rlu_hijing has to be float to work correctly with gfortran (Fedora Core 7)
[u/mrichter/AliRoot.git] / ZDC / AliZDCv2.cxx
CommitLineData
4663d63d 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
4663d63d 16
8cc32cbc 17///////////////////////////////////////////////////////////////////////
18// //
03ab2c93 19// AliZDCv2 --- new ZDC geometry //
8cc32cbc 20// with the EM ZDC at about 10 m from IP //
21// Just one set of ZDC is inserted //
22// (on the same side of the dimuon arm realtive to IP) //
03ab2c93 23// Compensator in ZDC geometry (Nov. 2004) //
8cc32cbc 24// //
25///////////////////////////////////////////////////////////////////////
4663d63d 26
27// --- Standard libraries
28#include "stdio.h"
29
30// --- ROOT system
31#include <TBRIK.h>
88cb7938 32#include <TLorentzVector.h>
4663d63d 33#include <TMath.h>
88cb7938 34#include <TNode.h>
4663d63d 35#include <TRandom.h>
36#include <TSystem.h>
37#include <TTree.h>
88cb7938 38#include <TVirtualMC.h>
a1a21b39 39#include <TGeoManager.h>
4663d63d 40
41// --- AliRoot classes
88cb7938 42#include "AliConst.h"
4663d63d 43#include "AliMagF.h"
88cb7938 44#include "AliRun.h"
88cb7938 45#include "AliZDCv2.h"
5d12ce38 46#include "AliMC.h"
4663d63d 47
8a2624cc 48class AliZDCHit;
49class AliPDG;
50class AliDetector;
4663d63d 51
52ClassImp(AliZDCv2)
4663d63d 53
54//_____________________________________________________________________________
55AliZDCv2::AliZDCv2() : AliZDC()
56{
57 //
58 // Default constructor for Zero Degree Calorimeter
59 //
60
61 fMedSensF1 = 0;
62 fMedSensF2 = 0;
63 fMedSensZN = 0;
64 fMedSensZP = 0;
65 fMedSensZEM = 0;
66 fMedSensGR = 0;
bc7e1cd6 67
4663d63d 68}
69
70//_____________________________________________________________________________
71AliZDCv2::AliZDCv2(const char *name, const char *title)
72 : AliZDC(name,title)
73{
74 //
75 // Standard constructor for Zero Degree Calorimeter
76 //
77 //
78 // Check that DIPO, ABSO, DIPO and SHIL is there (otherwise tracking is wrong!!!)
79
c6937a87 80 AliModule* pipe=gAlice->GetModule("PIPE");
81 AliModule* abso=gAlice->GetModule("ABSO");
82 AliModule* dipo=gAlice->GetModule("DIPO");
83 AliModule* shil=gAlice->GetModule("SHIL");
84 if((!pipe) || (!abso) || (!dipo) || (!shil)) {
4663d63d 85 Error("Constructor","ZDC needs PIPE, ABSO, DIPO and SHIL!!!\n");
86 exit(1);
87 }
88
89 fMedSensF1 = 0;
90 fMedSensF2 = 0;
91 fMedSensZN = 0;
92 fMedSensZP = 0;
93 fMedSensZEM = 0;
94 fMedSensGR = 0;
4700b983 95 fMedSensPI = 0;
96 fMedSensTDI = 0;
4663d63d 97
98
99 // Parameters for light tables
100 fNalfan = 90; // Number of Alfa (neutrons)
101 fNalfap = 90; // Number of Alfa (protons)
102 fNben = 18; // Number of beta (neutrons)
103 fNbep = 28; // Number of beta (protons)
104 Int_t ip,jp,kp;
105 for(ip=0; ip<4; ip++){
106 for(kp=0; kp<fNalfap; kp++){
107 for(jp=0; jp<fNbep; jp++){
108 fTablep[ip][kp][jp] = 0;
109 }
110 }
111 }
112 Int_t in,jn,kn;
113 for(in=0; in<4; in++){
114 for(kn=0; kn<fNalfan; kn++){
115 for(jn=0; jn<fNben; jn++){
116 fTablen[in][kn][jn] = 0;
117 }
118 }
119 }
120
121 // Parameters for hadronic calorimeters geometry
410749b4 122 fDimZN[0] = 3.52;
123 fDimZN[1] = 3.52;
124 fDimZN[2] = 50.;
4663d63d 125 fDimZP[0] = 11.2;
126 fDimZP[1] = 6.;
127 fDimZP[2] = 75.;
128 fPosZN[0] = 0.;
8cc32cbc 129 fPosZN[1] = 1.2;
bc7e1cd6 130 fPosZN[2] = -11650.;
131 fPosZP[0] = 23.9;
4663d63d 132 fPosZP[1] = 0.;
bc7e1cd6 133 fPosZP[2] = -11600.;
4663d63d 134 fFibZN[0] = 0.;
135 fFibZN[1] = 0.01825;
136 fFibZN[2] = 50.;
137 fFibZP[0] = 0.;
138 fFibZP[1] = 0.0275;
139 fFibZP[2] = 75.;
140
141 // Parameters for EM calorimeter geometry
142 fPosZEM[0] = 8.5;
143 fPosZEM[1] = 0.;
59ec6db4 144 fPosZEM[2] = 735.;
9eeb903e 145
146 Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice
147 Float_t kDimZEMAir = 0.001; // scotch
148 Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding)
149 Int_t kDivZEM[3] = {92, 0, 20}; // Divisions for EM detector
150 Float_t kDimZEM0 = 2*kDivZEM[2]*(kDimZEMPb+kDimZEMAir+kFibRadZEM*(TMath::Sqrt(2.)));
151 fZEMLength = kDimZEM0;
4663d63d 152
4663d63d 153}
154
155//_____________________________________________________________________________
156void AliZDCv2::CreateGeometry()
157{
158 //
b2a1dc96 159 // Create the geometry for the Zero Degree Calorimeter version 2
4663d63d 160 //* Initialize COMMON block ZDC_CGEOM
161 //*
162
163 CreateBeamLine();
164 CreateZDC();
165}
166
167//_____________________________________________________________________________
168void AliZDCv2::CreateBeamLine()
169{
c6937a87 170 //
171 // Create the beam line elements
172 //
4663d63d 173
03ab2c93 174 Float_t zc, zq, zd1, zd2;
4663d63d 175 Float_t conpar[9], tubpar[3], tubspar[5], boxpar[3];
176 Int_t im1, im2;
177
178 Int_t *idtmed = fIdtmed->GetArray();
179
180 // -- Mother of the ZDCs (Vacuum PCON)
03ab2c93 181 // zd1 = 2092.; // (Without compensator in ZDC geometry)
182 zd1 = 1921.6;
b2a1dc96 183
4663d63d 184 conpar[0] = 0.;
185 conpar[1] = 360.;
186 conpar[2] = 2.;
bc7e1cd6 187 conpar[3] = -13500.;
4663d63d 188 conpar[4] = 0.;
c63eb7ab 189 conpar[5] = 55.;
bc7e1cd6 190 conpar[6] = -zd1;
4663d63d 191 conpar[7] = 0.;
c63eb7ab 192 conpar[8] = 55.;
4663d63d 193 gMC->Gsvolu("ZDC ", "PCON", idtmed[11], conpar, 9);
bc7e1cd6 194 gMC->Gspos("ZDC ", 1, "ALIC", 0., 0., 0., 0, "ONLY");
4663d63d 195
196 // -- FIRST SECTION OF THE BEAM PIPE (from compensator dipole to
197 // the beginning of D1)
4663d63d 198 tubpar[0] = 6.3/2.;
199 tubpar[1] = 6.7/2.;
4700b983 200 // From beginning of ZDC volumes to beginning of D1
201 tubpar[2] = (5838.3-zd1)/2.;
4663d63d 202 gMC->Gsvolu("QT01", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 203 gMC->Gspos("QT01", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
204 // Ch.debug
205 //printf("\n QT01 TUBE pipe from z = %f to z= %f (D1 beg.)\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 206
207 //-- SECOND SECTION OF THE BEAM PIPE (from the end of D1 to the
208 // beginning of D2)
209
210 //-- FROM MAGNETIC BEGINNING OF D1 TO MAGNETIC END OF D1 + 13.5 cm
211 //-- Cylindrical pipe (r = 3.47) + conical flare
212
213 // -> Beginning of D1
214 zd1 += 2.*tubpar[2];
215
216 tubpar[0] = 3.47;
217 tubpar[1] = 3.47+0.2;
218 tubpar[2] = 958.5/2.;
219 gMC->Gsvolu("QT02", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 220 gMC->Gspos("QT02", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
221 // Ch.debug
222 //printf("\n QT02 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 223
224 zd1 += 2.*tubpar[2];
225
226 conpar[0] = 25./2.;
bc7e1cd6 227 conpar[1] = 10./2.;
228 conpar[2] = 10.4/2.;
229 conpar[3] = 6.44/2.;
230 conpar[4] = 6.84/2.;
4663d63d 231 gMC->Gsvolu("QC01", "CONE", idtmed[7], conpar, 5);
bc7e1cd6 232 gMC->Gspos("QC01", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
233 // Ch.debug
234 //printf("\n QC01 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
4663d63d 235
236 zd1 += 2.*conpar[0];
237
238 tubpar[0] = 10./2.;
239 tubpar[1] = 10.4/2.;
240 tubpar[2] = 50./2.;
241 gMC->Gsvolu("QT03", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 242 gMC->Gspos("QT03", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
243 // Ch.debug
244 //printf("\n QT03 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 245
246 zd1 += tubpar[2]*2.;
247
248 tubpar[0] = 10./2.;
249 tubpar[1] = 10.4/2.;
250 tubpar[2] = 10./2.;
251 gMC->Gsvolu("QT04", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 252 gMC->Gspos("QT04", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
253 // Ch.debug
254 //printf("\n QT04 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 255
256 zd1 += tubpar[2] * 2.;
257
258 tubpar[0] = 10./2.;
259 tubpar[1] = 10.4/2.;
260 tubpar[2] = 3.16/2.;
261 gMC->Gsvolu("QT05", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 262 gMC->Gspos("QT05", 1, "ZDC ", 0., 0., -tubpar[0]-zd1, 0, "ONLY");
263 // Ch.debug
264 //printf("\n QT05 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 265
266 zd1 += tubpar[2] * 2.;
267
268 tubpar[0] = 10.0/2.;
269 tubpar[1] = 10.4/2;
270 tubpar[2] = 190./2.;
271 gMC->Gsvolu("QT06", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 272 gMC->Gspos("QT06", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
273 // Ch.debug
274 //printf("\n QT06 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 275
276 zd1 += tubpar[2] * 2.;
277
278 conpar[0] = 30./2.;
bc7e1cd6 279 conpar[1] = 20.6/2.;
280 conpar[2] = 21./2.;
281 conpar[3] = 10./2.;
282 conpar[4] = 10.4/2.;
4663d63d 283 gMC->Gsvolu("QC02", "CONE", idtmed[7], conpar, 5);
bc7e1cd6 284 gMC->Gspos("QC02", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
285 // Ch.debug
286 //printf("\n QC02 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
4663d63d 287
288 zd1 += conpar[0] * 2.;
289
290 tubpar[0] = 20.6/2.;
291 tubpar[1] = 21./2.;
292 tubpar[2] = 450./2.;
293 gMC->Gsvolu("QT07", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 294 gMC->Gspos("QT07", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
295 // Ch.debug
296 //printf("\n QT07 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 297
298 zd1 += tubpar[2] * 2.;
299
300 conpar[0] = 13.6/2.;
bc7e1cd6 301 conpar[1] = 25.4/2.;
302 conpar[2] = 25.8/2.;
303 conpar[3] = 20.6/2.;
304 conpar[4] = 21./2.;
4663d63d 305 gMC->Gsvolu("QC03", "CONE", idtmed[7], conpar, 5);
bc7e1cd6 306 gMC->Gspos("QC03", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
307 // Ch.debug
308 //printf("\n QC03 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
4663d63d 309
310 zd1 += conpar[0] * 2.;
311
312 tubpar[0] = 25.4/2.;
313 tubpar[1] = 25.8/2.;
314 tubpar[2] = 205.8/2.;
315 gMC->Gsvolu("QT08", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 316 gMC->Gspos("QT08", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
317 // Ch.debug
318 //printf("\n QT08 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 319
320 zd1 += tubpar[2] * 2.;
321
322 tubpar[0] = 50./2.;
323 tubpar[1] = 50.4/2.;
324 // QT09 is 10 cm longer to accomodate TDI
325 tubpar[2] = 515.4/2.;
326 gMC->Gsvolu("QT09", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 327 gMC->Gspos("QT09", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
328 // Ch.debug
329 //printf("\n QT09 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 330
331 // --- Insert TDI (inside ZDC volume)
4663d63d 332 boxpar[0] = 5.6;
333 boxpar[1] = 5.6;
334 boxpar[2] = 400./2.;
335 gMC->Gsvolu("QTD1", "BOX ", idtmed[7], boxpar, 3);
bc7e1cd6 336 gMC->Gspos("QTD1", 1, "ZDC ", -3., 10.6, -tubpar[2]-zd1-56.3, 0, "ONLY");
337 gMC->Gspos("QTD1", 2, "ZDC ", -3., -10.6, -tubpar[2]-zd1-56.3, 0, "ONLY");
4663d63d 338
339 boxpar[0] = 0.2/2.;
340 boxpar[1] = 5.6;
341 boxpar[2] = 400./2.;
342 gMC->Gsvolu("QTD2", "BOX ", idtmed[6], boxpar, 3);
bc7e1cd6 343 gMC->Gspos("QTD2", 1, "ZDC ", -8.6-boxpar[0], 0., -tubpar[2]-zd1-56.3, 0, "ONLY");
4663d63d 344
6d5d9c06 345 tubspar[0] = 10.5; // R = 10.5 cm------------------------------------------
346 tubspar[1] = 10.7;
4663d63d 347 tubspar[2] = 400./2.;
bc7e1cd6 348 tubspar[3] = 360.-75.5;
349 tubspar[4] = 75.5;
4663d63d 350 gMC->Gsvolu("QTD3", "TUBS", idtmed[6], tubspar, 5);
bc7e1cd6 351 gMC->Gspos("QTD3", 1, "ZDC ", 0., 0., -tubpar[2]-zd1-56.3, 0, "ONLY");
352 // Ch.debug
353 //printf("\n TDI volume from z = %f to z= %f\n",-tubpar[2]-zd1-56.3,-tubpar[2]-zd1-56.3-400.);
4663d63d 354
355 zd1 += tubpar[2] * 2.;
356
357 tubpar[0] = 50./2.;
358 tubpar[1] = 50.4/2.;
359 // QT10 is 10 cm shorter
360 tubpar[2] = 690./2.;
361 gMC->Gsvolu("QT10", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 362 gMC->Gspos("QT10", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
363 // Ch.debug
364 //printf("\n QT10 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 365
366 zd1 += tubpar[2] * 2.;
367
368 tubpar[0] = 50./2.;
369 tubpar[1] = 50.4/2.;
370 tubpar[2] = 778.5/2.;
371 gMC->Gsvolu("QT11", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 372 gMC->Gspos("QT11", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
373 // Ch.debug
374 //printf("\n QT11 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 375
376 zd1 += tubpar[2] * 2.;
377
378 conpar[0] = 14.18/2.;
bc7e1cd6 379 conpar[1] = 55./2.;
380 conpar[2] = 55.4/2.;
381 conpar[3] = 50./2.;
382 conpar[4] = 50.4/2.;
4663d63d 383 gMC->Gsvolu("QC04", "CONE", idtmed[7], conpar, 5);
bc7e1cd6 384 gMC->Gspos("QC04", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
385 // Ch.debug
386 //printf("\n QC04 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
4663d63d 387
388 zd1 += conpar[0] * 2.;
389
390 tubpar[0] = 55./2.;
391 tubpar[1] = 55.4/2.;
392 tubpar[2] = 730./2.;
393 gMC->Gsvolu("QT12", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 394 gMC->Gspos("QT12", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
395 // Ch.debug
396 //printf("\n QT12 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 397
398 zd1 += tubpar[2] * 2.;
399
400 conpar[0] = 36.86/2.;
bc7e1cd6 401 conpar[1] = 68./2.;
402 conpar[2] = 68.4/2.;
403 conpar[3] = 55./2.;
404 conpar[4] = 55.4/2.;
4663d63d 405 gMC->Gsvolu("QC05", "CONE", idtmed[7], conpar, 5);
bc7e1cd6 406 gMC->Gspos("QC05", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
407 // Ch.debug
408 //printf("\n QC05 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
4663d63d 409
410 zd1 += conpar[0] * 2.;
411
412 tubpar[0] = 68./2.;
413 tubpar[1] = 68.4/2.;
414 tubpar[2] = 927.3/2.;
415 gMC->Gsvolu("QT13", "TUBE", idtmed[7], tubpar, 3);
bc7e1cd6 416 gMC->Gspos("QT13", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
417 // Ch.debug
418 //printf("\n QT13 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 419
420 zd1 += tubpar[2] * 2.;
421
422 tubpar[0] = 0./2.;
423 tubpar[1] = 68.4/2.;
424 tubpar[2] = 0.2/2.;
425 gMC->Gsvolu("QT14", "TUBE", idtmed[8], tubpar, 3);
bc7e1cd6 426 gMC->Gspos("QT14", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
427 // Ch.debug
428 //printf("\n QT14 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
4663d63d 429
430 zd1 += tubpar[2] * 2.;
431
432 tubpar[0] = 0./2.;
433 tubpar[1] = 6.4/2.;
434 tubpar[2] = 0.2/2.;
435 gMC->Gsvolu("QT15", "TUBE", idtmed[11], tubpar, 3);
4663d63d 436 //-- Position QT15 inside QT14
437 gMC->Gspos("QT15", 1, "QT14", -7.7, 0., 0., 0, "ONLY");
bc7e1cd6 438
439 gMC->Gsvolu("QT16", "TUBE", idtmed[11], tubpar, 3);
4663d63d 440 //-- Position QT16 inside QT14
441 gMC->Gspos("QT16", 1, "QT14", 7.7, 0., 0., 0, "ONLY");
442
443
b2a1dc96 444 //-- BEAM PIPE BETWEEN END OF CONICAL PIPE AND BEGINNING OF D2
4663d63d 445
446 tubpar[0] = 6.4/2.;
447 tubpar[1] = 6.8/2.;
448 tubpar[2] = 680.8/2.;
449 gMC->Gsvolu("QT17", "TUBE", idtmed[7], tubpar, 3);
450
451 tubpar[0] = 6.4/2.;
452 tubpar[1] = 6.8/2.;
453 tubpar[2] = 680.8/2.;
454 gMC->Gsvolu("QT18", "TUBE", idtmed[7], tubpar, 3);
455
456 // -- ROTATE PIPES
bc7e1cd6 457 Float_t angle = 0.143*kDegrad; // Rotation angle
4663d63d 458
6d838c2f 459 //AliMatrix(im1, 90.+0.143, 0., 90., 90., 0.143, 0.); // x<0
460 gMC->Matrix(im1, 90.+0.143, 0., 90., 90., 0.143, 0.); // x<0
4663d63d 461 gMC->Gspos("QT17", 1, "ZDC ", TMath::Sin(angle) * 680.8/ 2. - 9.4,
bc7e1cd6 462 0., -tubpar[2]-zd1, im1, "ONLY");
4663d63d 463
6d838c2f 464 //AliMatrix(im2, 90.-0.143, 0., 90., 90., 0.143, 180.); // x>0 (ZP)
465 gMC->Matrix(im2, 90.-0.143, 0., 90., 90., 0.143, 180.); // x>0 (ZP)
4663d63d 466 gMC->Gspos("QT18", 1, "ZDC ", 9.7 - TMath::Sin(angle) * 680.8 / 2.,
bc7e1cd6 467 0., -tubpar[2]-zd1, im2, "ONLY");
c0f15647 468
4663d63d 469 // -- END OF BEAM PIPE VOLUME DEFINITION.
470 // ----------------------------------------------------------------
471
4663d63d 472 // ----------------------------------------------------------------
bc7e1cd6 473 // -- MAGNET DEFINITION -> LHC OPTICS 6.5
03ab2c93 474 // ----------------------------------------------------------------
475 // -- COMPENSATOR DIPOLE (MBXW)
476 zc = 1921.6;
477
478 // -- GAP (VACUUM WITH MAGNETIC FIELD)
479 tubpar[0] = 0.;
480 tubpar[1] = 4.5;
481 tubpar[2] = 170./2.;
482 gMC->Gsvolu("MBXW", "TUBE", idtmed[11], tubpar, 3);
483
484 // -- YOKE
485 tubpar[0] = 4.5;
486 tubpar[1] = 55.;
487 tubpar[2] = 170./2.;
3e3ba835 488 gMC->Gsvolu("YMBX", "TUBE", idtmed[13], tubpar, 3);
03ab2c93 489
490 gMC->Gspos("MBXW", 1, "ZDC ", 0., 0., -tubpar[2]-zc, 0, "ONLY");
491 gMC->Gspos("YMBX", 1, "ZDC ", 0., 0., -tubpar[2]-zc, 0, "ONLY");
4663d63d 492
4663d63d 493
03ab2c93 494 // -- INNER TRIPLET
495 zq = 2296.5;
496
4663d63d 497 // -- DEFINE MQXL AND MQX QUADRUPOLE ELEMENT
03ab2c93 498 // -- MQXL
4663d63d 499 // -- GAP (VACUUM WITH MAGNETIC FIELD)
4663d63d 500 tubpar[0] = 0.;
ee0c4fc1 501 tubpar[1] = 3.5;
502 tubpar[2] = 637./2.;
503 gMC->Gsvolu("MQXL", "TUBE", idtmed[11], tubpar, 3);
504
4663d63d 505
506 // -- YOKE
4663d63d 507 tubpar[0] = 3.5;
508 tubpar[1] = 22.;
509 tubpar[2] = 637./2.;
510 gMC->Gsvolu("YMQL", "TUBE", idtmed[7], tubpar, 3);
511
bc7e1cd6 512 gMC->Gspos("MQXL", 1, "ZDC ", 0., 0., -tubpar[2]-zq, 0, "ONLY");
513 gMC->Gspos("YMQL", 1, "ZDC ", 0., 0., -tubpar[2]-zq, 0, "ONLY");
4663d63d 514
bc7e1cd6 515 gMC->Gspos("MQXL", 2, "ZDC ", 0., 0., -tubpar[2]-zq-2430., 0, "ONLY");
516 gMC->Gspos("YMQL", 2, "ZDC ", 0., 0., -tubpar[2]-zq-2430., 0, "ONLY");
4663d63d 517
518 // -- MQX
519 // -- GAP (VACUUM WITH MAGNETIC FIELD)
4663d63d 520 tubpar[0] = 0.;
521 tubpar[1] = 3.5;
522 tubpar[2] = 550./2.;
523 gMC->Gsvolu("MQX ", "TUBE", idtmed[11], tubpar, 3);
524
525 // -- YOKE
4663d63d 526 tubpar[0] = 3.5;
527 tubpar[1] = 22.;
528 tubpar[2] = 550./2.;
529 gMC->Gsvolu("YMQ ", "TUBE", idtmed[7], tubpar, 3);
530
bc7e1cd6 531 gMC->Gspos("MQX ", 1, "ZDC ", 0., 0., -tubpar[2]-zq-908.5, 0, "ONLY");
532 gMC->Gspos("YMQ ", 1, "ZDC ", 0., 0., -tubpar[2]-zq-908.5, 0, "ONLY");
4663d63d 533
bc7e1cd6 534 gMC->Gspos("MQX ", 2, "ZDC ", 0., 0., -tubpar[2]-zq-1558.5, 0, "ONLY");
535 gMC->Gspos("YMQ ", 2, "ZDC ", 0., 0., -tubpar[2]-zq-1558.5, 0, "ONLY");
4663d63d 536
537 // -- SEPARATOR DIPOLE D1
4663d63d 538 zd1 = 5838.3;
539
540 // -- GAP (VACUUM WITH MAGNETIC FIELD)
4663d63d 541 tubpar[0] = 0.;
542 tubpar[1] = 6.94/2.;
543 tubpar[2] = 945./2.;
544 gMC->Gsvolu("MD1 ", "TUBE", idtmed[11], tubpar, 3);
545
546 // -- Insert horizontal Cu plates inside D1
547 // -- (to simulate the vacuum chamber)
8ed59a88 548 boxpar[0] = TMath::Sqrt(tubpar[1]*tubpar[1]-(2.98+0.2)*(2.98+0.2)) - 0.05;
4663d63d 549 boxpar[1] = 0.2/2.;
550 boxpar[2] =945./2.;
551 gMC->Gsvolu("MD1V", "BOX ", idtmed[6], boxpar, 3);
552 gMC->Gspos("MD1V", 1, "MD1 ", 0., 2.98+boxpar[1], 0., 0, "ONLY");
553 gMC->Gspos("MD1V", 2, "MD1 ", 0., -2.98-boxpar[1], 0., 0, "ONLY");
554
555 // -- YOKE
4663d63d 556 tubpar[0] = 0.;
557 tubpar[1] = 110./2;
558 tubpar[2] = 945./2.;
559 gMC->Gsvolu("YD1 ", "TUBE", idtmed[7], tubpar, 3);
560
bc7e1cd6 561 gMC->Gspos("YD1 ", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
4663d63d 562 gMC->Gspos("MD1 ", 1, "YD1 ", 0., 0., 0., 0, "ONLY");
563
564 // -- DIPOLE D2
03ab2c93 565 // --- LHC optics v6.4
4663d63d 566 zd2 = 12147.6;
567
568 // -- GAP (VACUUM WITH MAGNETIC FIELD)
4663d63d 569 tubpar[0] = 0.;
570 tubpar[1] = 7.5/2.;
571 tubpar[2] = 945./2.;
572 gMC->Gsvolu("MD2 ", "TUBE", idtmed[11], tubpar, 3);
573
574 // -- YOKE
4663d63d 575 tubpar[0] = 0.;
576 tubpar[1] = 55.;
577 tubpar[2] = 945./2.;
578 gMC->Gsvolu("YD2 ", "TUBE", idtmed[7], tubpar, 3);
579
bc7e1cd6 580 gMC->Gspos("YD2 ", 1, "ZDC ", 0., 0., -tubpar[2]-zd2, 0, "ONLY");
4663d63d 581
582 gMC->Gspos("MD2 ", 1, "YD2 ", -9.4, 0., 0., 0, "ONLY");
583 gMC->Gspos("MD2 ", 2, "YD2 ", 9.4, 0., 0., 0, "ONLY");
584
585 // -- END OF MAGNET DEFINITION
586}
587
588//_____________________________________________________________________________
589void AliZDCv2::CreateZDC()
590{
c6937a87 591 //
592 // Create the various ZDCs (ZN + ZP)
593 //
4663d63d 594
c6937a87 595 Float_t dimPb[6], dimVoid[6];
4663d63d 596
597 Int_t *idtmed = fIdtmed->GetArray();
598
599 // Parameters for hadronic calorimeters geometry
600 // NB -> parameters used ONLY in CreateZDC()
4663d63d 601 Float_t fGrvZN[3] = {0.03, 0.03, 50.}; // Grooves for neutron detector
602 Float_t fGrvZP[3] = {0.04, 0.04, 75.}; // Grooves for proton detector
603 Int_t fDivZN[3] = {11, 11, 0}; // Division for neutron detector
604 Int_t fDivZP[3] = {7, 15, 0}; // Division for proton detector
605 Int_t fTowZN[2] = {2, 2}; // Tower for neutron detector
606 Int_t fTowZP[2] = {4, 1}; // Tower for proton detector
607
608 // Parameters for EM calorimeter geometry
609 // NB -> parameters used ONLY in CreateZDC()
7169b3db 610 Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice
611 Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding)
4663d63d 612 Int_t fDivZEM[3] = {92, 0, 20}; // Divisions for EM detector
7169b3db 613 Float_t fDimZEM[6] = {fZEMLength, 3.5, 3.5, 45., 0., 0.}; // Dimensions of EM detector
614 Float_t fFibZEM2 = fDimZEM[2]/TMath::Sin(fDimZEM[3]*kDegrad)-kFibRadZEM;
4663d63d 615 Float_t fFibZEM[3] = {0., 0.0275, fFibZEM2}; // Fibers for EM calorimeter
616
617
618 //-- Create calorimeters geometry
619
620 // -------------------------------------------------------------------------------
621 //--> Neutron calorimeter (ZN)
622
623 gMC->Gsvolu("ZNEU", "BOX ", idtmed[1], fDimZN, 3); // Passive material
624 gMC->Gsvolu("ZNF1", "TUBE", idtmed[3], fFibZN, 3); // Active material
625 gMC->Gsvolu("ZNF2", "TUBE", idtmed[4], fFibZN, 3);
626 gMC->Gsvolu("ZNF3", "TUBE", idtmed[4], fFibZN, 3);
627 gMC->Gsvolu("ZNF4", "TUBE", idtmed[3], fFibZN, 3);
628 gMC->Gsvolu("ZNG1", "BOX ", idtmed[12], fGrvZN, 3); // Empty grooves
629 gMC->Gsvolu("ZNG2", "BOX ", idtmed[12], fGrvZN, 3);
630 gMC->Gsvolu("ZNG3", "BOX ", idtmed[12], fGrvZN, 3);
631 gMC->Gsvolu("ZNG4", "BOX ", idtmed[12], fGrvZN, 3);
632
633 // Divide ZNEU in towers (for hits purposes)
634
635 gMC->Gsdvn("ZNTX", "ZNEU", fTowZN[0], 1); // x-tower
636 gMC->Gsdvn("ZN1 ", "ZNTX", fTowZN[1], 2); // y-tower
637
638 //-- Divide ZN1 in minitowers
639 // fDivZN[0]= NUMBER OF FIBERS PER TOWER ALONG X-AXIS,
640 // fDivZN[1]= NUMBER OF FIBERS PER TOWER ALONG Y-AXIS
641 // (4 fibres per minitower)
642
643 gMC->Gsdvn("ZNSL", "ZN1 ", fDivZN[1], 2); // Slices
644 gMC->Gsdvn("ZNST", "ZNSL", fDivZN[0], 1); // Sticks
645
646 // --- Position the empty grooves in the sticks (4 grooves per stick)
647 Float_t dx = fDimZN[0] / fDivZN[0] / 4.;
648 Float_t dy = fDimZN[1] / fDivZN[1] / 4.;
649
650 gMC->Gspos("ZNG1", 1, "ZNST", 0.-dx, 0.+dy, 0., 0, "ONLY");
651 gMC->Gspos("ZNG2", 1, "ZNST", 0.+dx, 0.+dy, 0., 0, "ONLY");
652 gMC->Gspos("ZNG3", 1, "ZNST", 0.-dx, 0.-dy, 0., 0, "ONLY");
653 gMC->Gspos("ZNG4", 1, "ZNST", 0.+dx, 0.-dy, 0., 0, "ONLY");
654
655 // --- Position the fibers in the grooves
656 gMC->Gspos("ZNF1", 1, "ZNG1", 0., 0., 0., 0, "ONLY");
657 gMC->Gspos("ZNF2", 1, "ZNG2", 0., 0., 0., 0, "ONLY");
658 gMC->Gspos("ZNF3", 1, "ZNG3", 0., 0., 0., 0, "ONLY");
659 gMC->Gspos("ZNF4", 1, "ZNG4", 0., 0., 0., 0, "ONLY");
660
661 // --- Position the neutron calorimeter in ZDC
f05df11a 662 // -- Rotation of ZDCs
663 Int_t irotzdc;
664 gMC->Matrix(irotzdc, 90., 180., 90., 90., 180., 0.);
665 //
666 gMC->Gspos("ZNEU", 1, "ZDC ", fPosZN[0], fPosZN[1], fPosZN[2]-fDimZN[2], irotzdc, "ONLY");
bc7e1cd6 667 //Ch debug
668 //printf("\n ZN -> %f < z < %f cm\n",fPosZN[2],fPosZN[2]-2*fDimZN[2]);
4663d63d 669
670 // -------------------------------------------------------------------------------
671 //--> Proton calorimeter (ZP)
672
673 gMC->Gsvolu("ZPRO", "BOX ", idtmed[2], fDimZP, 3); // Passive material
674 gMC->Gsvolu("ZPF1", "TUBE", idtmed[3], fFibZP, 3); // Active material
675 gMC->Gsvolu("ZPF2", "TUBE", idtmed[4], fFibZP, 3);
676 gMC->Gsvolu("ZPF3", "TUBE", idtmed[4], fFibZP, 3);
677 gMC->Gsvolu("ZPF4", "TUBE", idtmed[3], fFibZP, 3);
678 gMC->Gsvolu("ZPG1", "BOX ", idtmed[12], fGrvZP, 3); // Empty grooves
679 gMC->Gsvolu("ZPG2", "BOX ", idtmed[12], fGrvZP, 3);
680 gMC->Gsvolu("ZPG3", "BOX ", idtmed[12], fGrvZP, 3);
681 gMC->Gsvolu("ZPG4", "BOX ", idtmed[12], fGrvZP, 3);
682
683 //-- Divide ZPRO in towers(for hits purposes)
684
685 gMC->Gsdvn("ZPTX", "ZPRO", fTowZP[0], 1); // x-tower
686 gMC->Gsdvn("ZP1 ", "ZPTX", fTowZP[1], 2); // y-tower
687
688
689 //-- Divide ZP1 in minitowers
690 // fDivZP[0]= NUMBER OF FIBERS ALONG X-AXIS PER MINITOWER,
691 // fDivZP[1]= NUMBER OF FIBERS ALONG Y-AXIS PER MINITOWER
692 // (4 fiber per minitower)
693
694 gMC->Gsdvn("ZPSL", "ZP1 ", fDivZP[1], 2); // Slices
695 gMC->Gsdvn("ZPST", "ZPSL", fDivZP[0], 1); // Sticks
696
697 // --- Position the empty grooves in the sticks (4 grooves per stick)
698 dx = fDimZP[0] / fTowZP[0] / fDivZP[0] / 2.;
699 dy = fDimZP[1] / fTowZP[1] / fDivZP[1] / 2.;
700
701 gMC->Gspos("ZPG1", 1, "ZPST", 0.-dx, 0.+dy, 0., 0, "ONLY");
702 gMC->Gspos("ZPG2", 1, "ZPST", 0.+dx, 0.+dy, 0., 0, "ONLY");
703 gMC->Gspos("ZPG3", 1, "ZPST", 0.-dx, 0.-dy, 0., 0, "ONLY");
704 gMC->Gspos("ZPG4", 1, "ZPST", 0.+dx, 0.-dy, 0., 0, "ONLY");
705
706 // --- Position the fibers in the grooves
707 gMC->Gspos("ZPF1", 1, "ZPG1", 0., 0., 0., 0, "ONLY");
708 gMC->Gspos("ZPF2", 1, "ZPG2", 0., 0., 0., 0, "ONLY");
709 gMC->Gspos("ZPF3", 1, "ZPG3", 0., 0., 0., 0, "ONLY");
710 gMC->Gspos("ZPF4", 1, "ZPG4", 0., 0., 0., 0, "ONLY");
711
712
713 // --- Position the proton calorimeter in ZDC
f05df11a 714 gMC->Gspos("ZPRO", 1, "ZDC ", fPosZP[0], fPosZP[1], fPosZP[2]-fDimZP[2], irotzdc, "ONLY");
bc7e1cd6 715 //Ch debug
716 //printf("\n ZP -> %f < z < %f cm\n",fPosZP[2],fPosZP[2]-2*fDimZP[2]);
4663d63d 717
718
719 // -------------------------------------------------------------------------------
720 // -> EM calorimeter (ZEM)
721
722 gMC->Gsvolu("ZEM ", "PARA", idtmed[10], fDimZEM, 6);
723
724 Int_t irot1, irot2;
c0f15647 725 gMC->Matrix(irot1,0.,0.,90.,90.,-90.,0.); // Rotation matrix 1
4663d63d 726 gMC->Matrix(irot2,180.,0.,90.,fDimZEM[3]+90.,90.,fDimZEM[3]);// Rotation matrix 2
c0f15647 727 //printf("irot1 = %d, irot2 = %d \n", irot1, irot2);
4663d63d 728
c0f15647 729 gMC->Gsvolu("ZEMF", "TUBE", idtmed[3], fFibZEM, 3); // Active material
4663d63d 730
c0f15647 731 gMC->Gsdvn("ZETR", "ZEM ", fDivZEM[2], 1); // Tranches
4663d63d 732
7169b3db 733 dimPb[0] = kDimZEMPb; // Lead slices
c6937a87 734 dimPb[1] = fDimZEM[2];
735 dimPb[2] = fDimZEM[1];
bc7e1cd6 736 //dimPb[3] = fDimZEM[3]; //controllare
737 dimPb[3] = 90.-fDimZEM[3]; //originale
c6937a87 738 dimPb[4] = 0.;
739 dimPb[5] = 0.;
740 gMC->Gsvolu("ZEL0", "PARA", idtmed[5], dimPb, 6);
741 gMC->Gsvolu("ZEL1", "PARA", idtmed[5], dimPb, 6);
bc7e1cd6 742 gMC->Gsvolu("ZEL2", "PARA", idtmed[5], dimPb, 6);
4663d63d 743
744 // --- Position the lead slices in the tranche
745 Float_t zTran = fDimZEM[0]/fDivZEM[2];
7169b3db 746 Float_t zTrPb = -zTran+kDimZEMPb;
4663d63d 747 gMC->Gspos("ZEL0", 1, "ZETR", zTrPb, 0., 0., 0, "ONLY");
7169b3db 748 gMC->Gspos("ZEL1", 1, "ZETR", kDimZEMPb, 0., 0., 0, "ONLY");
4663d63d 749
750 // --- Vacuum zone (to be filled with fibres)
7169b3db 751 dimVoid[0] = (zTran-2*kDimZEMPb)/2.;
c6937a87 752 dimVoid[1] = fDimZEM[2];
753 dimVoid[2] = fDimZEM[1];
754 dimVoid[3] = 90.-fDimZEM[3];
755 dimVoid[4] = 0.;
756 dimVoid[5] = 0.;
757 gMC->Gsvolu("ZEV0", "PARA", idtmed[10], dimVoid,6);
758 gMC->Gsvolu("ZEV1", "PARA", idtmed[10], dimVoid,6);
4663d63d 759
760 // --- Divide the vacuum slice into sticks along x axis
761 gMC->Gsdvn("ZES0", "ZEV0", fDivZEM[0], 3);
762 gMC->Gsdvn("ZES1", "ZEV1", fDivZEM[0], 3);
763
764 // --- Positioning the fibers into the sticks
765 gMC->Gspos("ZEMF", 1,"ZES0", 0., 0., 0., irot2, "ONLY");
766 gMC->Gspos("ZEMF", 1,"ZES1", 0., 0., 0., irot2, "ONLY");
767
768 // --- Positioning the vacuum slice into the tranche
c6937a87 769 Float_t displFib = fDimZEM[1]/fDivZEM[0];
770 gMC->Gspos("ZEV0", 1,"ZETR", -dimVoid[0], 0., 0., 0, "ONLY");
771 gMC->Gspos("ZEV1", 1,"ZETR", -dimVoid[0]+zTran, 0., displFib, 0, "ONLY");
4663d63d 772
773 // --- Positioning the ZEM into the ZDC - rotation for 90 degrees
c63eb7ab 774 // NB -> In AliZDCv2 ZEM is positioned in ALIC (instead of in ZDC) volume
775 // beacause it's impossible to make a ZDC pcon volume to contain
59ec6db4 776 // both hadronics and EM calorimeters.
bc7e1cd6 777 gMC->Gspos("ZEM ", 1,"ALIC", -fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY");
4663d63d 778
410749b4 779 // Second EM ZDC (same side w.r.t. IP, just on the other side w.r.t. beam pipe)
bc7e1cd6 780 gMC->Gspos("ZEM ", 2,"ALIC", fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY");
410749b4 781
4663d63d 782 // --- Adding last slice at the end of the EM calorimeter
7169b3db 783 Float_t zLastSlice = fPosZEM[2]+kDimZEMPb+2*fDimZEM[0];
bc7e1cd6 784 gMC->Gspos("ZEL2", 1,"ALIC", fPosZEM[0], fPosZEM[1], zLastSlice, irot1, "ONLY");
785 //Ch debug
786 //printf("\n ZEM lenght = %f cm\n",2*fZEMLength);
7169b3db 787 //printf("\n ZEM -> %f < z < %f cm\n",fPosZEM[2],fPosZEM[2]+2*fZEMLength+zLastSlice+kDimZEMPb);
4663d63d 788
789}
790
791//_____________________________________________________________________________
c6937a87 792void AliZDCv2::DrawModule() const
4663d63d 793{
794 //
795 // Draw a shaded view of the Zero Degree Calorimeter version 1
796 //
797
798 // Set everything unseen
799 gMC->Gsatt("*", "seen", -1);
800 //
801 // Set ALIC mother transparent
802 gMC->Gsatt("ALIC","SEEN",0);
803 //
804 // Set the volumes visible
805 gMC->Gsatt("ZDC ","SEEN",0);
806 gMC->Gsatt("QT01","SEEN",1);
807 gMC->Gsatt("QT02","SEEN",1);
808 gMC->Gsatt("QT03","SEEN",1);
809 gMC->Gsatt("QT04","SEEN",1);
810 gMC->Gsatt("QT05","SEEN",1);
811 gMC->Gsatt("QT06","SEEN",1);
812 gMC->Gsatt("QT07","SEEN",1);
813 gMC->Gsatt("QT08","SEEN",1);
814 gMC->Gsatt("QT09","SEEN",1);
815 gMC->Gsatt("QT10","SEEN",1);
816 gMC->Gsatt("QT11","SEEN",1);
817 gMC->Gsatt("QT12","SEEN",1);
818 gMC->Gsatt("QT13","SEEN",1);
819 gMC->Gsatt("QT14","SEEN",1);
820 gMC->Gsatt("QT15","SEEN",1);
821 gMC->Gsatt("QT16","SEEN",1);
822 gMC->Gsatt("QT17","SEEN",1);
823 gMC->Gsatt("QT18","SEEN",1);
824 gMC->Gsatt("QC01","SEEN",1);
825 gMC->Gsatt("QC02","SEEN",1);
826 gMC->Gsatt("QC03","SEEN",1);
827 gMC->Gsatt("QC04","SEEN",1);
828 gMC->Gsatt("QC05","SEEN",1);
829 gMC->Gsatt("QTD1","SEEN",1);
830 gMC->Gsatt("QTD2","SEEN",1);
831 gMC->Gsatt("QTD3","SEEN",1);
832 gMC->Gsatt("MQXL","SEEN",1);
833 gMC->Gsatt("YMQL","SEEN",1);
834 gMC->Gsatt("MQX ","SEEN",1);
835 gMC->Gsatt("YMQ ","SEEN",1);
836 gMC->Gsatt("ZQYX","SEEN",1);
837 gMC->Gsatt("MD1 ","SEEN",1);
838 gMC->Gsatt("MD1V","SEEN",1);
839 gMC->Gsatt("YD1 ","SEEN",1);
840 gMC->Gsatt("MD2 ","SEEN",1);
841 gMC->Gsatt("YD2 ","SEEN",1);
842 gMC->Gsatt("ZNEU","SEEN",0);
843 gMC->Gsatt("ZNF1","SEEN",0);
844 gMC->Gsatt("ZNF2","SEEN",0);
845 gMC->Gsatt("ZNF3","SEEN",0);
846 gMC->Gsatt("ZNF4","SEEN",0);
847 gMC->Gsatt("ZNG1","SEEN",0);
848 gMC->Gsatt("ZNG2","SEEN",0);
849 gMC->Gsatt("ZNG3","SEEN",0);
850 gMC->Gsatt("ZNG4","SEEN",0);
851 gMC->Gsatt("ZNTX","SEEN",0);
852 gMC->Gsatt("ZN1 ","COLO",4);
853 gMC->Gsatt("ZN1 ","SEEN",1);
854 gMC->Gsatt("ZNSL","SEEN",0);
855 gMC->Gsatt("ZNST","SEEN",0);
856 gMC->Gsatt("ZPRO","SEEN",0);
857 gMC->Gsatt("ZPF1","SEEN",0);
858 gMC->Gsatt("ZPF2","SEEN",0);
859 gMC->Gsatt("ZPF3","SEEN",0);
860 gMC->Gsatt("ZPF4","SEEN",0);
861 gMC->Gsatt("ZPG1","SEEN",0);
862 gMC->Gsatt("ZPG2","SEEN",0);
863 gMC->Gsatt("ZPG3","SEEN",0);
864 gMC->Gsatt("ZPG4","SEEN",0);
865 gMC->Gsatt("ZPTX","SEEN",0);
866 gMC->Gsatt("ZP1 ","COLO",6);
867 gMC->Gsatt("ZP1 ","SEEN",1);
868 gMC->Gsatt("ZPSL","SEEN",0);
869 gMC->Gsatt("ZPST","SEEN",0);
870 gMC->Gsatt("ZEM ","COLO",7);
871 gMC->Gsatt("ZEM ","SEEN",1);
872 gMC->Gsatt("ZEMF","SEEN",0);
873 gMC->Gsatt("ZETR","SEEN",0);
874 gMC->Gsatt("ZEL0","SEEN",0);
875 gMC->Gsatt("ZEL1","SEEN",0);
876 gMC->Gsatt("ZEL2","SEEN",0);
877 gMC->Gsatt("ZEV0","SEEN",0);
878 gMC->Gsatt("ZEV1","SEEN",0);
879 gMC->Gsatt("ZES0","SEEN",0);
880 gMC->Gsatt("ZES1","SEEN",0);
881
882 //
883 gMC->Gdopt("hide", "on");
884 gMC->Gdopt("shad", "on");
885 gMC->Gsatt("*", "fill", 7);
886 gMC->SetClipBox(".");
887 gMC->SetClipBox("*", 0, 100, -100, 100, 12000, 16000);
888 gMC->DefaultRange();
889 gMC->Gdraw("alic", 40, 30, 0, 488, 220, .07, .07);
890 gMC->Gdhead(1111, "Zero Degree Calorimeter Version 1");
891 gMC->Gdman(18, 4, "MAN");
892}
893
894//_____________________________________________________________________________
895void AliZDCv2::CreateMaterials()
896{
897 //
898 // Create Materials for the Zero Degree Calorimeter
899 //
900
1e064588 901 Float_t dens, ubuf[1], wmat[2], a[2], z[2];
4663d63d 902
903 // --- Store in UBUF r0 for nuclear radius calculation R=r0*A**1/3
904
905 // --- Tantalum -> ZN passive material
906 ubuf[0] = 1.1;
907 AliMaterial(1, "TANT", 180.95, 73., 16.65, .4, 11.9, ubuf, 1);
908
909 // --- Tungsten
910// ubuf[0] = 1.11;
911// AliMaterial(1, "TUNG", 183.85, 74., 19.3, .35, 10.3, ubuf, 1);
912
913 // --- Brass (CuZn) -> ZP passive material
914 dens = 8.48;
915 a[0] = 63.546;
916 a[1] = 65.39;
917 z[0] = 29.;
918 z[1] = 30.;
919 wmat[0] = .63;
920 wmat[1] = .37;
921 AliMixture(2, "BRASS ", a, z, dens, 2, wmat);
922
923 // --- SiO2
924 dens = 2.64;
925 a[0] = 28.086;
926 a[1] = 15.9994;
927 z[0] = 14.;
928 z[1] = 8.;
929 wmat[0] = 1.;
930 wmat[1] = 2.;
931 AliMixture(3, "SIO2 ", a, z, dens, -2, wmat);
932
933 // --- Lead
934 ubuf[0] = 1.12;
935 AliMaterial(5, "LEAD", 207.19, 82., 11.35, .56, 18.5, ubuf, 1);
936
937 // --- Copper
938 ubuf[0] = 1.10;
939 AliMaterial(6, "COPP", 63.54, 29., 8.96, 1.4, 0., ubuf, 1);
940
941 // --- Iron (energy loss taken into account)
942 ubuf[0] = 1.1;
4a9de4af 943 AliMaterial(7, "IRON0", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
4663d63d 944
945 // --- Iron (no energy loss)
946 ubuf[0] = 1.1;
4a9de4af 947 AliMaterial(8, "IRON1", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
3e3ba835 948 AliMaterial(13, "IRON2", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
4663d63d 949
1e064588 950 // ---------------------------------------------------------
951 Float_t aResGas[3]={1.008,12.0107,15.9994};
952 Float_t zResGas[3]={1.,6.,8.};
953 Float_t wResGas[3]={0.28,0.28,0.44};
954 Float_t dResGas = 3.2E-14;
955
4663d63d 956 // --- Vacuum (no magnetic field)
1e064588 957 AliMixture(10, "VOID", aResGas, zResGas, dResGas, 3, wResGas);
958 //AliMaterial(10, "VOID", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0);
4663d63d 959
960 // --- Vacuum (with magnetic field)
1e064588 961 AliMixture(11, "VOIM", aResGas, zResGas, dResGas, 3, wResGas);
962 //AliMaterial(11, "VOIM", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0);
4663d63d 963
964 // --- Air (no magnetic field)
1e064588 965 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
966 Float_t zAir[4]={6.,7.,8.,18.};
967 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
968 Float_t dAir = 1.20479E-3;
969 //
970 AliMixture(12, "Air $", aAir, zAir, dAir, 4, wAir);
971 //AliMaterial(12, "Air $", 14.61, 7.3, .001205, 30420., 67500., ubuf, 0);
4663d63d 972
973 // --- Definition of tracking media:
974
975 // --- Tantalum = 1 ;
976 // --- Brass = 2 ;
977 // --- Fibers (SiO2) = 3 ;
978 // --- Fibers (SiO2) = 4 ;
979 // --- Lead = 5 ;
980 // --- Copper = 6 ;
981 // --- Iron (with energy loss) = 7 ;
982 // --- Iron (without energy loss) = 8 ;
983 // --- Vacuum (no field) = 10
984 // --- Vacuum (with field) = 11
985 // --- Air (no field) = 12
986
1e064588 987 // ****************************************************
988 // Tracking media parameters
989 //
990 Float_t epsil = 0.01; // Tracking precision,
991 Float_t stmin = 0.01; // Min. value 4 max. step (cm)
992 Float_t stemax = 1.; // Max. step permitted (cm)
993 Float_t tmaxfd = 0.; // Maximum angle due to field (degrees)
994 Float_t deemax = -1.; // Maximum fractional energy loss
995 Float_t nofieldm = 0.; // Max. field value (no field)
996 Float_t fieldm = 45.; // Max. field value (with field)
997 Int_t isvol = 0; // ISVOL =0 -> not sensitive volume
998 Int_t isvolActive = 1; // ISVOL =1 -> sensitive volume
999 Int_t inofld = 0; // IFIELD=0 -> no magnetic field
1000 Int_t ifield =2; // IFIELD=2 -> magnetic field defined in AliMagFC.h
1001 // *****************************************************
1002
1003 AliMedium(1, "ZTANT", 1, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1004 AliMedium(2, "ZBRASS",2, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1005 AliMedium(3, "ZSIO2", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1006 AliMedium(4, "ZQUAR", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1007 AliMedium(5, "ZLEAD", 5, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1008 AliMedium(6, "ZCOPP", 6, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1009 AliMedium(7, "ZIRON", 7, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1010 AliMedium(8, "ZIRONN",8, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1011 AliMedium(10,"ZVOID",10, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1012 AliMedium(12,"ZAIR", 12, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
1013 //
3e3ba835 1014 AliMedium(11,"ZVOIM", 11, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin);
ad962736 1015 AliMedium(13,"ZIRONE",13, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin);
1016}
1017
1018//_____________________________________________________________________________
1019void AliZDCv2::AddAlignableVolumes() const
1020{
1021 //
1022 // Create entries for alignable volumes associating the symbolic volume
1023 // name with the corresponding volume path. Needs to be syncronized with
1024 // eventual changes in the geometry.
1025 //
1026 TString volpath1 = "ALIC_1/ZDC_1/ZNEU_1";
1027 TString volpath2 = "ALIC_1/ZDC_1/ZPRO_1";
1028
1029 TString symname1="ZDC/NeutronZDC";
1030 TString symname2="ZDC/ProtonZDC";
1031
1032 if(!gGeoManager->SetAlignableEntry(symname1.Data(),volpath1.Data()))
1033 AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname1.Data(),volpath1.Data()));
1034
1035 if(!gGeoManager->SetAlignableEntry(symname2.Data(),volpath2.Data()))
1036 AliFatal(Form("Alignable entry %s not created. Volume path %s not valid", symname2.Data(),volpath2.Data()));
1037}
1038
1039//_____________________________________________________________________________
1040void AliZDCv2::Init()
1041{
1042 InitTables();
1043 Int_t *idtmed = fIdtmed->GetArray();
1044 Int_t i;
4663d63d 1045 // Thresholds for showering in the ZDCs
1046 i = 1; //tantalum
1047 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
1048 gMC->Gstpar(idtmed[i], "CUTELE", .001);
1049 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
1050 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
1051 i = 2; //brass
1052 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
1053 gMC->Gstpar(idtmed[i], "CUTELE", .001);
1054 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
1055 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
1056 i = 5; //lead
1057 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
1058 gMC->Gstpar(idtmed[i], "CUTELE", .001);
1059 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
1060 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
1061
1062 // Avoid too detailed showering in TDI
1063 i = 6; //copper
1064 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
1065 gMC->Gstpar(idtmed[i], "CUTELE", .1);
1066 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1067 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
1068
1069 // Avoid too detailed showering along the beam line
1070 i = 7; //iron with energy loss (ZIRON)
1071 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
1072 gMC->Gstpar(idtmed[i], "CUTELE", .1);
1073 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1074 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
1075
1076 // Avoid too detailed showering along the beam line
1077 i = 8; //iron with energy loss (ZIRONN)
1078 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
1079 gMC->Gstpar(idtmed[i], "CUTELE", .1);
1080 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1081 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
3e3ba835 1082 // Avoid too detailed showering along the beam line
1083 i = 13; //iron with energy loss (ZIRONN)
1084 gMC->Gstpar(idtmed[i], "CUTGAM", 1.);
1085 gMC->Gstpar(idtmed[i], "CUTELE", 1.);
1086 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
1087 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
4663d63d 1088
1089 // Avoid interaction in fibers (only energy loss allowed)
1090 i = 3; //fibers (ZSI02)
1091 gMC->Gstpar(idtmed[i], "DCAY", 0.);
1092 gMC->Gstpar(idtmed[i], "MULS", 0.);
1093 gMC->Gstpar(idtmed[i], "PFIS", 0.);
1094 gMC->Gstpar(idtmed[i], "MUNU", 0.);
1095 gMC->Gstpar(idtmed[i], "LOSS", 1.);
1096 gMC->Gstpar(idtmed[i], "PHOT", 0.);
1097 gMC->Gstpar(idtmed[i], "COMP", 0.);
1098 gMC->Gstpar(idtmed[i], "PAIR", 0.);
1099 gMC->Gstpar(idtmed[i], "BREM", 0.);
1100 gMC->Gstpar(idtmed[i], "DRAY", 0.);
1101 gMC->Gstpar(idtmed[i], "ANNI", 0.);
1102 gMC->Gstpar(idtmed[i], "HADR", 0.);
1103 i = 4; //fibers (ZQUAR)
1104 gMC->Gstpar(idtmed[i], "DCAY", 0.);
1105 gMC->Gstpar(idtmed[i], "MULS", 0.);
1106 gMC->Gstpar(idtmed[i], "PFIS", 0.);
1107 gMC->Gstpar(idtmed[i], "MUNU", 0.);
1108 gMC->Gstpar(idtmed[i], "LOSS", 1.);
1109 gMC->Gstpar(idtmed[i], "PHOT", 0.);
1110 gMC->Gstpar(idtmed[i], "COMP", 0.);
1111 gMC->Gstpar(idtmed[i], "PAIR", 0.);
1112 gMC->Gstpar(idtmed[i], "BREM", 0.);
1113 gMC->Gstpar(idtmed[i], "DRAY", 0.);
1114 gMC->Gstpar(idtmed[i], "ANNI", 0.);
1115 gMC->Gstpar(idtmed[i], "HADR", 0.);
1116
1117 // Avoid interaction in void
1118 i = 11; //void with field
1119 gMC->Gstpar(idtmed[i], "DCAY", 0.);
1120 gMC->Gstpar(idtmed[i], "MULS", 0.);
1121 gMC->Gstpar(idtmed[i], "PFIS", 0.);
1122 gMC->Gstpar(idtmed[i], "MUNU", 0.);
1123 gMC->Gstpar(idtmed[i], "LOSS", 0.);
1124 gMC->Gstpar(idtmed[i], "PHOT", 0.);
1125 gMC->Gstpar(idtmed[i], "COMP", 0.);
1126 gMC->Gstpar(idtmed[i], "PAIR", 0.);
1127 gMC->Gstpar(idtmed[i], "BREM", 0.);
1128 gMC->Gstpar(idtmed[i], "DRAY", 0.);
1129 gMC->Gstpar(idtmed[i], "ANNI", 0.);
1130 gMC->Gstpar(idtmed[i], "HADR", 0.);
1131
1132 //
1133 fMedSensZN = idtmed[1]; // Sensitive volume: ZN passive material
1134 fMedSensZP = idtmed[2]; // Sensitive volume: ZP passive material
1135 fMedSensF1 = idtmed[3]; // Sensitive volume: fibres type 1
1136 fMedSensF2 = idtmed[4]; // Sensitive volume: fibres type 2
1137 fMedSensZEM = idtmed[5]; // Sensitive volume: ZEM passive material
4700b983 1138 fMedSensTDI = idtmed[6]; // Sensitive volume: TDI Cu shield
1139 fMedSensPI = idtmed[7]; // Sensitive volume: beam pipes
2fcfe987 1140 fMedSensGR = idtmed[12]; // Sensitive volume: air into the grooves
4663d63d 1141}
1142
1143//_____________________________________________________________________________
1144void AliZDCv2::InitTables()
1145{
c6937a87 1146 //
1147 // Read light tables for Cerenkov light production parameterization
1148 //
1149
4663d63d 1150 Int_t k, j;
1151
1152 char *lightfName1,*lightfName2,*lightfName3,*lightfName4,
1153 *lightfName5,*lightfName6,*lightfName7,*lightfName8;
1154 FILE *fp1, *fp2, *fp3, *fp4, *fp5, *fp6, *fp7, *fp8;
1155
1156 // --- Reading light tables for ZN
5017788b 1157 lightfName1 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362207s");
4663d63d 1158 if((fp1 = fopen(lightfName1,"r")) == NULL){
1159 printf("Cannot open file fp1 \n");
1160 return;
1161 }
5017788b 1162 lightfName2 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362208s");
4663d63d 1163 if((fp2 = fopen(lightfName2,"r")) == NULL){
1164 printf("Cannot open file fp2 \n");
1165 return;
1166 }
5017788b 1167 lightfName3 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362209s");
4663d63d 1168 if((fp3 = fopen(lightfName3,"r")) == NULL){
1169 printf("Cannot open file fp3 \n");
1170 return;
1171 }
5017788b 1172 lightfName4 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620362210s");
4663d63d 1173 if((fp4 = fopen(lightfName4,"r")) == NULL){
1174 printf("Cannot open file fp4 \n");
1175 return;
1176 }
1177
1178 for(k=0; k<fNalfan; k++){
1179 for(j=0; j<fNben; j++){
1180 fscanf(fp1,"%f",&fTablen[0][k][j]);
1181 fscanf(fp2,"%f",&fTablen[1][k][j]);
1182 fscanf(fp3,"%f",&fTablen[2][k][j]);
1183 fscanf(fp4,"%f",&fTablen[3][k][j]);
1184 }
1185 }
1186 fclose(fp1);
1187 fclose(fp2);
1188 fclose(fp3);
1189 fclose(fp4);
1190
1191 // --- Reading light tables for ZP and ZEM
5017788b 1192 lightfName5 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552207s");
4663d63d 1193 if((fp5 = fopen(lightfName5,"r")) == NULL){
1194 printf("Cannot open file fp5 \n");
1195 return;
1196 }
5017788b 1197 lightfName6 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552208s");
4663d63d 1198 if((fp6 = fopen(lightfName6,"r")) == NULL){
1199 printf("Cannot open file fp6 \n");
1200 return;
1201 }
5017788b 1202 lightfName7 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552209s");
4663d63d 1203 if((fp7 = fopen(lightfName7,"r")) == NULL){
1204 printf("Cannot open file fp7 \n");
1205 return;
1206 }
5017788b 1207 lightfName8 = gSystem->ExpandPathName("$ALICE_ROOT/ZDC/light22620552210s");
4663d63d 1208 if((fp8 = fopen(lightfName8,"r")) == NULL){
1209 printf("Cannot open file fp8 \n");
1210 return;
1211 }
1212
1213 for(k=0; k<fNalfap; k++){
1214 for(j=0; j<fNbep; j++){
1215 fscanf(fp5,"%f",&fTablep[0][k][j]);
1216 fscanf(fp6,"%f",&fTablep[1][k][j]);
1217 fscanf(fp7,"%f",&fTablep[2][k][j]);
1218 fscanf(fp8,"%f",&fTablep[3][k][j]);
1219 }
1220 }
1221 fclose(fp5);
1222 fclose(fp6);
1223 fclose(fp7);
1224 fclose(fp8);
1225}
4663d63d 1226//_____________________________________________________________________________
1227void AliZDCv2::StepManager()
1228{
1229 //
1230 // Routine called at every step in the Zero Degree Calorimeters
1231 //
bc7e1cd6 1232
4663d63d 1233 Int_t j, vol[2], ibeta=0, ialfa, ibe, nphe;
f05df11a 1234 Float_t x[3], xdet[3], destep, hits[10], m, ekin, um[3], ud[3], be, out;
1235 //Float_t radius;
c6937a87 1236 Float_t xalic[3], z, guiEff, guiPar[4]={0.31,-0.0004,0.0197,0.7958};
6faa7b45 1237 Double_t s[3], p[4];
4663d63d 1238 const char *knamed;
1239
68826ad9 1240 for (j=0;j<10;j++) hits[j]=-999.;
bc7e1cd6 1241
4700b983 1242 // --- This part is for no shower developement in beam pipe and TDI
1243 // If particle interacts with beam pipe or TDI -> return
47708541 1244 if((gMC->CurrentMedium() == fMedSensPI) || (gMC->CurrentMedium() == fMedSensTDI)){
4700b983 1245 // If option NoShower is set -> StopTrack
1246 if(fNoShower==1) {
47708541 1247 if(gMC->CurrentMedium() == fMedSensPI) {
4700b983 1248 knamed = gMC->CurrentVolName();
1e064588 1249 if(!strncmp(knamed,"YMQ",3)) fpLostIT += 1;
68826ad9 1250 if(!strncmp(knamed,"YD1",3)) fpLostD1 += 1;
bc7e1cd6 1251 }
47708541 1252 else if(gMC->CurrentMedium() == fMedSensTDI){ // NB->Cu = TDI or D1 vacuum chamber
bc7e1cd6 1253 knamed = gMC->CurrentVolName();
bc7e1cd6 1254 if(!strncmp(knamed,"MD1",3)) fpLostD1 += 1;
1255 if(!strncmp(knamed,"QTD",3)) fpLostTDI += 1;
4700b983 1256 }
ee0c4fc1 1257 printf("\n # of spectators lost in IT = %d\n",fpLostIT);
1258 printf("\n # of spectators lost in D1 = %d\n",fpLostD1);
1259 printf("\n # of spectators lost in TDI = %d\n\n",fpLostTDI);
4700b983 1260 gMC->StopTrack();
4700b983 1261 }
1262 return;
1263 }
1264
47708541 1265 if((gMC->CurrentMedium() == fMedSensZN) || (gMC->CurrentMedium() == fMedSensZP) ||
1266 (gMC->CurrentMedium() == fMedSensGR) || (gMC->CurrentMedium() == fMedSensF1) ||
1267 (gMC->CurrentMedium() == fMedSensF2) || (gMC->CurrentMedium() == fMedSensZEM)){
8cc32cbc 1268
4663d63d 1269
1270 //Particle coordinates
6faa7b45 1271 gMC->TrackPosition(s[0],s[1],s[2]);
68826ad9 1272 for(j=0; j<=2; j++) x[j] = s[j];
4663d63d 1273 hits[0] = x[0];
1274 hits[1] = x[1];
1275 hits[2] = x[2];
1276
1277 // Determine in which ZDC the particle is
1278 knamed = gMC->CurrentVolName();
68826ad9 1279 if(!strncmp(knamed,"ZN",2)) vol[0]=1;
1280 else if(!strncmp(knamed,"ZP",2)) vol[0]=2;
1281 else if(!strncmp(knamed,"ZE",2)) vol[0]=3;
4663d63d 1282
1283 // Determine in which quadrant the particle is
8cc32cbc 1284 if(vol[0]==1){ //Quadrant in ZN
410749b4 1285 // Calculating particle coordinates inside ZN
4663d63d 1286 xdet[0] = x[0]-fPosZN[0];
1287 xdet[1] = x[1]-fPosZN[1];
410749b4 1288 // Calculating quadrant in ZN
1289 if(xdet[0]<=0.){
1290 if(xdet[1]>=0.) vol[1]=1;
1291 else if(xdet[1]<0.) vol[1]=3;
1292 }
1293 else if(xdet[0]>0.){
1294 if(xdet[1]>=0.) vol[1]=2;
1295 else if(xdet[1]<0.) vol[1]=4;
1296 }
1297 if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4))
6de91202 1298 printf("\n ZDC StepManager->ERROR in ZN!!! vol[1] = %d, xdet[0] = %f,"
410749b4 1299 "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]);
4663d63d 1300 }
410749b4 1301
8cc32cbc 1302 else if(vol[0]==2){ //Quadrant in ZP
410749b4 1303 // Calculating particle coordinates inside ZP
4663d63d 1304 xdet[0] = x[0]-fPosZP[0];
1305 xdet[1] = x[1]-fPosZP[1];
410749b4 1306 if(xdet[0]>=fDimZP[0]) xdet[0]=fDimZP[0]-0.01;
1307 if(xdet[0]<=-fDimZP[0]) xdet[0]=-fDimZP[0]+0.01;
1308 // Calculating tower in ZP
1309 Float_t xqZP = xdet[0]/(fDimZP[0]/2.);
4663d63d 1310 for(int i=1; i<=4; i++){
1311 if(xqZP>=(i-3) && xqZP<(i-2)){
1312 vol[1] = i;
1313 break;
1314 }
1315 }
410749b4 1316 if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4))
6de91202 1317 printf(" ZDC StepManager->ERROR in ZP!!! vol[1] = %d, xdet[0] = %f,"
68826ad9 1318 "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]);
4663d63d 1319 }
410749b4 1320
1321 // Quadrant in ZEM: vol[1] = 1 -> particle in 1st ZEM (placed at x = 8.5 cm)
1322 // vol[1] = 2 -> particle in 2nd ZEM (placed at x = -8.5 cm)
1323 else if(vol[0] == 3){
1324 if(x[0]>0.){
1325 vol[1] = 1;
1326 // Particle x-coordinate inside ZEM1
1327 xdet[0] = x[0]-fPosZEM[0];
1328 }
1329 else{
1330 vol[1] = 2;
1331 // Particle x-coordinate inside ZEM2
1332 xdet[0] = x[0]+fPosZEM[0];
1333 }
4663d63d 1334 xdet[1] = x[1]-fPosZEM[1];
1335 }
1336
1337 // Store impact point and kinetic energy of the ENTERING particle
1338
4663d63d 1339 if(gMC->IsTrackEntering()){
1340 //Particle energy
6faa7b45 1341 gMC->TrackMomentum(p[0],p[1],p[2],p[3]);
4663d63d 1342 hits[3] = p[3];
1343 // Impact point on ZDC
1344 hits[4] = xdet[0];
1345 hits[5] = xdet[1];
1346 hits[6] = 0;
1347 hits[7] = 0;
1348 hits[8] = 0;
1349 hits[9] = 0;
1350
5d12ce38 1351 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1352
1353 if(fNoShower==1){
63abc73a 1354 if(vol[0]==1) fnDetected += 1;
1355 else if(vol[0]==2) fpDetected += 1;
1356 printf("\n # of nucleons in ZN = %d",fnDetected);
1357 printf("\n # of nucleons in ZP = %d\n\n",fpDetected);
4663d63d 1358 gMC->StopTrack();
4663d63d 1359 return;
1360 }
1361 }
4663d63d 1362
1363 // Charged particles -> Energy loss
1364 if((destep=gMC->Edep())){
1365 if(gMC->IsTrackStop()){
6faa7b45 1366 gMC->TrackMomentum(p[0],p[1],p[2],p[3]);
4663d63d 1367 m = gMC->TrackMass();
1368 ekin = p[3]-m;
1369 hits[9] = ekin;
1370 hits[7] = 0.;
1371 hits[8] = 0.;
5d12ce38 1372 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1373 }
1374 else{
1375 hits[9] = destep;
1376 hits[7] = 0.;
1377 hits[8] = 0.;
5d12ce38 1378 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1379 }
4663d63d 1380 }
68826ad9 1381 }
4663d63d 1382
1383
1384 // *** Light production in fibres
47708541 1385 if((gMC->CurrentMedium() == fMedSensF1) || (gMC->CurrentMedium() == fMedSensF2)){
4663d63d 1386
1387 //Select charged particles
1388 if((destep=gMC->Edep())){
1389
1390 // Particle velocity
410749b4 1391 Float_t beta = 0.;
6faa7b45 1392 gMC->TrackMomentum(p[0],p[1],p[2],p[3]);
4663d63d 1393 Float_t ptot=TMath::Sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);
410749b4 1394 if(p[3] > 0.00001) beta = ptot/p[3];
1395 else return;
f05df11a 1396 if(beta<0.67)return;
1397 else if((beta>=0.67) && (beta<=0.75)) ibeta = 0;
1398 else if((beta>0.75) && (beta<=0.85)) ibeta = 1;
1399 else if((beta>0.85) && (beta<=0.95)) ibeta = 2;
1400 else if(beta>0.95) ibeta = 3;
4663d63d 1401
1402 // Angle between particle trajectory and fibre axis
1403 // 1 -> Momentum directions
1404 um[0] = p[0]/ptot;
1405 um[1] = p[1]/ptot;
1406 um[2] = p[2]/ptot;
1407 gMC->Gmtod(um,ud,2);
1408 // 2 -> Angle < limit angle
1409 Double_t alfar = TMath::ACos(ud[2]);
1410 Double_t alfa = alfar*kRaddeg;
1411 if(alfa>=110.) return;
f05df11a 1412 //
4663d63d 1413 ialfa = Int_t(1.+alfa/2.);
1414
1415 // Distance between particle trajectory and fibre axis
6faa7b45 1416 gMC->TrackPosition(s[0],s[1],s[2]);
4663d63d 1417 for(j=0; j<=2; j++){
1418 x[j] = s[j];
1419 }
1420 gMC->Gmtod(x,xdet,1);
1421 if(TMath::Abs(ud[0])>0.00001){
1422 Float_t dcoeff = ud[1]/ud[0];
1423 be = TMath::Abs((xdet[1]-dcoeff*xdet[0])/TMath::Sqrt(dcoeff*dcoeff+1.));
1424 }
1425 else{
1426 be = TMath::Abs(ud[0]);
1427 }
1428
4663d63d 1429 ibe = Int_t(be*1000.+1);
f05df11a 1430 //if((vol[0]==1)) radius = fFibZN[1];
1431 //else if((vol[0]==2)) radius = fFibZP[1];
4663d63d 1432
1433 //Looking into the light tables
1434 Float_t charge = gMC->TrackCharge();
1435
8cc32cbc 1436 if((vol[0]==1)) { // (1) ZN fibres
4663d63d 1437 if(ibe>fNben) ibe=fNben;
1438 out = charge*charge*fTablen[ibeta][ialfa][ibe];
1439 nphe = gRandom->Poisson(out);
f05df11a 1440 // Ch. debug
1441 //if(ibeta==3) printf("\t %f \t %f \t %f\n",alfa, be, out);
1442 //printf("\t ibeta = %d, ialfa = %d, ibe = %d -> nphe = %d\n\n",ibeta,ialfa,ibe,nphe);
47708541 1443 if(gMC->CurrentMedium() == fMedSensF1){
4663d63d 1444 hits[7] = nphe; //fLightPMQ
1445 hits[8] = 0;
1446 hits[9] = 0;
5d12ce38 1447 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1448 }
1449 else{
1450 hits[7] = 0;
1451 hits[8] = nphe; //fLightPMC
1452 hits[9] = 0;
5d12ce38 1453 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1454 }
1455 }
8cc32cbc 1456 else if((vol[0]==2)) { // (2) ZP fibres
4663d63d 1457 if(ibe>fNbep) ibe=fNbep;
1458 out = charge*charge*fTablep[ibeta][ialfa][ibe];
1459 nphe = gRandom->Poisson(out);
47708541 1460 if(gMC->CurrentMedium() == fMedSensF1){
4663d63d 1461 hits[7] = nphe; //fLightPMQ
1462 hits[8] = 0;
1463 hits[9] = 0;
5d12ce38 1464 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1465 }
1466 else{
1467 hits[7] = 0;
1468 hits[8] = nphe; //fLightPMC
1469 hits[9] = 0;
5d12ce38 1470 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
4663d63d 1471 }
1472 }
8cc32cbc 1473 else if((vol[0]==3)) { // (3) ZEM fibres
4663d63d 1474 if(ibe>fNbep) ibe=fNbep;
1475 out = charge*charge*fTablep[ibeta][ialfa][ibe];
6faa7b45 1476 gMC->TrackPosition(s[0],s[1],s[2]);
8cc32cbc 1477 for(j=0; j<=2; j++){
1478 xalic[j] = s[j];
1479 }
1480 // z-coordinate from ZEM front face
1481 // NB-> fPosZEM[2]+fZEMLength = -1000.+2*10.3 = 979.69 cm
1482 z = -xalic[2]+fPosZEM[2]+2*fZEMLength-xalic[1];
1483// z = xalic[2]-fPosZEM[2]-fZEMLength-xalic[1]*(TMath::Tan(45.*kDegrad));
1484// printf("\n fPosZEM[2]+2*fZEMLength = %f", fPosZEM[2]+2*fZEMLength);
c6937a87 1485 guiEff = guiPar[0]*(guiPar[1]*z*z+guiPar[2]*z+guiPar[3]);
c6937a87 1486 out = out*guiEff;
4663d63d 1487 nphe = gRandom->Poisson(out);
c6937a87 1488// printf(" out*guiEff = %f nphe = %d", out, nphe);
410749b4 1489 if(vol[1] == 1){
1490 hits[7] = 0;
1491 hits[8] = nphe; //fLightPMC (ZEM1)
1492 hits[9] = 0;
5d12ce38 1493 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
410749b4 1494 }
1495 else{
1496 hits[7] = nphe; //fLightPMQ (ZEM2)
1497 hits[8] = 0;
1498 hits[9] = 0;
5d12ce38 1499 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
410749b4 1500 }
4663d63d 1501 }
1502 }
1503 }
1504}