);
463
464 Float_t r2Right = r1Right + height2Right;
465
466 partubs[0] = r1Right;
467 partubs[1] = r2Right;
468
469 TTUBS *v0R2 = new TTUBS("V0R2", "V0R2", "void", partubs[0], partubs[1], partubs[2],
470 partubs[3], partubs[4]);
471
472 v0R2->SetNumberOfDivisions(ndiv);
473
474 Float_t r3Right = r2Right + height3Right;
475
476 partubs[0] = r2Right;
477 partubs[1] = r3Right;
478
479 TTUBS *v0R3 = new TTUBS("V0R3", "V0R3", "void", partubs[0], partubs[1], partubs[2],
480 partubs[3], partubs[4]);
481 v0R3->SetNumberOfDivisions(ndiv);
482
483 partubs[0] = r3Right;
484 partubs[1] = r4Right;
485
486 TTUBS *v0R4 = new TTUBS("V0R4", "V0R4", "void", partubs[0], partubs[1], partubs[2],
487 partubs[3], partubs[4]);
488 v0R4->SetNumberOfDivisions(ndiv);
489
490 Float_t phi;
491 Float_t phiDeg= 180./6.;
492
493 Int_t ndetR = 1;
494
495 char nameNode[12];
496
497 for (phi = 15.0; phi < 360.0; phi = phi + phiDeg)
498
499 {
500 TRotMatrix* mat920 = new TRotMatrix("rot920","rot920", 90.0, +phi, 90., 90.+phi, 0.0, 0.0 );
501
502 sprintf(nameNode,"SUBDER%d",ndetR);
503
504 v0Rnode->cd();
505 v0Rnode0 = new TNode(nameNode,nameNode,v0R0,0.0,0.0, 0.0,mat920);
506 v0Rnode0->SetLineColor(kYellow);
507 fNodes->Add(v0Rnode0);
508 ndetR++;
509
510 sprintf(nameNode,"SUBDER%d",ndetR);
511 v0Rnode0->cd();
512 v0Rnode1 = new TNode(nameNode,nameNode,v0R1,0.0,0.0, -offset+ offsetFibers ,0);
513 v0Rnode1->SetLineColor(kColorVZERO);
514 fNodes->Add(v0Rnode1);
515 ndetR++;
516
517 sprintf(nameNode,"SUBDER%d",ndetR);
518 v0Rnode0->cd();
519 v0Rnode2 = new TNode(nameNode,nameNode,v0R2,0.0,0.0, -offset,0);
520 v0Rnode2->SetLineColor(kColorVZERO);
521 fNodes->Add(v0Rnode2);
522 ndetR++;
523
524 sprintf(nameNode,"SUBDER%d",ndetR);
525 v0Rnode0->cd();
526 v0Rnode3 = new TNode(nameNode,nameNode,v0R3,0.0,0.0, -offset,0);
527 v0Rnode3->SetLineColor(kColorVZERO);
528 fNodes->Add(v0Rnode3);
529 ndetR++;
530
531 sprintf(nameNode,"SUBDER%d",ndetR);
532 v0Rnode0->cd();
533 v0Rnode4 = new TNode(nameNode,nameNode,v0R4,0.0,0.0, -offset,0);
534 v0Rnode4->SetLineColor(kColorVZERO);
535 fNodes->Add(v0Rnode4);
536 ndetR++;
537
538 v0Rnode0->SetVisibility(2);
539 }
540
541// Left side of VZERO :
542
543 Float_t r0Left = 4.3;
544 Float_t height1Left = 3.6;
545 Float_t height2Left = 6.4;
546 Float_t height3Left = 14.9;
547 Float_t height4Left = 14.4;
548 Float_t heightLeft = height1Left + height2Left + height3Left + height4Left;
549
550 Float_t r4Left = r0Left + heightLeft;
551
552 partube[0] = r0Left;
553 partube[1] = r4Left;
554 partube[2] = fThickness1/2.0;
555
556 TTUBE *v0LE = new TTUBE("V0LE", "V0LE", "void", partube[0], partube[1], partube[2]);
557
558 top->cd();
559
560 v0Lnode = new TNode("V0LE","V0LE",v0LE,0.0,0.0,350.0+fThickness1/2.0,0);
561
562 v0Lnode->SetLineColor(kBlue);
563 fNodes->Add(v0Lnode);
564
565 v0Lnode->SetVisibility(2);
566
567 partubs[0] = r0Left;
568 partubs[1] = r4Left;
569 partubs[2] = fThickness1/2.0;
570 partubs[3] = 90.0-15.0;
571 partubs[4] = 120.0-15.0;
572
573 TTUBS *v0L0 = new TTUBS("V0L0", "V0L0", "void", partubs[0], partubs[1], partubs[2],
574 partubs[3], partubs[4]);
575
576 v0L0->SetNumberOfDivisions(ndiv);
577 v0L0->SetLineColor(7);
578
579 Float_t offsetLeft;
580 offsetLeft = - fThickness1/2.0;
581
582 Float_t r1Left = r0Left + height1Left;
583
584 partubs[0] = r0Left;
585 partubs[1] = r1Left;
586
587 TTUBS *v0L1 = new TTUBS("V0L1", "V0L1", "void", partubs[0], partubs[1], partubs[2],
588 partubs[3], partubs[4]);
589 v0L1->SetNumberOfDivisions(ndiv);
590
591 Float_t r2Left = r1Left + height2Left;
592
593 partubs[0] = r1Left;
594 partubs[1] = r2Left;
595
596 TTUBS *v0L2 = new TTUBS("V0L2", "V0L2", "void", partubs[0], partubs[1], partubs[2],
597 partubs[3], partubs[4]);
598 v0L2->SetNumberOfDivisions(ndiv);
599
600 Float_t r3Left = r2Left + height3Left;
601
602 partubs[0] = r2Left;
603 partubs[1] = r3Left;
604
605 TTUBS *v0L3 = new TTUBS("V0L3", "V0L3", "void", partubs[0], partubs[1], partubs[2],
606 partubs[3], partubs[4]);
607 v0L3->SetNumberOfDivisions(ndiv);
608
609 partubs[0] = r3Left;
610 partubs[1] = r4Left;
611
612 TTUBS *v0L4 = new TTUBS("V0L4", "V0L4", "void", partubs[0], partubs[1], partubs[2],
613 partubs[3], partubs[4]);
614 v0L4->SetNumberOfDivisions(ndiv);
615
616 Int_t ndetL = 1;
617
618 for (phi = 15.0; phi < 360.0; phi = phi + phiDeg)
619
620 {
621
622 TRotMatrix* mat920 = new TRotMatrix("rot920","rot920", 90.0, +phi, 90., 90.+phi, 0.0, 0.0 );
623
624 sprintf(nameNode,"SUBDEL%d",ndetL);
625
626 v0Lnode->cd();
627 v0Lnode0 = new TNode(nameNode,nameNode,v0L0,0.0,0.0, offsetLeft + halfThickQua,mat920);
628 v0Lnode0->SetLineColor(kColorVZERO);
629 fNodes->Add(v0Lnode0);
630 ndetL++;
631
632 sprintf(nameNode,"SUBDEL%d",ndetL);
633 v0Lnode0->cd();
634 v0Lnode1 = new TNode(nameNode,nameNode,v0L1,0.0,0.0, 0.0,0);
635 v0Lnode1->SetLineColor(kColorVZERO);
636 fNodes->Add(v0Lnode1);
637 ndetL++;
638
639 sprintf(nameNode,"SUBDEL%d",ndetL);
640 v0Lnode0->cd();
641 v0Lnode2 = new TNode(nameNode,nameNode,v0L2,0.0,0.0, 0.0,0);
642 v0Lnode2->SetLineColor(kColorVZERO);
643 fNodes->Add(v0Lnode2);
644 ndetL++;
645
646 sprintf(nameNode,"SUBDEL%d",ndetL);
647 v0Lnode0->cd();
648 v0Lnode3 = new TNode(nameNode,nameNode,v0L3,0.0,0.0, 0.0,0);
649 v0Lnode3->SetLineColor(kColorVZERO);
650 fNodes->Add(v0Lnode3);
651 ndetL++;
652
653 sprintf(nameNode,"SUBDEL%d",ndetL);
654 v0Lnode0->cd();
655 v0Lnode4 = new TNode(nameNode,nameNode,v0L4,0.0,0.0, 0.0,0);
656 v0Lnode4->SetLineColor(kColorVZERO);
657 fNodes->Add(v0Lnode4);
658 ndetL++;
659
660 v0Lnode0->SetVisibility(2);
661 }
662}
663
664//_____________________________________________________________________________
665void AliVZEROv4::CreateMaterials()
666{
667
668// Creates materials used for geometry
669
670 Int_t i;
671
672 printf("\n");
673 for(i=0;i<25;i++) printf("*");
674 printf(" VZERO create materials ");
675 for(i=0;i<26;i++) printf("*");
676 printf("\n");
677
678/*
679 Float_t ppckov[14] = { 5.5e-9, 5.7e-9, 5.9e-9, 6.1e-9, 6.3e-9, 6.5e-9, 6.7e-9,
680 6.9e-9, 7.1e-9, 7.3e-9, 7.5e-9, 7.7e-9, 7.9e-9, 8.1e-9 };
681
682
683 Float_t ppckov_alu[14] = { 5.5e-9, 5.7e-9, 5.9e-9, 6.1e-9, 6.3e-9, 6.5e-9, 6.7e-9,
684 6.9e-9, 7.1e-9, 7.3e-9, 7.5e-9, 7.7e-9, 7.9e-9, 8.1e-9 };
685
686 Float_t rindex_quarz[14] = { 1.52398, 1.53090, 1.53835, 1.54641, 1.55513, 1.56458,
687 1.57488, 1.58611, 1.59842, 1.61197, 1.62696, 1.64362,
688 1.662295, 1.68337 };
689
690 Float_t absco_quarz[14] = { 105.8, 45.656, 35.665, 28.598, 25.007, 21.04, 17.525,
691 14.177, 9.282, 4.0925, 1.149, 0.3627, 0.1497, 0.05 };
692
693 Float_t effic_all[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
694
695
696 Float_t rindex_alu[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
697
698
699 Float_t absco_alu[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,
700 1e-4,1e-4,1e-4,1e-4 };
701 Float_t effic_alu[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
702
703*/
704
705 Int_t *idtmed = fIdtmed->GetArray()-2999;
706
707// TGeant3 *geant3 = (TGeant3*) gMC;
708
709// Parameters related to Quarz (SiO2) :
710
711 Float_t aqua[2], zqua[2], densqua, wmatqua[2];
712 Int_t nlmatqua;
713
714 aqua[0] = 28.09;
715 aqua[1] = 16.;
716 zqua[0] = 14.;
717 zqua[1] = 8.;
718 densqua = 2.64;
719 nlmatqua = -2;
720 wmatqua[0] = 1.;
721 wmatqua[1] = 2.;
722
723// Parameters related to aluminum sheets :
724
725 Float_t aal = 26.98;
726 Float_t zal = 13.00;
727 Float_t densal= 2.7;
728 Float_t radlal= 8.9;
729
730// Parameters related to scintillator CH :
731
732 Float_t ascin[2] = {1.00794,12.011};
733 Float_t zscin[2] = {1.,6.};
734 Float_t wscin[2] = {1.,1.};
735 Float_t denscin = 1.032;
736
737// Definition of materials :
738
739 AliMaterial( 1, "AIR A$", 14.61, 7.3, .001205, 30420., 67500, 0, 0);
740 AliMaterial(11, "AIR I$", 14.61, 7.3, .001205, 30420., 67500, 0, 0);
741 AliMaterial( 2, "CARBON$" , 12.01, 6.0, 2.265, 18.8, 49.9, 0, 0);
742 AliMixture( 3, "QUA", aqua, zqua, densqua, nlmatqua, wmatqua);
743 AliMaterial( 4, "ALUMINIUM1$", 26.98, 13., 2.7, 8.9, 37.2, 0, 0);
744 AliMaterial( 5, "ALUMINIUM2$", aal, zal, densal, radlal, 0, 0, 0);
745
746 AliMixture( 6, "Scintillator$",ascin,zscin,denscin,-2,wscin);
747
748
749 Int_t iSXFLD = gAlice->Field()->Integ();
750 Float_t sXMGMX = gAlice->Field()->Max();
751
752 Float_t tmaxfd, stemax, deemax, epsil, stmin;
753
754 tmaxfd = 10.;
755 stemax = 0.1;
756 deemax = 0.1;
757 epsil = 0.001;
758 stmin = 0.001;
759
760// Active Air :
761 AliMedium(1, "ACTIVE AIR$", 1, 1, iSXFLD, sXMGMX,
762 10.0, 1.0, 0.1, 0.1, 10.0, 0, 0) ;
763
764// Inactive air :
765
766 AliMedium(11, "INACTIVE AIR$", 11, 0, iSXFLD, sXMGMX,
767 10.0, 1.0, 0.1, 0.1, 10.0, 0, 0) ;
768
769 AliMedium(2, "CARBON$ ", 2, 1, iSXFLD, sXMGMX,
770 tmaxfd, stemax, deemax, epsil, stmin, 0, 0);
771
772 AliMedium(3, "QUARZ$", 3, 1, iSXFLD, sXMGMX,
773 tmaxfd, fMaxStepQua, fMaxDestepQua, epsil, stmin, 0, 0);
774
775 AliMedium(4,"ALUMINUM1$",4, 1, iSXFLD, sXMGMX,
776 tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin, 0, 0);
777
778
779 AliMedium(5,"ALUMINUM2$",5, 1, iSXFLD, sXMGMX,
780 tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin, 0, 0);
781
782 AliMedium(6,"SCINTILLATOR$",6, 1, iSXFLD, sXMGMX, 10.0, 0.1, 0.1, 0.003, 0.003, 0, 0);
783
784 gMC->Gstpar(idtmed[3000], "LOSS", 1.); // [3000] = air ACTIF [3010] = air INACTIF
785 gMC->Gstpar(idtmed[3000], "HADR", 1.);
786 gMC->Gstpar(idtmed[3000], "DCAY", 1.);
787 gMC->Gstpar(idtmed[3000], "DRAY", 1.);
788
789 gMC->Gstpar(idtmed[3001], "LOSS", 1.); // [3001] = carbon
790 gMC->Gstpar(idtmed[3001], "HADR", 1.);
791 gMC->Gstpar(idtmed[3001], "DCAY", 1.);
792 gMC->Gstpar(idtmed[3001], "DRAY", 1.);
793
794 gMC->Gstpar(idtmed[3002], "LOSS", 1.); // [3002] = quartz
795 gMC->Gstpar(idtmed[3002], "HADR", 1.);
796 gMC->Gstpar(idtmed[3002], "DCAY", 1.);
797 gMC->Gstpar(idtmed[3002], "DRAY", 1.);
798 gMC->Gstpar(idtmed[3002], "CUTGAM",0.5E-4) ;
799 gMC->Gstpar(idtmed[3002], "CUTELE",1.0E-4) ;
800
801 gMC->Gstpar(idtmed[3003], "LOSS", 1.); // [3003] = normal aluminum
802 gMC->Gstpar(idtmed[3003], "HADR", 1.);
803 gMC->Gstpar(idtmed[3003], "DCAY", 1.);
804 gMC->Gstpar(idtmed[3003], "DRAY", 1.);
805
806 gMC->Gstpar(idtmed[3004], "LOSS", 1.); // [3004] = reflecting aluminum
807 gMC->Gstpar(idtmed[3004], "HADR", 1.);
808 gMC->Gstpar(idtmed[3004], "DCAY", 1.);
809 gMC->Gstpar(idtmed[3004], "DRAY", 1.);
810 gMC->Gstpar(idtmed[3004], "CUTGAM",0.5E-4) ;
811 gMC->Gstpar(idtmed[3004], "CUTELE",1.0E-4) ;
812
813 gMC->Gstpar(idtmed[3005], "LOSS", 1.); // [3005] = scintillator
814 gMC->Gstpar(idtmed[3005], "HADR", 1.);
815 gMC->Gstpar(idtmed[3005], "DCAY", 1.);
816 gMC->Gstpar(idtmed[3005], "DRAY", 1.);
817 gMC->Gstpar(idtmed[3005], "CUTGAM",0.5E-4) ;
818 gMC->Gstpar(idtmed[3005], "CUTELE",1.0E-4) ;
819
820
821// geant3->Gsckov(idtmed[3002], 14, ppckov, absco_quarz, effic_all,rindex_quarz);
822// geant3->Gsckov(idtmed[3004], 14, ppckov_alu, absco_alu, effic_alu, rindex_alu);
823
824// gMC->SetCerenkov(idtmed[3002], 14, ppckov, absco_quarz, effic_all,rindex_quarz);
825// gMC->SetCerenkov(idtmed[3004], 14, ppckov_alu, absco_alu, effic_alu, rindex_alu);
826
827}
828
829//_____________________________________________________________________________
830void AliVZEROv4::DrawModule()
831{
832
833// Drawing is done in DrawVZERO.C
834
835 Int_t i;
836
837 printf("\n");
838 for(i=0;i<30;i++) printf("*");
839 printf(" VZERO DrawModule ");
840 for(i=0;i<30;i++) printf("*");
841 printf("\n");
842}
843
844//_____________________________________________________________________________
845void AliVZEROv4::Init()
846{
847// Initialises version 2 of the VZERO Detector
848// Just prints an information message
849
850 printf(" VZERO version %d initialized \n",IsVersion());
851
852// gMC->SetMaxStep(fMaxStepAlu);
853// gMC->SetMaxStep(fMaxStepQua);
854
855 AliVZERO::Init();
856}
857
858//_____________________________________________________________________________
859void AliVZEROv4::StepManager()
860{
861
862// Step Manager, called at each step
863
864 Int_t copy;
865 static Int_t vol[4];
866 static Float_t hits[21];
867 static Float_t eloss, tlength;
868 static Int_t nPhotonsInStep;
869 static Int_t nPhotons;
870 static Int_t numStep;
871 Float_t ringNumber;
872 Float_t destep, step;
873
874 numStep += 1;
875
876// We keep only charged tracks :
877
878 if ( !gMC->TrackCharge() || !gMC->IsTrackAlive() ) return;
879
880 vol[0] = gMC->CurrentVolOffID(1, vol[1]);
881 vol[2] = gMC->CurrentVolID(copy);
882 vol[3] = copy;
883
884 if ( gMC->CurrentVolID(copy) == gMC->VolId("V0R1") ||
885 gMC->CurrentVolID(copy) == gMC->VolId("V0L1") )
886 ringNumber = 1.0;
887 else if ( gMC->CurrentVolID(copy) == gMC->VolId("V0R2") ||
888 gMC->CurrentVolID(copy) == gMC->VolId("V0L2") )
889 ringNumber = 2.0;
890 else if ( gMC->CurrentVolID(copy) == gMC->VolId("V0R3") ||
891 gMC->CurrentVolID(copy) == gMC->VolId("V0L3") )
892 ringNumber = 3.0;
893 else if ( gMC->CurrentVolID(copy) == gMC->VolId("V0R4") ||
894 gMC->CurrentVolID(copy) == gMC->VolId("V0L4") )
895 ringNumber = 4.0;
896 else
897 ringNumber = 0.0;
898
899 if ( ringNumber > 0.5 ) {
900
901 destep = gMC->Edep();
902 step = gMC->TrackStep();
903
904 nPhotonsInStep = Int_t(destep / (fLightYield *1e-9) );
905 nPhotonsInStep = gRandom->Poisson(nPhotonsInStep);
906
907 eloss += destep;
908 tlength += step;
909
910 if ( gMC->IsTrackEntering() ) {
911
912 nPhotons = nPhotonsInStep;
913 gMC->TrackPosition(fTrackPosition);
914 gMC->TrackMomentum(fTrackMomentum);
915
916 Float_t pt = TMath::Sqrt( fTrackMomentum.Px() * fTrackMomentum.Px() +
917 fTrackMomentum.Py() * fTrackMomentum.Py() );
918
919 hits[0] = fTrackPosition.X();
920 hits[1] = fTrackPosition.Y();
921 hits[2] = fTrackPosition.Z();
922 hits[3] = Float_t (gMC->TrackPid());
923
924 hits[4] = gMC->TrackTime();
925 hits[5] = gMC->TrackCharge();
926 hits[6] = fTrackMomentum.Theta()*TMath::RadToDeg();
927 hits[7] = fTrackMomentum.Phi()*TMath::RadToDeg();
928 hits[8] = ringNumber;
929
930 hits[9] = pt;
931 hits[10] = fTrackMomentum.P();
932 hits[11] = fTrackMomentum.Px();
933 hits[12] = fTrackMomentum.Py();
934 hits[13] = fTrackMomentum.Pz();
935
936 TParticle *par = gAlice->GetMCApp()->Particle(gAlice->GetMCApp()->GetCurrentTrackNumber());
937 hits[14] = par->Vx();
938 hits[15] = par->Vy();
939 hits[16] = par->Vz();
940
941 tlength = 0.0;
942 eloss = 0.0;
943 }
944
945 nPhotons = nPhotons + nPhotonsInStep;
946
947 if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
948
949 nPhotons = nPhotons - Int_t((Float_t(nPhotons) * fLightAttenuation * fnMeters));
950 nPhotons = nPhotons - Int_t( Float_t(nPhotons) * fFibToPhot);
951
952 hits[17] = eloss;
953 hits[18] = tlength;
954 hits[19] = nPhotons;
955 hits[20] = GetCellId (vol, hits);
956
957 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
958
959 tlength = 0.0;
960 eloss = 0.0;
961 nPhotons = 0;
962 nPhotonsInStep = 0;
963
964 numStep = 0;
965 }
966 }
967
968}
969
970//_____________________________________________________________________________
971void AliVZEROv4::AddHit(Int_t track, Int_t *vol, Float_t *hits)
972{
973
974// Adds a VZERO hit
975
976 TClonesArray &lhits = *fHits;
977 new(lhits[fNhits++]) AliVZEROhit(fIshunt,track,vol,hits);
978}
979
980//_____________________________________________________________________________
981void AliVZEROv4::AddDigits(Int_t *tracks, Int_t* digits)
982{
983
984// Adds a VZERO digit
985
986 TClonesArray &ldigits = *fDigits;
987 new(ldigits[fNdigits++]) AliVZEROdigit(tracks, digits);
988}
989
990//_____________________________________________________________________________
991void AliVZEROv4::MakeBranch(Option_t *option)
992{
993
994// Creates new branches in the current Root Tree
995
996 char branchname[10];
997 sprintf(branchname,"%s",GetName());
998 printf(" fBufferSize = %d \n",fBufferSize);
999
1000 const char *cH = strstr(option,"H");
1001
1002 if (fHits && TreeH() && cH) {
1003 TreeH()->Branch(branchname,&fHits, fBufferSize);
1004 printf("* AliDetector::MakeBranch * Making Branch %s for hits\n",branchname);
1005 }
1006
1007 const char *cD = strstr(option,"D");
1008
1009 if (fDigits && fLoader->TreeD() && cD) {
1010 fLoader->TreeD()->Branch(branchname,&fDigits, fBufferSize);
1011 printf("* AliDetector::MakeBranch * Making Branch %s for digits\n",branchname);
1012 }
1013
1014}
1015
1016//_____________________________________________________________________________
1017Int_t AliVZEROv4::GetCellId(Int_t *vol, Float_t *hits)
1018{
1019
1020 // Returns Id of scintillator cell
1021 // Right side from 0 to 47
1022 // Left side from 48 to 95
1023
1024 Int_t index = vol[1];
1025 fCellId = 0;
1026
1027 if (index < 10) index = index + 12;
1028
1029 if (hits[2] < 0.0) {
1030 index = (index - 10) + ( ( Int_t(hits[8]) - 1 ) * 12);
1031 fCellId = index;
1032 }
1033 else if (hits[2] > 0.0)
1034 {
1035 index = (index + 38) + ( ( Int_t(hits[8]) - 1 ) * 12);
1036 fCellId = index;}
1037
1038 return fCellId;
1039}