1st version of complete ZDC geometry
[u/mrichter/AliRoot.git] / ZDC / AliZDCv3.cxx
CommitLineData
8d433671 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16
17///////////////////////////////////////////////////////////////////////
18// //
19// AliZDCv3 --- new ZDC geometry //
20// with the both ZDC set geometry implemented //
21// //
22///////////////////////////////////////////////////////////////////////
23
24// --- Standard libraries
25#include "stdio.h"
26
27// --- ROOT system
28#include <TBRIK.h>
29#include <TLorentzVector.h>
30#include <TMath.h>
31#include <TNode.h>
32#include <TRandom.h>
33#include <TSystem.h>
34#include <TTree.h>
35#include <TVirtualMC.h>
36#include <TGeoManager.h>
37
38#include "/home/oppedisa/AliRoot/geant3/TGeant3/TGeant3.h"
39
40// --- AliRoot classes
41#include "AliConst.h"
42#include "AliMagF.h"
43#include "AliPDG.h"
44#include "AliRun.h"
45#include "AliZDCv3.h"
46#include "AliMC.h"
47
48class AliZDCHit;
49class AliPDG;
50class AliDetector;
51
52
53ClassImp(AliZDCv3)
54
55//_____________________________________________________________________________
56AliZDCv3::AliZDCv3() : AliZDC()
57{
58 //
59 // Default constructor for Zero Degree Calorimeter
60 //
61
62 fMedSensF1 = 0;
63 fMedSensF2 = 0;
64 fMedSensZN = 0;
65 fMedSensZP = 0;
66 fMedSensZEM = 0;
67 fMedSensGR = 0;
68
69}
70
71//_____________________________________________________________________________
72AliZDCv3::AliZDCv3(const char *name, const char *title)
73 : AliZDC(name,title)
74{
75 //
76 // Standard constructor for Zero Degree Calorimeter
77 //
78 //
79 // Check that DIPO, ABSO, DIPO and SHIL is there (otherwise tracking is wrong!!!)
80
81 AliModule* pipe=gAlice->GetModule("PIPE");
82 AliModule* abso=gAlice->GetModule("ABSO");
83 AliModule* dipo=gAlice->GetModule("DIPO");
84 AliModule* shil=gAlice->GetModule("SHIL");
85 if((!pipe) || (!abso) || (!dipo) || (!shil)) {
86 Error("Constructor","ZDC needs PIPE, ABSO, DIPO and SHIL!!!\n");
87 exit(1);
88 }
89
90 fMedSensF1 = 0;
91 fMedSensF2 = 0;
92 fMedSensZN = 0;
93 fMedSensZP = 0;
94 fMedSensZEM = 0;
95 fMedSensGR = 0;
96 fMedSensPI = 0;
97 fMedSensCu = 0;
98
99 // Parameters for light tables
100 fNalfan = 90; // Number of Alfa (neutrons)
101 fNalfap = 90; // Number of Alfa (protons)
102 fNben = 18; // Number of beta (neutrons)
103 fNbep = 28; // Number of beta (protons)
104 Int_t ip,jp,kp;
105 for(ip=0; ip<4; ip++){
106 for(kp=0; kp<fNalfap; kp++){
107 for(jp=0; jp<fNbep; jp++){
108 fTablep[ip][kp][jp] = 0;
109 }
110 }
111 }
112 Int_t in,jn,kn;
113 for(in=0; in<4; in++){
114 for(kn=0; kn<fNalfan; kn++){
115 for(jn=0; jn<fNben; jn++){
116 fTablen[in][kn][jn] = 0;
117 }
118 }
119 }
120
121 // Parameters for hadronic calorimeters geometry
122 fDimZN[0] = 3.52;
123 fDimZN[1] = 3.52;
124 fDimZN[2] = 50.;
125 fDimZP[0] = 11.2;
126 fDimZP[1] = 6.;
127 fDimZP[2] = 75.;
128 fPosZN1[0] = 0.;
129 fPosZN1[1] = 1.2;
130 fPosZN1[2] = -11650.;
131 fPosZP1[0] = 23.9;
132 fPosZP1[1] = 0.;
133 fPosZP1[2] = -11600.;
134 fPosZN2[0] = 0.;
135 fPosZN2[1] = 1.2;
136 fPosZN2[2] = 11620.;
137 fPosZP2[0] = 24.;
138 fPosZP2[1] = 0.;
139 fPosZP2[2] = 11620.;
140 fFibZN[0] = 0.;
141 fFibZN[1] = 0.01825;
142 fFibZN[2] = 50.;
143 fFibZP[0] = 0.;
144 fFibZP[1] = 0.0275;
145 fFibZP[2] = 75.;
146
147 // Parameters for EM calorimeter geometry
148 fPosZEM[0] = 8.5;
149 fPosZEM[1] = 0.;
150 fPosZEM[2] = 735.;
151
152 Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice
153 Float_t kDimZEMAir = 0.001; // scotch
154 Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding)
155 Int_t kDivZEM[3] = {92, 0, 20}; // Divisions for EM detector
156 Float_t kDimZEM0 = 2*kDivZEM[2]*(kDimZEMPb+kDimZEMAir+kFibRadZEM*(TMath::Sqrt(2.)));
157 fZEMLength = kDimZEM0;
158
159}
160
161//_____________________________________________________________________________
162void AliZDCv3::CreateGeometry()
163{
164 //
165 // Create the geometry for the Zero Degree Calorimeter version 2
166 //* Initialize COMMON block ZDC_CGEOM
167 //*
168
169 CreateBeamLine();
170 CreateZDC();
171}
172
173//_____________________________________________________________________________
174void AliZDCv3::CreateBeamLine()
175{
176 //
177 // Create the beam line elements
178 //
179
180 Float_t zc, zq, zd1, zd2, zql, zd2l;
181 Float_t conpar[9], tubpar[3], tubspar[5], boxpar[3];
182 Int_t im1, im2;
183
184 Int_t *idtmed = fIdtmed->GetArray();
185
186 ////////////////////////////////////////////////////////////////
187 // //
188 // SIDE C - RB26 (dimuon side) //
189 // //
190 ///////////////////////////////////////////////////////////////
191
192
193 // -- Mother of the ZDCs (Vacuum PCON)
194 zd1 = 1921.6;
195
196 conpar[0] = 0.;
197 conpar[1] = 360.;
198 conpar[2] = 2.;
199 conpar[3] = -13500.;
200 conpar[4] = 0.;
201 conpar[5] = 55.;
202 conpar[6] = -zd1;
203 conpar[7] = 0.;
204 conpar[8] = 55.;
205 gMC->Gsvolu("ZDC ", "PCON", idtmed[11], conpar, 9);
206 gMC->Gspos("ZDC ", 1, "ALIC", 0., 0., 0., 0, "ONLY");
207
208
209 // -- FIRST SECTION OF THE BEAM PIPE (from compensator dipole to
210 // the beginning of D1)
211 tubpar[0] = 6.3/2.;
212 tubpar[1] = 6.7/2.;
213 // From beginning of ZDC volumes to beginning of D1
214 tubpar[2] = (5838.3-zd1)/2.;
215 gMC->Gsvolu("QT01", "TUBE", idtmed[7], tubpar, 3);
216 gMC->Gspos("QT01", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
217 // Ch.debug
218 //printf("\n QT01 TUBE pipe from z = %f to z= %f (D1 beg.)\n",-zd1,-2*tubpar[2]-zd1);
219
220 //-- SECOND SECTION OF THE BEAM PIPE (from the end of D1 to the
221 // beginning of D2)
222
223 //-- FROM MAGNETIC BEGINNING OF D1 TO MAGNETIC END OF D1 + 13.5 cm
224 //-- Cylindrical pipe (r = 3.47) + conical flare
225
226 // -> Beginning of D1
227 zd1 += 2.*tubpar[2];
228
229 tubpar[0] = 3.47;
230 tubpar[1] = 3.47+0.2;
231 tubpar[2] = 958.5/2.;
232 gMC->Gsvolu("QT02", "TUBE", idtmed[7], tubpar, 3);
233 gMC->Gspos("QT02", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
234 // Ch.debug
235 //printf("\n QT02 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
236
237 zd1 += 2.*tubpar[2];
238
239 conpar[0] = 25./2.;
240 conpar[1] = 10./2.;
241 conpar[2] = 10.4/2.;
242 conpar[3] = 6.44/2.;
243 conpar[4] = 6.84/2.;
244 gMC->Gsvolu("QC01", "CONE", idtmed[7], conpar, 5);
245 gMC->Gspos("QC01", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
246 // Ch.debug
247 //printf("\n QC01 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
248
249 zd1 += 2.*conpar[0];
250
251 tubpar[0] = 10./2.;
252 tubpar[1] = 10.4/2.;
253 tubpar[2] = 50./2.;
254 gMC->Gsvolu("QT03", "TUBE", idtmed[7], tubpar, 3);
255 gMC->Gspos("QT03", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
256 // Ch.debug
257 //printf("\n QT03 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
258
259 zd1 += tubpar[2]*2.;
260
261 tubpar[0] = 10./2.;
262 tubpar[1] = 10.4/2.;
263 tubpar[2] = 10./2.;
264 gMC->Gsvolu("QT04", "TUBE", idtmed[7], tubpar, 3);
265 gMC->Gspos("QT04", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
266 // Ch.debug
267 //printf("\n QT04 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
268
269 zd1 += tubpar[2] * 2.;
270
271 tubpar[0] = 10./2.;
272 tubpar[1] = 10.4/2.;
273 tubpar[2] = 3.16/2.;
274 gMC->Gsvolu("QT05", "TUBE", idtmed[7], tubpar, 3);
275 gMC->Gspos("QT05", 1, "ZDC ", 0., 0., -tubpar[0]-zd1, 0, "ONLY");
276 // Ch.debug
277 //printf("\n QT05 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
278
279 zd1 += tubpar[2] * 2.;
280
281 tubpar[0] = 10.0/2.;
282 tubpar[1] = 10.4/2;
283 tubpar[2] = 190./2.;
284 gMC->Gsvolu("QT06", "TUBE", idtmed[7], tubpar, 3);
285 gMC->Gspos("QT06", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
286 // Ch.debug
287 //printf("\n QT06 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
288
289 zd1 += tubpar[2] * 2.;
290
291 conpar[0] = 30./2.;
292 conpar[1] = 20.6/2.;
293 conpar[2] = 21./2.;
294 conpar[3] = 10./2.;
295 conpar[4] = 10.4/2.;
296 gMC->Gsvolu("QC02", "CONE", idtmed[7], conpar, 5);
297 gMC->Gspos("QC02", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
298 // Ch.debug
299 //printf("\n QC02 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
300
301 zd1 += conpar[0] * 2.;
302
303 tubpar[0] = 20.6/2.;
304 tubpar[1] = 21./2.;
305 tubpar[2] = 450./2.;
306 gMC->Gsvolu("QT07", "TUBE", idtmed[7], tubpar, 3);
307 gMC->Gspos("QT07", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
308 // Ch.debug
309 //printf("\n QT07 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
310
311 zd1 += tubpar[2] * 2.;
312
313 conpar[0] = 13.6/2.;
314 conpar[1] = 25.4/2.;
315 conpar[2] = 25.8/2.;
316 conpar[3] = 20.6/2.;
317 conpar[4] = 21./2.;
318 gMC->Gsvolu("QC03", "CONE", idtmed[7], conpar, 5);
319 gMC->Gspos("QC03", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
320 // Ch.debug
321 //printf("\n QC03 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
322
323 zd1 += conpar[0] * 2.;
324
325 tubpar[0] = 25.4/2.;
326 tubpar[1] = 25.8/2.;
327 tubpar[2] = 205.8/2.;
328 gMC->Gsvolu("QT08", "TUBE", idtmed[7], tubpar, 3);
329 gMC->Gspos("QT08", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
330 // Ch.debug
331 //printf("\n QT08 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
332
333 zd1 += tubpar[2] * 2.;
334
335 tubpar[0] = 50./2.;
336 tubpar[1] = 50.4/2.;
337 // QT09 is 10 cm longer to accomodate TDI
338 tubpar[2] = 515.4/2.;
339 gMC->Gsvolu("QT09", "TUBE", idtmed[7], tubpar, 3);
340 gMC->Gspos("QT09", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
341 // Ch.debug
342 //printf("\n QT09 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
343
344 // The TDI has been moved to side C (RB24 side) where it is really placed
345/* // --- Insert TDI (inside ZDC volume)
346 boxpar[0] = 5.6;
347 boxpar[1] = 5.6;
348 boxpar[2] = 400./2.;
349 gMC->Gsvolu("QTD1", "BOX ", idtmed[7], boxpar, 3);
350 gMC->Gspos("QTD1", 1, "ZDC ", -3., 10.6, -tubpar[2]-zd1-56.3, 0, "ONLY");
351 gMC->Gspos("QTD1", 2, "ZDC ", -3., -10.6, -tubpar[2]-zd1-56.3, 0, "ONLY");
352
353 boxpar[0] = 0.2/2.;
354 boxpar[1] = 5.6;
355 boxpar[2] = 400./2.;
356 gMC->Gsvolu("QTD2", "BOX ", idtmed[6], boxpar, 3);
357 gMC->Gspos("QTD2", 1, "ZDC ", -8.6-boxpar[0], 0., -tubpar[2]-zd1-56.3, 0, "ONLY");
358
359 tubspar[0] = 10.5; // R = 10.5 cm------------------------------------------
360 tubspar[1] = 10.7;
361 tubspar[2] = 400./2.;
362 tubspar[3] = 360.-75.5;
363 tubspar[4] = 75.5;
364 gMC->Gsvolu("QTD3", "TUBS", idtmed[6], tubspar, 5);
365 gMC->Gspos("QTD3", 1, "ZDC ", 0., 0., -tubpar[2]-zd1-56.3, 0, "ONLY");
366 // Ch.debug
367 //printf("\n TDI volume from z = %f to z= %f\n",-tubpar[2]-zd1-56.3,-tubpar[2]-zd1-56.3-400.);
368*/
369 zd1 += tubpar[2] * 2.;
370
371 tubpar[0] = 50./2.;
372 tubpar[1] = 50.4/2.;
373 // QT10 is 10 cm shorter
374 tubpar[2] = 690./2.;
375 gMC->Gsvolu("QT10", "TUBE", idtmed[7], tubpar, 3);
376 gMC->Gspos("QT10", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
377 // Ch.debug
378 //printf("\n QT10 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
379
380 zd1 += tubpar[2] * 2.;
381
382 tubpar[0] = 50./2.;
383 tubpar[1] = 50.4/2.;
384 tubpar[2] = 778.5/2.;
385 gMC->Gsvolu("QT11", "TUBE", idtmed[7], tubpar, 3);
386 gMC->Gspos("QT11", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
387 // Ch.debug
388 //printf("\n QT11 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
389
390 zd1 += tubpar[2] * 2.;
391
392 conpar[0] = 14.18/2.;
393 conpar[1] = 55./2.;
394 conpar[2] = 55.4/2.;
395 conpar[3] = 50./2.;
396 conpar[4] = 50.4/2.;
397 gMC->Gsvolu("QC04", "CONE", idtmed[7], conpar, 5);
398 gMC->Gspos("QC04", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
399 // Ch.debug
400 //printf("\n QC04 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
401
402 zd1 += conpar[0] * 2.;
403
404 tubpar[0] = 55./2.;
405 tubpar[1] = 55.4/2.;
406 tubpar[2] = 730./2.;
407 gMC->Gsvolu("QT12", "TUBE", idtmed[7], tubpar, 3);
408 gMC->Gspos("QT12", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
409 // Ch.debug
410 //printf("\n QT12 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
411
412 zd1 += tubpar[2] * 2.;
413
414 conpar[0] = 36.86/2.;
415 conpar[1] = 68./2.;
416 conpar[2] = 68.4/2.;
417 conpar[3] = 55./2.;
418 conpar[4] = 55.4/2.;
419 gMC->Gsvolu("QC05", "CONE", idtmed[7], conpar, 5);
420 gMC->Gspos("QC05", 1, "ZDC ", 0., 0., -conpar[0]-zd1, 0, "ONLY");
421 // Ch.debug
422 //printf("\n QC05 CONE pipe from z = %f to z= %f\n",-zd1,-2*conpar[0]-zd1);
423
424 zd1 += conpar[0] * 2.;
425
426 tubpar[0] = 68./2.;
427 tubpar[1] = 68.4/2.;
428 tubpar[2] = 927.3/2.;
429 gMC->Gsvolu("QT13", "TUBE", idtmed[7], tubpar, 3);
430 gMC->Gspos("QT13", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
431 // Ch.debug
432 //printf("\n QT13 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
433
434 zd1 += tubpar[2] * 2.;
435
436 tubpar[0] = 0./2.;
437 tubpar[1] = 68.4/2.;
438 tubpar[2] = 0.2/2.;
439 gMC->Gsvolu("QT14", "TUBE", idtmed[8], tubpar, 3);
440 gMC->Gspos("QT14", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
441 // Ch.debug
442 //printf("\n QT14 TUBE pipe from z = %f to z= %f\n",-zd1,-2*tubpar[2]-zd1);
443
444 zd1 += tubpar[2] * 2.;
445
446 tubpar[0] = 0./2.;
447 tubpar[1] = 6.4/2.;
448 tubpar[2] = 0.2/2.;
449 gMC->Gsvolu("QT15", "TUBE", idtmed[11], tubpar, 3);
450 //-- Position QT15 inside QT14
451 gMC->Gspos("QT15", 1, "QT14", -7.7, 0., 0., 0, "ONLY");
452
453 gMC->Gsvolu("QT16", "TUBE", idtmed[11], tubpar, 3);
454 //-- Position QT16 inside QT14
455 gMC->Gspos("QT16", 1, "QT14", 7.7, 0., 0., 0, "ONLY");
456
457
458 //-- BEAM PIPE BETWEEN END OF CONICAL PIPE AND BEGINNING OF D2
459
460 tubpar[0] = 6.4/2.;
461 tubpar[1] = 6.8/2.;
462 tubpar[2] = 680.8/2.;
463 gMC->Gsvolu("QT17", "TUBE", idtmed[7], tubpar, 3);
464
465 tubpar[0] = 6.4/2.;
466 tubpar[1] = 6.8/2.;
467 tubpar[2] = 680.8/2.;
468 gMC->Gsvolu("QT18", "TUBE", idtmed[7], tubpar, 3);
469
470 // -- ROTATE PIPES
471 Float_t angle = 0.143*kDegrad; // Rotation angle
472
473 //AliMatrix(im1, 90.+0.143, 0., 90., 90., 0.143, 0.); // x<0
474 gMC->Matrix(im1, 90.+0.143, 0., 90., 90., 0.143, 0.); // x<0
475 gMC->Gspos("QT17", 1, "ZDC ", TMath::Sin(angle) * 680.8/ 2. - 9.4,
476 0., -tubpar[2]-zd1, im1, "ONLY");
477
478 //AliMatrix(im2, 90.-0.143, 0., 90., 90., 0.143, 180.); // x>0 (ZP)
479 gMC->Matrix(im2, 90.-0.143, 0., 90., 90., 0.143, 180.); // x>0 (ZP)
480 gMC->Gspos("QT18", 1, "ZDC ", 9.7 - TMath::Sin(angle) * 680.8 / 2.,
481 0., -tubpar[2]-zd1, im2, "ONLY");
482
483 // -- END OF BEAM PIPE VOLUME DEFINITION FOR SIDE C (RB26 SIDE)
484 // ----------------------------------------------------------------
485
486 ////////////////////////////////////////////////////////////////
487 // //
488 // SIDE A - RB24 //
489 // //
490 ///////////////////////////////////////////////////////////////
491
492 // Rotation Matrices definition
493 Int_t irotpipe2, irotpipe1,irotpipe5, irotpipe6, irotpipe7, irotpipe8;
494 //-- rotation matrices for the tilted tube before and after the TDI
495 gMC->Matrix(irotpipe2,90.+6.3025,0.,90.,90.,6.3025,0.);
496 //-- rotation matrices for the tilted cone after the TDI to recenter vacuum chamber
497 gMC->Matrix(irotpipe1,90.-2.2918,0.,90.,90.,2.2918,180.);
498 //-- rotation matrices for the legs
499 gMC->Matrix(irotpipe5,90.-5.0109,0.,90.,90.,5.0109,180.);
500 gMC->Matrix(irotpipe6,90.+5.0109,0.,90.,90.,5.0109,0.);
501 gMC->Matrix(irotpipe7,90.-1.0027,0.,90.,90.,1.0027,180.);
502 gMC->Matrix(irotpipe8,90.+1.0027,0.,90.,90.,1.0027,0.);
503
504 // -- Mother of the ZDCs (Vacuum PCON)
505 zd2 = 1910.;// zd2 initial value
506
507 conpar[0] = 0.;
508 conpar[1] = 360.;
509 conpar[2] = 2.;
510 conpar[3] = zd2;
511 conpar[4] = 0.;
512 conpar[5] = 55.;
513 conpar[6] = 13500.;
514 conpar[7] = 0.;
515 conpar[8] = 55.;
516 gMC->Gsvolu("ZDC2", "PCON", idtmed[10], conpar, 9);
517 gMC->Gspos("ZDC2", 1, "ALIC", 0., 0., 0., 0, "ONLY");
518
519 // BEAM PIPE from 19.10 m to inner triplet beginning (22.965 m)
520
521 tubpar[0] = 6.0/2.;
522 tubpar[1] = 6.4/2.;
523 tubpar[2] = 386.5/2.;
524 gMC->Gsvolu("QA01", "TUBE", idtmed[6], tubpar, 3);
525 gMC->Gspos("QA01", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
526 // Ch.debug
527 printf("\n QA01 TUBE from z = %f to z= %f (Inner triplet beg.)\n",zd2,2*tubpar[2]+zd2);
528
529 zd2 += 2.*tubpar[2];
530
531 // -- FIRST SECTION OF THE BEAM PIPE (from beginning of inner triplet to
532 // beginning of D1)
533
534 tubpar[0] = 6.3/2.;
535 tubpar[1] = 6.7/2.;
536 tubpar[2] = 3541.8/2.;
537 gMC->Gsvolu("QA02", "TUBE", idtmed[6], tubpar, 3);
538 gMC->Gspos("QA02", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
539 // Ch.debug
540 printf("\n QA02 TUBE from z = %f to z= %f (D1 beg.)\n",zd2,2*tubpar[2]+zd2);
541
542 zd2 += 2.*tubpar[2];
543
544
545 // -- SECOND SECTION OF THE BEAM PIPE (from the beginning of D1 to the beginning of D2)
546 //
547 // FROM (MAGNETIC) BEGINNING OF D1 TO THE (MAGNETIC) END OF D1 + 126.5 cm
548 // CYLINDRICAL PIPE of diameter increasing from 6.75 cm up to 8.0 cm
549 // from magnetic end :
550 // 1) 80.1 cm still with ID = 6.75 radial beam screen
551 // 2) 2.5 cm conical section from ID = 6.75 to ID = 8.0 cm
552 // 3) 43.9 cm straight section (tube) with ID = 8.0 cm
553
554 printf("\n Beginning of D1 at z= %f\n",zd2);
555
556 tubpar[0] = 6.75/2.;
557 tubpar[1] = 7.15/2.;
558 tubpar[2] = (945.0+80.1)/2.;
559 gMC->Gsvolu("QA03", "TUBE", idtmed[6], tubpar, 3);
560 gMC->Gspos("QA03", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
561 // Ch.debug
562 printf("\n QA03 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
563
564 zd2 += 2.*tubpar[2];
565
566 // Transition Cone from ID=67.5 mm to ID=80 mm
567
568
569 conpar[0] = 2.5/2.;
570 conpar[1] = 6.75/2.;
571 conpar[2] = 7.15/2.;
572 conpar[3] = 8.0/2.;
573 conpar[4] = 8.4/2.;
574 gMC->Gsvolu("QA04", "CONE", idtmed[6], conpar, 5);
575 gMC->Gspos("QA04", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
576 printf("\n Transition Cone from ID=67.5 mm to ID=80 mm \n");
577 printf(" QA04 CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
578
579 zd2 += 2.*conpar[0];
580
581 tubpar[0] = 8.0/2.;
582 tubpar[1] = 8.4/2.;
583 tubpar[2] = 43.9/2.;
584 gMC->Gsvolu("QA05", "TUBE", idtmed[6], tubpar, 3);
585 gMC->Gspos("QA05", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
586 // Ch.debug
587 printf("\n QA05 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
588
589 zd2 += 2.*tubpar[2];
590 printf("\n Exit of D1 at z = %f\n",zd2);
591
592 // Bellow (ID=80 mm) - length = 0.2 m - VMAA
593
594 tubpar[0] = 8.0/2.;
595 tubpar[1] = 8.4/2.;
596 tubpar[2] = 20./2.;
597 gMC->Gsvolu("QA06", "TUBE", idtmed[6], tubpar, 3);
598 gMC->Gspos("QA06", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
599 // Ch.debug
600 printf("\n Bellow (ID=80 mm) - length = 0.2 m - VMAA \n");
601 printf(" QA06 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
602
603 zd2 += 2.*tubpar[2];
604
605
606 // Beam Position Monitor (ID=80 mm) Cu - BPMSX
607
608 tubpar[0] = 8.0/2.;
609 tubpar[1] = 8.4/2.;
610 tubpar[2] = 28.5/2.;
611 gMC->Gsvolu("QA07", "TUBE", idtmed[6], tubpar, 3);
612 gMC->Gspos("QA07", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
613 // Ch.debug
614 printf("\n Beam Position Monitor (ID=80 mm) Cu - BPMSX\n");
615 printf(" QA07 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
616
617 zd2 += 2.*tubpar[2];
618
619 // First part of VAEHI (tube ID=80mm)
620 tubpar[0] = 8.0/2.;
621 tubpar[1] = 8.4/2.;
622 tubpar[2] = 28.5/2.;
623 gMC->Gsvolu("QAV1", "TUBE", idtmed[6], tubpar, 3);
624 gMC->Gspos("QAV1", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
625 // Ch.debug
626 printf("\n First part of VAEHI\n");
627 printf(" QAV1 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
628
629 zd2 += 2.*tubpar[2];
630
631 // Second part of VAEHI (transition cone from ID=80mm to ID=98mm)
632 conpar[0] = 4.0/2.;
633 conpar[1] = 8.0/2.;
634 conpar[2] = 8.4/2.;
635 conpar[3] = 9.8/2.;
636 conpar[4] = 10.2/2.;
637 gMC->Gsvolu("QAV2", "CONE", idtmed[6], conpar, 5);
638 gMC->Gspos("QAV2", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
639 printf("\n Second part of VAEHI\n");
640 printf(" QAV2 CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
641
642 zd2 += 2.*conpar[0];
643
644 //Third part of VAEHI (transition cone from ID=98mm to ID=90mm)
645 conpar[0] = 1.0/2.;
646 conpar[1] = 9.8/2.;
647 conpar[2] = 10.2/2.;
648 conpar[3] = 9.0/2.;
649 conpar[4] = 9.4/2.;
650 gMC->Gsvolu("QAV3", "CONE", idtmed[6], conpar, 5);
651 gMC->Gspos("QAV3", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
652 printf("\n Third part of VAEHI\n");
653 printf(" QAV3 CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
654
655 zd2 += 2.*conpar[0];
656
657 // Fourth part of VAEHI (tube ID=90mm)
658 tubpar[0] = 9.0/2.;
659 tubpar[1] = 9.4/2.;
660 tubpar[2] = 31.0/2.;
661 gMC->Gsvolu("QAV4", "TUBE", idtmed[6], tubpar, 3);
662 gMC->Gspos("QAV4", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
663 // Ch.debug
664 printf("\n Fourth part of VAEHI\n");
665 printf(" QAV4 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
666
667 zd2 += 2.*tubpar[2];
668
669
670 //---------------------------- TCDD beginning ----------------------------------
671 // space for the insertion of the collimator TCDD (2 m)
672
673 // TCDD ZONE - 1st volume
674 conpar[0] = 1.3/2.;
675 conpar[1] = 9.0/2.;
676 conpar[2] = 13.0/2.;
677 conpar[3] = 9.6/2.;
678 conpar[4] = 13.0/2.;
679 gMC->Gsvolu("Q01T", "CONE", idtmed[6], conpar, 5);
680 gMC->Gspos("Q01T", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
681 printf("\n TCDD ZONE - first volume\n");
682 printf(" Q01T CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
683
684 zd2 += 2.*conpar[0];
685
686 // TCDD ZONE - 2nd volume
687 tubpar[0] = 9.6/2.;
688 tubpar[1] = 10.0/2.;
689 tubpar[2] = 1.0/2.;
690 gMC->Gsvolu("Q02T", "TUBE", idtmed[6], tubpar, 3);
691 gMC->Gspos("Q02T", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
692 // Ch.debug
693 printf("\n TCDD ZONE - 2nd volume\n");
694 printf(" Q02T TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
695
696 zd2 += 2.*tubpar[2];
697
698 // TCDD ZONE - third volume
699 conpar[0] = 9.04/2.;
700 conpar[1] = 9.6/2.;
701 conpar[2] = 10.0/2.;
702 conpar[3] = 13.8/2.;
703 conpar[4] = 14.2/2.;
704 gMC->Gsvolu("Q03T", "CONE", idtmed[6], conpar, 5);
705 gMC->Gspos("Q03T", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
706 printf("\n TCDD ZONE - third volume\n");
707 printf(" Q03T CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
708
709 zd2 += 2.*conpar[0];
710
711 // TCDD ZONE - 4th volume
712 tubpar[0] = 13.8/2.;
713 tubpar[1] = 14.2/2.;
714 tubpar[2] = 38.6/2.;
715 gMC->Gsvolu("Q04T", "TUBE", idtmed[6], tubpar, 3);
716 gMC->Gspos("Q04T", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
717 // Ch.debug
718 printf("\n TCDD ZONE - 4th volume\n");
719 printf(" Q04T TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
720
721 zd2 += 2.*tubpar[2];
722
723 // TCDD ZONE - 5th volume
724 tubpar[0] = 21.0/2.;
725 tubpar[1] = 21.4/2.;
726 tubpar[2] = 100.12/2.;
727 gMC->Gsvolu("Q05T", "TUBE", idtmed[6], tubpar, 3);
728 gMC->Gspos("Q05T", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
729 // Ch.debug
730 printf("\n TCDD ZONE - 5th volume\n");
731 printf(" Q05T TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
732
733 zd2 += 2.*tubpar[2];
734
735 // TCDD ZONE - 6th volume
736 tubpar[0] = 13.8/2.;
737 tubpar[1] = 14.2/2.;
738 tubpar[2] = 38.6/2.;
739 gMC->Gsvolu("Q06T", "TUBE", idtmed[6], tubpar, 3);
740 gMC->Gspos("Q06T", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
741 // Ch.debug
742 printf("\n TCDD ZONE - 6th volume\n");
743 printf(" Q06T TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
744
745 zd2 += 2.*tubpar[2];
746
747 // TCDD ZONE - 7th volume
748 conpar[0] = 11.34/2.;
749 conpar[1] = 13.8/2.;
750 conpar[2] = 14.2/2.;
751 conpar[3] = 18.0/2.;
752 conpar[4] = 18.4/2.;
753 gMC->Gsvolu("Q07T", "CONE", idtmed[6], conpar, 5);
754 gMC->Gspos("Q07T", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
755 printf("\n TCDD ZONE - 7th volume\n");
756 printf(" Q07T CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
757
758 zd2 += 2.*conpar[0];
759
760 // upper part : one single phi segment of a tube
761 // 5 parameters for tubs:
762 // inner radius = 0.
763 // outer radius = 7.5 cm
764 // half length = 50 cm
765 // phi1 = 0.
766 // phi2 = 180.
767 tubspar[0] = 0.0/2.;
768 tubspar[1] = 15.0/2.;
769 tubspar[2] = 100.0/2.;
770 tubspar[3] = 0.;
771 tubspar[4] = 180.;
772 gMC->Gsvolu("Q08T", "TUBS", idtmed[6], tubspar, 5);
773 // Ch.debug
774 printf("\n upper part : one single phi segment of a tube (Q08T)\n");
775 // rectangular beam pipe inside TCDD upper part (Vacuum)
776 boxpar[0] = 7.0/2.;
777 boxpar[1] = 2.5/2.;
778 boxpar[2] = 100./2.;
779 gMC->Gsvolu("Q09T", "BOX ", idtmed[10], boxpar, 3);
780 // positioning vacuum box in the upper part of TCDD
781 gMC->Gspos("Q09T", 1, "Q08T", 0., 1.25, 0., 0, "ONLY");
782
783 // lower part : one single phi segment of a tube
784 tubspar[0] = 0.0/2.;
785 tubspar[1] = 15.0/2.;
786 tubspar[2] = 100.0/2.;
787 tubspar[3] = 180.;
788 tubspar[4] = 360.;
789 gMC->Gsvolu("Q10T", "TUBS", idtmed[6], tubspar, 5);
790 // Ch.debug
791 printf("\n lower part : one single phi segment of a tube (Q10T)\n");
792 // rectangular beam pipe inside TCDD lower part (Vacuum)
793 boxpar[0] = 7.0/2.;
794 boxpar[1] = 2.5/2.;
795 boxpar[2] = 100./2.;
796 gMC->Gsvolu("Q11T", "BOX ", idtmed[10], boxpar, 3);
797 // positioning vacuum box in the lower part of TCDD
798 gMC->Gspos("Q11T", 1, "Q10T", 0., -1.25, 0., 0, "ONLY");
799
800 // positioning TCDD elements in ZDC2, (inside TCDD volume)
801 gMC->Gspos("Q08T", 1, "ZDC2", 0., 2.5, -100+zd2, 0, "ONLY");
802 gMC->Gspos("Q10T", 1, "ZDC2", 0., -2.5, -100+zd2, 0, "ONLY");
803
804 // RF screen
805 boxpar[0] = 0.2/2.;
806 boxpar[1] = 5.0/2.;
807 boxpar[2] = 100./2.;
808 gMC->Gsvolu("Q12T", "BOX ", idtmed[6], boxpar, 3);
809 // positioning RF screen at both sides of TCDD
810 gMC->Gspos("Q12T", 1, "ZDC2", tubspar[1]+boxpar[0], 0., -100+zd2, 0, "ONLY");
811 gMC->Gspos("Q12T", 2, "ZDC2", -tubspar[1]-boxpar[0], 0., -100+zd2, 0, "ONLY");
812 printf("\n RF screen done\n");
813
814 //---------------------------- TCDD end ---------------------------------------
815
816 // Bellow (ID=80 mm) - length = 0.3 m - VMAAB
817 tubpar[0] = 8.0/2.;
818 tubpar[1] = 8.4/2.;
819 tubpar[2] = 30.0/2.;
820 gMC->Gsvolu("QA08", "TUBE", idtmed[8], tubpar, 3);
821 gMC->Gspos("QA08", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
822 // Ch.debug
823 printf("\n Bellow (ID=80 mm) - length = 0.3 m - VMAAB\n");
824 printf(" QA08 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
825
826 zd2 += 2.*tubpar[2];
827
828 // Flange (ID=80 mm) Cu (first part of VCTCE)
829 tubpar[0] = 8.0/2.;
830 tubpar[1] = 8.4/2.;
831 tubpar[2] = 2.0/2.;
832 gMC->Gsvolu("QA09", "TUBE", idtmed[6], tubpar, 3);
833 gMC->Gspos("QA09", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
834 // Ch.debug
835 printf("\n Flange (ID=80 mm) Cu (first part of VCTCE)\n");
836 printf(" QA09 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
837
838 zd2 += 2.*tubpar[2];
839
840 // transition cone from ID=80 to ID=212 (second part of VCTCE)
841
842 conpar[0] = 25.0/2.;
843 conpar[1] = 8.0/2.;
844 conpar[2] = 8.4/2.;
845 conpar[3] = 21.2/2.;
846 conpar[4] = 21.8/2.;
847 gMC->Gsvolu("QA10", "CONE", idtmed[6], conpar, 5);
848 gMC->Gspos("QA10", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
849 printf("\n transition cone from ID=80 to ID=212 (second part of VCTCE) \n");
850 printf(" QA10 CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
851
852 zd2 += 2.*conpar[0];
853
854 // tube (ID=212 mm) Cu (third part of VCTCE)
855
856 tubpar[0] = 21.2/2.;
857 tubpar[1] = 21.8/2.;
858 tubpar[2] = 403.54/2.;
859 gMC->Gsvolu("QA11", "TUBE", idtmed[6], tubpar, 3);
860 gMC->Gspos("QA11", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
861 // Ch.debug
862 printf("\n tube (ID=212 mm) Cu (third part of VCTCE)\n");
863 printf(" QA11 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
864
865 zd2 += 2.*tubpar[2];
866
867 // bellow (ID=212 mm) (VMBGA)
868
869 tubpar[0] = 21.2/2.;
870 tubpar[1] = 21.8/2.;
871 tubpar[2] = 40.0/2.;
872 gMC->Gsvolu("QA12", "TUBE", idtmed[6], tubpar, 3);
873 gMC->Gspos("QA12", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
874 // Ch.debug
875 printf("\n bellow (ID=212 mm) (VMBGA)\n");
876 printf(" QA12 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
877
878 zd2 += 2.*tubpar[2];
879
880 // TDI valve assembly (ID=212 mm)
881
882 tubpar[0] = 21.2/2.;
883 tubpar[1] = 21.8/2.;
884 tubpar[2] = 30.0/2.;
885 gMC->Gsvolu("QA13", "TUBE", idtmed[6], tubpar, 3);
886 gMC->Gspos("QA13", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
887 // Ch.debug
888 printf("\n TDI valve assembly (ID=212 mm)\n");
889 printf(" QA13 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
890
891 zd2 += 2.*tubpar[2];
892
893 // bellow (ID=212 mm) (VMBGA)
894
895 tubpar[0] = 21.2/2.;
896 tubpar[1] = 21.8/2.;
897 tubpar[2] = 40.0/2.;
898 gMC->Gsvolu("QA14", "TUBE", idtmed[6], tubpar, 3);
899 gMC->Gspos("QA14", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
900 // Ch.debug
901 printf("\n bellow (ID=212 mm) (VMBGA)\n");
902 printf(" QA14 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
903
904 zd2 += 2.*tubpar[2];
905
906 // skewed transition piece (ID=212 mm) (before TDI)
907
908 tubpar[0] = 21.2/2.;
909 tubpar[1] = 21.8/2.;
910 tubpar[2] = 20.0/2.;
911 gMC->Gsvolu("QA15", "TUBE", idtmed[6], tubpar, 3);
912 gMC->Gspos("QA15", 1, "ZDC2", 1.10446, 0., tubpar[2]+zd2, irotpipe2, "ONLY");
913 // Ch.debug
914 printf("\n skewed transition piece (ID=212 mm) (before TDI)\n");
915 printf(" QA15 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
916
917 zd2 += 2.*tubpar[2];
918
919 // Vacuum chamber containing TDI
920
921 tubpar[0] = 54.0/2.;
922 tubpar[1] = 54.6/2.;
923 tubpar[2] = 540.0/2.;
924 gMC->Gsvolu("Q13T", "TUBE", idtmed[6], tubpar, 3);
925 gMC->Gspos("Q13T", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
926 // Ch.debug
927 printf("\n Vacuum chamber containing TDI\n");
928 printf(" Q13T TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
929
930 zd2 += 2.*tubpar[2];
931
932 //---------------- INSERT TDI INSIDE Q13T -----------------------------------
933
934 printf("\n START DEFINING TDI INSIDE Q13T\n");
935 boxpar[0] = 11.0/2.;
936 boxpar[1] = 9.0/2.;
937 boxpar[2] = 540.0/2.;
938 gMC->Gsvolu("QTD1", "BOX ", idtmed[6], boxpar, 3);
939 gMC->Gspos("QTD1", 1, "Q13T", -3.8, 10.5, 0., 0, "ONLY");
940 boxpar[0] = 11.0/2.;
941 boxpar[1] = 9.0/2.;
942 boxpar[2] = 540.0/2.;
943 gMC->Gsvolu("QTD2", "BOX ", idtmed[6], boxpar, 3);
944 gMC->Gspos("QTD2", 1, "Q13T", -3.8, -10.5, 0., 0, "ONLY");
945 boxpar[0] = 5.1/2.;
946 boxpar[1] = 0.2/2.;
947 boxpar[2] = 540.0/2.;
948 gMC->Gsvolu("QTD3", "BOX ", idtmed[6], boxpar, 3);
949 gMC->Gspos("QTD3", 1, "Q13T", -3.8+5.5+boxpar[0], 6.1, 0., 0, "ONLY");
950 gMC->Gspos("QTD3", 2, "Q13T", -3.8+5.5+boxpar[0], -6.1, 0., 0, "ONLY");
951 gMC->Gspos("QTD3", 3, "Q13T", -3.8-5.5-boxpar[0], 6.1, 0., 0, "ONLY");
952 gMC->Gspos("QTD3", 4, "Q13T", -3.8-5.5-boxpar[0], -6.1, 0., 0, "ONLY");
953
954
955 tubspar[0] = 12.0/2.;
956 tubspar[1] = 12.4/2.;
957 tubspar[2] = 540.0/2.;
958 tubspar[3] = 90.;
959 tubspar[4] = 270.;
960 gMC->Gsvolu("QTD4", "TUBS", idtmed[6], tubspar, 5);
961 gMC->Gspos("QTD4", 1, "Q13T", -3.8-10.6, 0., 0., 0, "ONLY");
962 tubspar[0] = 12.0/2.;
963 tubspar[1] = 12.4/2.;
964 tubspar[2] = 540.0/2.;
965 tubspar[3] = -90.;
966 tubspar[4] = 90.;
967 gMC->Gsvolu("QTD5", "TUBS", idtmed[6], tubspar, 5);
968 gMC->Gspos("QTD5", 1, "Q13T", -3.8+10.6, 0., 0., 0, "ONLY");
969 printf("\n END DEFINING TDI INSIDE Q13T\n");
970
971 //---------------- END DEFINING TDI INSIDE Q13T -------------------------------
972
973 // skewed transition piece (ID=212 mm) (after TDI)
974 tubpar[0] = 21.2/2.;
975 tubpar[1] = 21.8/2.;
976 tubpar[2] = 20.0/2.;
977 gMC->Gsvolu("QA16", "TUBE", idtmed[6], tubpar, 3);
978 gMC->Gspos("QA16", 1, "ZDC2", 1.10446+2.2, 0., tubpar[2]+zd2, irotpipe2, "ONLY");
979 // Ch.debug
980 printf("\n skewed transition piece (ID=212 mm) (after TDI)\n");
981 printf(" QA16 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
982
983 zd2 += 2.*tubpar[2];
984
985 // bellow (ID=212 mm) (VMBGA)
986 tubpar[0] = 21.2/2.;
987 tubpar[1] = 21.8/2.;
988 tubpar[2] = 40.0/2.;
989 gMC->Gsvolu("QA17", "TUBE", idtmed[6], tubpar, 3);
990 gMC->Gspos("QA17", 1, "ZDC2", 4.4, 0., tubpar[2]+zd2, 0, "ONLY");
991 // Ch.debug
992 printf("\n bellow (ID=212 mm) (VMBGA)\n");
993 printf(" QA17 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
994
995 zd2 += 2.*tubpar[2];
996
997 // TDI valve assembly (ID=212 mm)
998 tubpar[0] = 21.2/2.;
999 tubpar[1] = 21.8/2.;
1000 tubpar[2] = 30.0/2.;
1001 gMC->Gsvolu("QA18", "TUBE", idtmed[6], tubpar, 3);
1002 gMC->Gspos("QA18", 1, "ZDC2", 4.4, 0., tubpar[2]+zd2, 0, "ONLY");
1003 // Ch.debug
1004 printf("\n TDI valve assembly (ID=212 mm)\n");
1005 printf(" QA18 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1006
1007 zd2 += 2.*tubpar[2];
1008
1009 // bellow (ID=212 mm) (VMBGA)
1010 tubpar[0] = 21.2/2.;
1011 tubpar[1] = 21.8/2.;
1012 tubpar[2] = 40.0/2.;
1013 gMC->Gsvolu("QA19", "TUBE", idtmed[6], tubpar, 3);
1014 gMC->Gspos("QA19", 1, "ZDC2", 4.4, 0., tubpar[2]+zd2, 0, "ONLY");
1015 // Ch.debug
1016 printf("\n bellow (ID=212 mm) (VMBGA)\n");
1017 printf(" QA19 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1018
1019 zd2 += 2.*tubpar[2];
1020
1021 // vacuum chamber (ID=212 mm) (BTVST)
1022 tubpar[0] = 21.2/2.;
1023 tubpar[1] = 21.8/2.;
1024 tubpar[2] = 50.0/2.;
1025 gMC->Gsvolu("QA20", "TUBE", idtmed[6], tubpar, 3);
1026 gMC->Gspos("QA20", 1, "ZDC2", 4.4, 0., tubpar[2]+zd2, 0, "ONLY");
1027 // Ch.debug
1028 printf("\n vacuum chamber (ID=212 mm) (BTVST)\n");
1029 printf(" QA20 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1030
1031 zd2 += 2.*tubpar[2];
1032
1033 // bellow (ID=212 mm) (VMBGA) repeated 3 times
1034 tubpar[0] = 21.2/2.;
1035 tubpar[1] = 21.8/2.;
1036 tubpar[2] = 120.0/2.;
1037 gMC->Gsvolu("QA21", "TUBE", idtmed[6], tubpar, 3);
1038 gMC->Gspos("QA21", 1, "ZDC2", 4.4, 0., tubpar[2]+zd2, 0, "ONLY");
1039 // Ch.debug
1040 printf("\n bellow (ID=212 mm) (VMBGA) repeated 3 times\n");
1041 printf(" QA21 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1042
1043 zd2 += 2.*tubpar[2];
1044
1045 // skewed transition cone from ID=212 mm to ID=797 mm SS for the moment
1046 conpar[0] = 110.0/2.;
1047 conpar[1] = 21.2/2.;
1048 conpar[2] = 21.8/2.;
1049 conpar[3] = 79.7/2.;
1050 conpar[4] = 81.3/2.;
1051 gMC->Gsvolu("QA22", "CONE", idtmed[6], conpar, 5);
1052 gMC->Gspos("QA22", 1, "ZDC2", 4.4-2.201, 0., conpar[0]+zd2, irotpipe1, "ONLY");
1053 printf("\n skewed transition cone from ID=212 mm to ID=797 mm\n");
1054 printf(" QA22 CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
1055
1056 zd2 += 2.*conpar[0];
1057
1058 // beam pipe (ID=797 mm) SS
1059 tubpar[0] = 79.7/2.;
1060 tubpar[1] = 81.3/2.;
1061 tubpar[2] = 2393.05/2.;
1062 gMC->Gsvolu("QA23", "TUBE", idtmed[6], tubpar, 3);
1063 gMC->Gspos("QA23", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1064 // Ch.debug
1065 printf("\n beam pipe (ID=797 mm) SS\n");
1066 printf(" QA23 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1067
1068 zd2 += 2.*tubpar[2];
1069
1070 // Transition from ID=797 mm to ID=196 mm SS for the moment:
1071 //
1072 // in order to simulate the thin window opened in the transition cone
1073 // we divide the transition cone in three cones:
1074 // the first 8 mm thick
1075 // the second 3 mm thick
1076 // the third 8 mm thick
1077
1078 // First part
1079 conpar[0] = 9.09/2.; // 15 degree
1080 conpar[1] = 79.7/2.;
1081 conpar[2] = 81.3/2.; // thickness 8 mm
1082 conpar[3] = 74.82868/2.;
1083 conpar[4] = 76.42868/2.; // thickness 8 mm
1084 gMC->Gsvolu("Q24A", "CONE", idtmed[6], conpar, 5);
1085 gMC->Gspos("Q24A", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
1086 printf("\n Simulation of a window in the transition cone ");
1087 printf("\n from ID=797 mm to ID=196 mm\n");
1088 printf("\n First part: a cone 8 mm thick\n");
1089 printf(" Q24A CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
1090
1091 zd2 += 2.*conpar[0];
1092
1093 // Second part
1094 conpar[0] = 96.2/2.; // 15 degree
1095 conpar[1] = 74.82868/2.;
1096 conpar[2] = 75.42868/2.; // thickness 3 mm
1097 conpar[3] = 23.19588/2.;
1098 conpar[4] = 23.79588/2.; // thickness 3 mm
1099 gMC->Gsvolu("QA25", "CONE", idtmed[6], conpar, 5);
1100 gMC->Gspos("QA25", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
1101 printf(" Second part: a cone 3 mm thick\n");
1102 printf(" QA25 CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
1103
1104 zd2 += 2.*conpar[0];
1105
1106 // Third part
1107 conpar[0] = 6.71/2.; // 15 degree
1108 conpar[1] = 23.19588/2.;
1109 conpar[2] = 24.79588/2.;// thickness 8 mm
1110 conpar[3] = 19.6/2.;
1111 conpar[4] = 21.2/2.;// thickness 8 mm
1112 gMC->Gsvolu("QA26", "CONE", idtmed[6], conpar, 5);
1113 gMC->Gspos("QA26", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
1114 printf(" Third part: a cone 8 mm thick\n");
1115 printf(" QA26 CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
1116
1117 zd2 += 2.*conpar[0];
1118
1119 // beam pipe (ID=196 mm)
1120 tubpar[0] = 19.6/2.;
1121 tubpar[1] = 21.2/2.;
1122 tubpar[2] = 9.55/2.;
1123 gMC->Gsvolu("QA27", "TUBE", idtmed[6], tubpar, 3);
1124 gMC->Gspos("QA27", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1125 // Ch.debug
1126 printf("\n beam pipe (ID=196 mm)\n");
1127 printf(" QA27 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1128
1129 zd2 += 2.*tubpar[2];
1130
1131 // Flange (ID=196 mm)
1132 tubpar[0] = 19.6/2.;
1133 tubpar[1] = 25.3/2.;
1134 tubpar[2] = 4.9/2.;
1135 gMC->Gsvolu("QF01", "TUBE", idtmed[6], tubpar, 3);
1136 gMC->Gspos("QF01", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1137 // Ch.debug
1138 printf("\n Flange (ID=196 mm)\n");
1139 printf(" QF01 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1140
1141 zd2 += 2.*tubpar[2];
1142
1143 // Special Warm Module (made by 5 volumes)
1144
1145 tubpar[0] = 20.2/2.;
1146 tubpar[1] = 20.6/2.;
1147 tubpar[2] = 2.15/2.;
1148 gMC->Gsvolu("QA28", "TUBE", idtmed[6], tubpar, 3);
1149 gMC->Gspos("QA28", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1150 // Ch.debug
1151 printf("\n Special Warm Module (made by 5 volumes)\n");
1152 printf(" QA28 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1153
1154 zd2 += 2.*tubpar[2];
1155
1156 conpar[0] = 6.9/2.;
1157 conpar[1] = 20.2/2.;
1158 conpar[2] = 20.6/2.;
1159 conpar[3] = 23.9/2.;
1160 conpar[4] = 24.3/2.;
1161 gMC->Gsvolu("QA29", "CONE", idtmed[6], conpar, 5);
1162 gMC->Gspos("QA29", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
1163 // Ch.debug
1164 printf(" QA29 CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
1165
1166 zd2 += 2.*conpar[0];
1167
1168 tubpar[0] = 23.9/2.;
1169 tubpar[1] = 25.5/2.;
1170 tubpar[2] = 17.0/2.;
1171 gMC->Gsvolu("QA30", "TUBE", idtmed[6], tubpar, 3);
1172 gMC->Gspos("QA30", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1173 // Ch.debug
1174 printf(" QA30 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1175
1176 zd2 += 2.*tubpar[2];
1177
1178 conpar[0] = 6.9/2.;
1179 conpar[1] = 23.9/2.;
1180 conpar[2] = 24.3/2.;
1181 conpar[3] = 20.2/2.;
1182 conpar[4] = 20.6/2.;
1183 gMC->Gsvolu("QA31", "CONE", idtmed[6], conpar, 5);
1184 gMC->Gspos("QA31", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
1185 // Ch.debug
1186 printf(" QA31 CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
1187
1188 zd2 += 2.*conpar[0];
1189
1190 tubpar[0] = 20.2/2.;
1191 tubpar[1] = 20.6/2.;
1192 tubpar[2] = 2.15/2.;
1193 gMC->Gsvolu("QA32", "TUBE", idtmed[6], tubpar, 3);
1194 gMC->Gspos("QA32", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1195 // Ch.debug
1196 printf(" QA32 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1197
1198 zd2 += 2.*tubpar[2];
1199
1200 // Flange (ID=196 mm)
1201 tubpar[0] = 19.6/2.;
1202 tubpar[1] = 25.3/2.;
1203 tubpar[2] = 4.9/2.;
1204 gMC->Gsvolu("QF02", "TUBE", idtmed[6], tubpar, 3);
1205 gMC->Gspos("QF02", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1206 // Ch.debug
1207 printf("\n Flange (ID=196 mm)\n");
1208 printf(" QF02 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1209
1210 zd2 += 2.*tubpar[2];
1211
1212 // simulation of the trousers (VCTYB)
1213 // (last design -mail 3/6/05)
1214 printf("\n *** START OF TROUSERS SECTION\n");
1215
1216 // pipe: a tube (ID = 196. OD = 200.)
1217 tubpar[0] = 19.6/2.;
1218 tubpar[1] = 20.0/2.;
1219 tubpar[2] = 3.9/2.;
1220 gMC->Gsvolu("QA33", "TUBE", idtmed[6], tubpar, 3);
1221 gMC->Gspos("QA33", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1222 // Ch.debug
1223 printf("\n pipe: a tube (ID = 196. OD = 200.)\n");
1224 printf(" QA33 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1225
1226 zd2 += 2.*tubpar[2];
1227
1228 // transition cone from ID=196. to ID=216.6
1229 conpar[0] = 32.55/2.;
1230 conpar[1] = 19.6/2.;
1231 conpar[2] = 20.0/2.;
1232 conpar[3] = 21.66/2.;
1233 conpar[4] = 22.06/2.;
1234 gMC->Gsvolu("QA34", "CONE", idtmed[6], conpar, 5);
1235 gMC->Gspos("QA34", 1, "ZDC2", 0., 0., conpar[0]+zd2, 0, "ONLY");
1236 // Ch.debug
1237 printf(" QA34 CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
1238
1239 zd2 += 2.*conpar[0];
1240
1241 // Flange: first support for the trousers
1242 boxpar[0] = 25.3/2.;
1243 boxpar[1] = 25.3/2.;
1244 boxpar[2] = 2.5/2.;
1245 gMC->Gsvolu("QF03", "BOX ", idtmed[6], boxpar, 3);
1246 tubpar[0] = 0.0/2.;
1247 tubpar[1] = 22.06/2.;
1248 tubpar[2] = 2.5/2.;
1249 gMC->Gsvolu("QFV1", "TUBE", idtmed[10], tubpar, 3);
1250 gMC->Gspos("QFV1", 1, "QF03", 0., 0., 0., 0, "MANY");
1251 gMC->Gspos("QF03", 1, "ZDC2", 0., 0., 14.3+zd2, 0, "MANY");
1252 // Ch.debug
1253 printf("\n Flange: first support for the trousers\n");
1254
1255 // tube
1256 tubpar[0] = 21.66/2.;
1257 tubpar[1] = 22.06/2.;
1258 tubpar[2] = 28.6/2.;
1259 gMC->Gsvolu("QA35", "TUBE", idtmed[6], tubpar, 3);
1260 gMC->Gspos("QA35", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1261 // Ch.debug
1262 printf("\n QA35 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1263
1264 zd2 += 2.*tubpar[2];
1265
1266 // legs of the trousers
1267
1268 printf("\n legs of the trousers\n");
1269 conpar[0] = (90.1+0.8)/2.;
1270 conpar[1] = 0.0/2.;
1271 conpar[2] = 21.6/2.;
1272 conpar[3] = 0.0/2.;
1273 conpar[4] = 5.8/2.;
1274 gMC->Gsvolu("QAL1", "CONE", idtmed[6], conpar, 5);
1275 gMC->Gsvolu("QAL2", "CONE", idtmed[6], conpar, 5);
1276 gMC->Gspos("QAL1", 1, "ZDC2", -3.45-0.52, 0., (90.1/2.)+zd2, irotpipe5, "MANY");
1277 gMC->Gspos("QAL2", 1, "ZDC2", 3.45+0.52, 0., (90.1/2.)+zd2, irotpipe6, "MANY");
1278
1279 conpar[0] = (90.1+0.8)/2.;
1280 conpar[1] = 0.0/2.;
1281 conpar[2] = 21.2/2.;
1282 conpar[3] = 0.0/2.;
1283 conpar[4] = 5.4/2.;
1284 gMC->Gsvolu("QAL3", "CONE", idtmed[10], conpar, 5);
1285 gMC->Gsvolu("QAL4", "CONE", idtmed[10], conpar, 5);
1286 gMC->Gspos("QAL3", 1, "ZDC2", -3.45-0.52, 0., (90.1/2.)+zd2, irotpipe5, "ONLY");
1287 gMC->Gspos("QAL4", 1, "ZDC2", 3.45+0.52, 0., (90.1/2.)+zd2, irotpipe6, "ONLY");
1288
1289 printf(" Trousers legs from z = %f to z= %f\n",zd2,90.1+zd2);
1290
1291 zd2 += 90.1;
1292
1293 // second part : 2 tubes (ID = 54. OD = 58.)
1294 tubpar[0] = 5.4/2.;
1295 tubpar[1] = 5.8/2.;
1296 tubpar[2] = 40.0/2.;
1297 gMC->Gsvolu("QA36", "TUBE", idtmed[6], tubpar, 3);
1298 gMC->Gspos("QA36", 1, "ZDC2", -15.8/2., 0., tubpar[2]+zd2, 0, "ONLY");
1299 gMC->Gspos("QA36", 2, "ZDC2", 15.8/2., 0., tubpar[2]+zd2, 0, "ONLY");
1300 // Ch.debug
1301 printf("\n second part : 2 copy of a tube (ID = 54. OD = 58.)\n");
1302 printf(" QA36 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1303
1304 zd2 += 2.*tubpar[2];
1305
1306 // transition x2zdc to recombination chamber : skewed cone
1307 conpar[0] = 10./2.;
1308 conpar[1] = 5.4/2.;
1309 conpar[2] = 5.8/2.;
1310 conpar[3] = 6.3/2.;
1311 conpar[4] = 7.0/2.;
1312 gMC->Gsvolu("QA37", "CONE", idtmed[6], conpar, 5);
1313 gMC->Gspos("QA37", 1, "ZDC2", -7.9-0.175, 0., conpar[0]+zd2, irotpipe7, "ONLY");
1314 gMC->Gspos("QA37", 2, "ZDC2", 7.9+0.175, 0., conpar[0]+zd2, irotpipe8, "ONLY");
1315 printf("\n third part : 2 copy of a skewed cone (ID=54 --> 63 mm)\n");
1316 printf(" QA37 CONE from z = %f to z= %f\n",zd2,2*conpar[0]+zd2);
1317
1318 zd2 += 2.*conpar[0];
1319
1320 // Flange: second support for the trousers
1321
1322 printf("\n Flange: second support for the trousers \n");
1323 boxpar[0] = 25.9/2.;
1324 boxpar[1] = 9.4/2.;
1325 boxpar[2] = 1./2.;
1326 gMC->Gsvolu("QF04", "BOX ", idtmed[6], boxpar, 3);
1327 boxpar[0] = 16.5/2.;
1328 boxpar[1] = 7./2.;
1329 boxpar[2] = 1./2.;
1330 gMC->Gsvolu("QFV2", "BOX ", idtmed[10], boxpar, 3);
1331 gMC->Gspos("QFV2", 1, "QF04", 0., 0., 0., 0, "MANY");
1332 tubspar[0] = 0.0/2.;
1333 tubspar[1] = 7./2.;
1334 tubspar[2] = 1./2.;
1335 tubspar[3] = 90.;
1336 tubspar[4] = 270.;
1337 gMC->Gsvolu("QFV3", "TUBS", idtmed[10], tubspar, 5);
1338 gMC->Gspos("QFV3", 1, "QF04", -16.5/2., 0., 0., 0, "MANY");
1339 tubspar[0] = 0.0/2.;
1340 tubspar[1] = 7./2.;
1341 tubspar[2] = 1./2.;
1342 tubspar[3] = -90.;
1343 tubspar[4] = 90.;
1344 gMC->Gsvolu("QFV4", "TUBS", idtmed[10], tubspar, 5);
1345 gMC->Gspos("QFV4", 1, "QF04", 16.5/2., 0., 0., 0, "MANY");
1346 gMC->Gspos("QF04", 1, "ZDC2", 0., 0., 18.5+zd2, 0, "MANY");
1347
1348
1349 // 2 tubes (ID = 63 mm OD=70 mm)
1350 tubpar[0] = 6.3/2.;
1351 tubpar[1] = 7.0/2.;
1352 tubpar[2] = 512.9/2.;
1353 gMC->Gsvolu("QA38", "TUBE", idtmed[6], tubpar, 3);
1354 gMC->Gspos("QA38", 1, "ZDC2", -16.5/2., 0., tubpar[2]+zd2, 0, "ONLY");
1355 gMC->Gspos("QA38", 2, "ZDC2", 16.5/2., 0., tubpar[2]+zd2, 0, "ONLY");
1356 printf("\n 2 EQUAL TUBES (ID=63 mm)\n");
1357 printf(" QA38 TUBE from z = %f to z= %f\n",zd2,2*tubpar[2]+zd2);
1358
1359 zd2 += 2.*tubpar[2];
1360 printf("\n END OF BEAM PIPE VOLUME DEFINITION AT z= %f\n",zd2);
1361 printf(" MAGNET DEFINITION FOLLOWS\n\n");
1362
1363
1364 // ----------------------------------------------------------------
1365 // -- MAGNET DEFINITION -> LHC OPTICS 6.5
1366 // ----------------------------------------------------------------
1367 // ***************************************************************
1368 // SIDE C - RB26 (dimuon side)
1369 // ***************************************************************
1370 // -- COMPENSATOR DIPOLE (MBXW)
1371 zc = 1921.6;
1372
1373 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1374 tubpar[0] = 0.;
1375 tubpar[1] = 4.5;
1376 tubpar[2] = 170./2.;
1377 gMC->Gsvolu("MBXW", "TUBE", idtmed[11], tubpar, 3);
1378
1379 // -- YOKE
1380 tubpar[0] = 4.5;
1381 tubpar[1] = 55.;
1382 tubpar[2] = 170./2.;
1383 gMC->Gsvolu("YMBX", "TUBE", idtmed[7], tubpar, 3);
1384
1385 gMC->Gspos("MBXW", 1, "ZDC ", 0., 0., -tubpar[2]-zc, 0, "ONLY");
1386 gMC->Gspos("YMBX", 1, "ZDC ", 0., 0., -tubpar[2]-zc, 0, "ONLY");
1387
1388
1389 // -- INNER TRIPLET
1390 zq = 2296.5;
1391
1392 // -- DEFINE MQXL AND MQX QUADRUPOLE ELEMENT
1393 // -- MQXL
1394 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1395 tubpar[0] = 0.;
1396 tubpar[1] = 3.5;
1397 tubpar[2] = 637./2.;
1398 gMC->Gsvolu("MQXL", "TUBE", idtmed[11], tubpar, 3);
1399
1400
1401 // -- YOKE
1402 tubpar[0] = 3.5;
1403 tubpar[1] = 22.;
1404 tubpar[2] = 637./2.;
1405 gMC->Gsvolu("YMQL", "TUBE", idtmed[7], tubpar, 3);
1406
1407 gMC->Gspos("MQXL", 1, "ZDC ", 0., 0., -tubpar[2]-zq, 0, "ONLY");
1408 gMC->Gspos("YMQL", 1, "ZDC ", 0., 0., -tubpar[2]-zq, 0, "ONLY");
1409
1410 gMC->Gspos("MQXL", 2, "ZDC ", 0., 0., -tubpar[2]-zq-2430., 0, "ONLY");
1411 gMC->Gspos("YMQL", 2, "ZDC ", 0., 0., -tubpar[2]-zq-2430., 0, "ONLY");
1412
1413 // -- MQX
1414 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1415 tubpar[0] = 0.;
1416 tubpar[1] = 3.5;
1417 tubpar[2] = 550./2.;
1418 gMC->Gsvolu("MQX ", "TUBE", idtmed[11], tubpar, 3);
1419
1420 // -- YOKE
1421 tubpar[0] = 3.5;
1422 tubpar[1] = 22.;
1423 tubpar[2] = 550./2.;
1424 gMC->Gsvolu("YMQ ", "TUBE", idtmed[7], tubpar, 3);
1425
1426 gMC->Gspos("MQX ", 1, "ZDC ", 0., 0., -tubpar[2]-zq-908.5, 0, "ONLY");
1427 gMC->Gspos("YMQ ", 1, "ZDC ", 0., 0., -tubpar[2]-zq-908.5, 0, "ONLY");
1428
1429 gMC->Gspos("MQX ", 2, "ZDC ", 0., 0., -tubpar[2]-zq-1558.5, 0, "ONLY");
1430 gMC->Gspos("YMQ ", 2, "ZDC ", 0., 0., -tubpar[2]-zq-1558.5, 0, "ONLY");
1431
1432 // -- SEPARATOR DIPOLE D1
1433 zd1 = 5838.3;
1434
1435 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1436 tubpar[0] = 0.;
1437 tubpar[1] = 6.94/2.;
1438 tubpar[2] = 945./2.;
1439 gMC->Gsvolu("MD1 ", "TUBE", idtmed[11], tubpar, 3);
1440
1441 // -- Insert horizontal Cu plates inside D1
1442 // -- (to simulate the vacuum chamber)
1443 boxpar[0] = TMath::Sqrt(tubpar[1]*tubpar[1]-(2.98+0.2)*(2.98+0.2)) - 0.05;
1444 boxpar[1] = 0.2/2.;
1445 boxpar[2] =945./2.;
1446 gMC->Gsvolu("MD1V", "BOX ", idtmed[6], boxpar, 3);
1447 gMC->Gspos("MD1V", 1, "MD1 ", 0., 2.98+boxpar[1], 0., 0, "ONLY");
1448 gMC->Gspos("MD1V", 2, "MD1 ", 0., -2.98-boxpar[1], 0., 0, "ONLY");
1449
1450 // -- YOKE
1451 tubpar[0] = 0.;
1452 tubpar[1] = 110./2;
1453 tubpar[2] = 945./2.;
1454 gMC->Gsvolu("YD1 ", "TUBE", idtmed[7], tubpar, 3);
1455
1456 gMC->Gspos("YD1 ", 1, "ZDC ", 0., 0., -tubpar[2]-zd1, 0, "ONLY");
1457 gMC->Gspos("MD1 ", 1, "YD1 ", 0., 0., 0., 0, "ONLY");
1458
1459 // -- DIPOLE D2
1460 // --- LHC optics v6.4
1461 zd2 = 12147.6;
1462
1463 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1464 tubpar[0] = 0.;
1465 tubpar[1] = 7.5/2.;
1466 tubpar[2] = 945./2.;
1467 gMC->Gsvolu("MD2 ", "TUBE", idtmed[11], tubpar, 3);
1468
1469 // -- YOKE
1470 tubpar[0] = 0.;
1471 tubpar[1] = 55.;
1472 tubpar[2] = 945./2.;
1473 gMC->Gsvolu("YD2 ", "TUBE", idtmed[7], tubpar, 3);
1474
1475 gMC->Gspos("YD2 ", 1, "ZDC ", 0., 0., -tubpar[2]-zd2, 0, "ONLY");
1476
1477 gMC->Gspos("MD2 ", 1, "YD2 ", -9.4, 0., 0., 0, "ONLY");
1478 gMC->Gspos("MD2 ", 2, "YD2 ", 9.4, 0., 0., 0, "ONLY");
1479
1480 // ***************************************************************
1481 // SIDE A - RB24
1482 // ***************************************************************
1483
1484 // COMPENSATOR DIPOLE (MCBWA) (2nd compensator)
1485 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1486 tubpar[0] = 0.;
1487 tubpar[1] = 4.5;
1488 tubpar[2] = 153./2.;
1489 gMC->Gsvolu("MCBW", "TUBE", idtmed[11], tubpar, 3);
1490 gMC->Gspos("MCBW", 1, "ZDC2", 0., 0., tubpar[2]+1972.5, 0, "ONLY");
1491
1492 // -- YOKE
1493 tubpar[0] = 4.5;
1494 tubpar[1] = 55.;
1495 tubpar[2] = 153./2.;
1496 gMC->Gsvolu("YMCB", "TUBE", idtmed[8], tubpar, 3);
1497 gMC->Gspos("YMCB", 1, "ZDC2", 0., 0., tubpar[2]+1972.5, 0, "ONLY");
1498
1499
1500 // -- INNER TRIPLET
1501 zql = 2296.5;
1502
1503 // -- DEFINE MQX1 AND MQX2 QUADRUPOLE ELEMENT
1504 // -- MQX1
1505 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1506 tubpar[0] = 0.;
1507 tubpar[1] = 3.5;
1508 tubpar[2] = 637./2.;
1509 gMC->Gsvolu("MQX1", "TUBE", idtmed[11], tubpar, 3);
1510
1511 // -- YOKE
1512 tubpar[0] = 3.5;
1513 tubpar[1] = 22.;
1514 tubpar[2] = 637./2.;
1515 gMC->Gsvolu("YMQ1", "TUBE", idtmed[8], tubpar, 3);
1516
1517 // -- BEAM SCREEN FOR Q1
1518 tubpar[0] = 4.78/2.;
1519 tubpar[1] = 5.18/2.;
1520 tubpar[2] = 637./2.;
1521 gMC->Gsvolu("QBS1", "TUBE", idtmed[6], tubpar, 3);
1522 gMC->Gspos("QBS1", 1, "ZDC2", 0., 0., tubpar[2]+zql, 0, "ONLY");
1523 // INSERT VERTICAL PLATE INSIDE Q1
1524 boxpar[0] = 0.2/2.0;
1525 boxpar[1] = TMath::Sqrt(tubpar[0]*tubpar[0]-(1.9+0.2)*(1.9+0.2));
1526 boxpar[2] =637./2.;
1527 gMC->Gsvolu("QBS2", "BOX ", idtmed[6], boxpar, 3);
1528 gMC->Gspos("QBS2", 1, "ZDC2", 1.9+boxpar[0], 0., boxpar[2]+zql, 0, "ONLY");
1529 gMC->Gspos("QBS2", 2, "ZDC2", -1.9-boxpar[0], 0., boxpar[2]+zql, 0, "ONLY");
1530
1531 // -- BEAM SCREEN FOR Q3
1532 tubpar[0] = 5.79/2.;
1533 tubpar[1] = 6.14/2.;
1534 tubpar[2] = 637./2.;
1535 gMC->Gsvolu("QBS3", "TUBE", idtmed[6], tubpar, 3);
1536 gMC->Gspos("QBS3", 1, "ZDC2", 0., 0., tubpar[2]+zql+2400., 0, "ONLY");
1537 // INSERT VERTICAL PLATE INSIDE Q3
1538 boxpar[0] = 0.2/2.0;
1539 boxpar[1] = TMath::Sqrt(tubpar[0]*tubpar[0]-(2.405+0.2)*(2.405+0.2));
1540 boxpar[2] =637./2.;
1541 gMC->Gsvolu("QBS4", "BOX ", idtmed[6], boxpar, 3);
1542 gMC->Gspos("QBS4", 1, "ZDC2", 2.405+boxpar[0], 0., boxpar[2]+zql+2400., 0, "ONLY");
1543 gMC->Gspos("QBS4", 2, "ZDC2", -2.405-boxpar[0], 0., boxpar[2]+zql+2400., 0, "ONLY");
1544
1545 // -- Q1
1546 gMC->Gspos("MQX1", 1, "ZDC2", 0., 0., tubpar[2]+zql, 0, "MANY");
1547 gMC->Gspos("YMQ1", 1, "ZDC2", 0., 0., tubpar[2]+zql, 0, "ONLY");
1548
1549 // -- Q3
1550 gMC->Gspos("MQX1", 2, "ZDC2", 0., 0., tubpar[2]+zql+2400., 0, "MANY");
1551 gMC->Gspos("YMQ1", 2, "ZDC2", 0., 0., tubpar[2]+zql+2400., 0, "ONLY");
1552
1553
1554 // -- MQX2
1555 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1556 tubpar[0] = 0.;
1557 tubpar[1] = 3.5;
1558 tubpar[2] = 550./2.;
1559 gMC->Gsvolu("MQX2", "TUBE", idtmed[11], tubpar, 3);
1560
1561 // -- YOKE
1562 tubpar[0] = 3.5;
1563 tubpar[1] = 22.;
1564 tubpar[2] = 550./2.;
1565 gMC->Gsvolu("YMQ2", "TUBE", idtmed[8], tubpar, 3);
1566
1567
1568 // -- BEAM SCREEN FOR Q2
1569 tubpar[0] = 5.79/2.;
1570 tubpar[1] = 6.14/2.;
1571 tubpar[2] = 550./2.;
1572 gMC->Gsvolu("QBS5", "TUBE", idtmed[6], tubpar, 3);
1573 // VERTICAL PLATE INSIDE Q2
1574 boxpar[0] = 0.2/2.0;
1575 boxpar[1] = TMath::Sqrt(tubpar[0]*tubpar[0]-(2.405+0.2)*(2.405+0.2));
1576 boxpar[2] =550./2.;
1577 gMC->Gsvolu("QBS6", "BOX ", idtmed[6], boxpar, 3);
1578
1579 // -- Q2A
1580 gMC->Gspos("MQX2", 1, "ZDC2", 0., 0., tubpar[2]+zql+908.5, 0, "MANY");
1581 gMC->Gspos("QBS5", 1, "ZDC2", 0., 0., tubpar[2]+zql+908.5, 0, "ONLY");
1582 gMC->Gspos("QBS6", 1, "ZDC2", 2.405+boxpar[0], 0., boxpar[2]+zql+908.5, 0, "ONLY");
1583 gMC->Gspos("QBS6", 2, "ZDC2", -2.405-boxpar[0], 0., boxpar[2]+zql+908.5, 0, "ONLY");
1584 gMC->Gspos("YMQ2", 1, "ZDC2", 0., 0., tubpar[2]+zql+908.5, 0, "ONLY");
1585
1586
1587 // -- Q2B
1588 gMC->Gspos("MQX2", 2, "ZDC2", 0., 0., tubpar[2]+zql+1558.5, 0, "MANY");
1589 gMC->Gspos("QBS5", 2, "ZDC2", 0., 0., tubpar[2]+zql+1558.5, 0, "ONLY");
1590 gMC->Gspos("QBS6", 3, "ZDC2", 2.405+boxpar[0], 0., boxpar[2]+zql+1558.5, 0, "ONLY");
1591 gMC->Gspos("QBS6", 4, "ZDC2", -2.405-boxpar[0], 0., boxpar[2]+zql+1558.5, 0, "ONLY");
1592 gMC->Gspos("YMQ2", 2, "ZDC2", 0., 0., tubpar[2]+zql+1558.5, 0, "ONLY");
1593
1594 // -- SEPARATOR DIPOLE D1
1595 zd2 = 5838.3;
1596
1597 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1598 tubpar[0] = 0.;
1599 tubpar[1] = 6.75/2.;
1600 tubpar[2] = 945./2.;
1601 gMC->Gsvolu("MD1L", "TUBE", idtmed[11], tubpar, 3);
1602
1603 // -- The beam screen tube is provided by the beam pipe in D1 (QA03 volume)
1604 // -- Insert the beam screen horizontal Cu plates inside D1
1605 // -- (to simulate the vacuum chamber)
1606 boxpar[0] = TMath::Sqrt(tubpar[1]*tubpar[1]-(2.885+0.2)*(2.885+0.2));
1607 boxpar[1] = 0.2/2.;
1608 boxpar[2] =(945.+80.1)/2.;
1609 gMC->Gsvolu("QBS7", "BOX ", idtmed[6], boxpar, 3);
1610 gMC->Gspos("QBS7", 1, "ZDC2", 0., 2.885+boxpar[1],boxpar[2]+zd2, 0, "ONLY");
1611 gMC->Gspos("QBS7", 2, "ZDC2", 0., -2.885-boxpar[1],boxpar[2]+zd2, 0, "ONLY");
1612
1613 // -- YOKE
1614 tubpar[0] = 7.34/2.; // to be checked
1615 tubpar[1] = 110./2;
1616 tubpar[2] = 945./2.;
1617 gMC->Gsvolu("YD1L", "TUBE", idtmed[8], tubpar, 3);
1618
1619 gMC->Gspos("YD1L", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "ONLY");
1620 gMC->Gspos("MD1L", 1, "ZDC2", 0., 0., tubpar[2]+zd2, 0, "MANY");
1621
1622
1623 // -- DIPOLE D2
1624 // --- LHC optics v6.5
1625 zd2l = 12167.8;
1626
1627 // -- GAP (VACUUM WITH MAGNETIC FIELD)
1628 tubpar[0] = 0.;
1629 tubpar[1] = 7.5/2.; // this has to be checked
1630 tubpar[2] = 945./2.;
1631 gMC->Gsvolu("MD2L", "TUBE", idtmed[11], tubpar, 3);
1632
1633 // -- YOKE
1634 tubpar[0] = 0.;
1635 tubpar[1] = 55.;
1636 tubpar[2] = 945./2.;
1637 gMC->Gsvolu("YD2L", "TUBE", idtmed[8], tubpar, 3);
1638
1639 gMC->Gspos("YD2L", 1, "ZDC2", 0., 0., tubpar[2]+zd2l, 0, "ONLY");
1640
1641 gMC->Gspos("MD2L", 1, "YD2L", -9.4, 0., 0., 0, "ONLY");
1642 gMC->Gspos("MD2L", 2, "YD2L", 9.4, 0., 0., 0, "ONLY");
1643
1644 // -- END OF MAGNET DEFINITION
1645}
1646
1647//_____________________________________________________________________________
1648void AliZDCv3::CreateZDC()
1649{
1650 //
1651 // Create the various ZDCs (ZN + ZP)
1652 //
1653
1654 Float_t dimPb[6], dimVoid[6];
1655
1656 Int_t *idtmed = fIdtmed->GetArray();
1657
1658 // Parameters for hadronic calorimeters geometry
1659 // NB -> parameters used ONLY in CreateZDC()
1660 Float_t fGrvZN[3] = {0.03, 0.03, 50.}; // Grooves for neutron detector
1661 Float_t fGrvZP[3] = {0.04, 0.04, 75.}; // Grooves for proton detector
1662 Int_t fDivZN[3] = {11, 11, 0}; // Division for neutron detector
1663 Int_t fDivZP[3] = {7, 15, 0}; // Division for proton detector
1664 Int_t fTowZN[2] = {2, 2}; // Tower for neutron detector
1665 Int_t fTowZP[2] = {4, 1}; // Tower for proton detector
1666
1667 // Parameters for EM calorimeter geometry
1668 // NB -> parameters used ONLY in CreateZDC()
1669 Float_t kDimZEMPb = 0.15*(TMath::Sqrt(2.)); // z-dimension of the Pb slice
1670 Float_t kFibRadZEM = 0.0315; // External fiber radius (including cladding)
1671 Int_t fDivZEM[3] = {92, 0, 20}; // Divisions for EM detector
1672 Float_t fDimZEM[6] = {fZEMLength, 3.5, 3.5, 45., 0., 0.}; // Dimensions of EM detector
1673 Float_t fFibZEM2 = fDimZEM[2]/TMath::Sin(fDimZEM[3]*kDegrad)-kFibRadZEM;
1674 Float_t fFibZEM[3] = {0., 0.0275, fFibZEM2}; // Fibers for EM calorimeter
1675
1676
1677 //-- Create calorimeters geometry
1678
1679 // -------------------------------------------------------------------------------
1680 //--> Neutron calorimeter (ZN)
1681
1682 gMC->Gsvolu("ZNEU", "BOX ", idtmed[1], fDimZN, 3); // Passive material
1683 gMC->Gsvolu("ZNF1", "TUBE", idtmed[3], fFibZN, 3); // Active material
1684 gMC->Gsvolu("ZNF2", "TUBE", idtmed[4], fFibZN, 3);
1685 gMC->Gsvolu("ZNF3", "TUBE", idtmed[4], fFibZN, 3);
1686 gMC->Gsvolu("ZNF4", "TUBE", idtmed[3], fFibZN, 3);
1687 gMC->Gsvolu("ZNG1", "BOX ", idtmed[12], fGrvZN, 3); // Empty grooves
1688 gMC->Gsvolu("ZNG2", "BOX ", idtmed[12], fGrvZN, 3);
1689 gMC->Gsvolu("ZNG3", "BOX ", idtmed[12], fGrvZN, 3);
1690 gMC->Gsvolu("ZNG4", "BOX ", idtmed[12], fGrvZN, 3);
1691
1692 // Divide ZNEU in towers (for hits purposes)
1693
1694 gMC->Gsdvn("ZNTX", "ZNEU", fTowZN[0], 1); // x-tower
1695 gMC->Gsdvn("ZN1 ", "ZNTX", fTowZN[1], 2); // y-tower
1696
1697 //-- Divide ZN1 in minitowers
1698 // fDivZN[0]= NUMBER OF FIBERS PER TOWER ALONG X-AXIS,
1699 // fDivZN[1]= NUMBER OF FIBERS PER TOWER ALONG Y-AXIS
1700 // (4 fibres per minitower)
1701
1702 gMC->Gsdvn("ZNSL", "ZN1 ", fDivZN[1], 2); // Slices
1703 gMC->Gsdvn("ZNST", "ZNSL", fDivZN[0], 1); // Sticks
1704
1705 // --- Position the empty grooves in the sticks (4 grooves per stick)
1706 Float_t dx = fDimZN[0] / fDivZN[0] / 4.;
1707 Float_t dy = fDimZN[1] / fDivZN[1] / 4.;
1708
1709 gMC->Gspos("ZNG1", 1, "ZNST", 0.-dx, 0.+dy, 0., 0, "ONLY");
1710 gMC->Gspos("ZNG2", 1, "ZNST", 0.+dx, 0.+dy, 0., 0, "ONLY");
1711 gMC->Gspos("ZNG3", 1, "ZNST", 0.-dx, 0.-dy, 0., 0, "ONLY");
1712 gMC->Gspos("ZNG4", 1, "ZNST", 0.+dx, 0.-dy, 0., 0, "ONLY");
1713
1714 // --- Position the fibers in the grooves
1715 gMC->Gspos("ZNF1", 1, "ZNG1", 0., 0., 0., 0, "ONLY");
1716 gMC->Gspos("ZNF2", 1, "ZNG2", 0., 0., 0., 0, "ONLY");
1717 gMC->Gspos("ZNF3", 1, "ZNG3", 0., 0., 0., 0, "ONLY");
1718 gMC->Gspos("ZNF4", 1, "ZNG4", 0., 0., 0., 0, "ONLY");
1719
1720 // --- Position the neutron calorimeter in ZDC
1721 // -- Rotation of ZDCs
1722 Int_t irotzdc;
1723 gMC->Matrix(irotzdc, 90., 180., 90., 90., 180., 0.);
1724 //
1725 gMC->Gspos("ZNEU", 1, "ZDC ", fPosZN1[0], fPosZN1[1], fPosZN1[2]-fDimZN[2], irotzdc, "ONLY");
1726 //Ch debug
1727 //printf("\n ZN -> %f < z < %f cm\n",fPosZN[2],fPosZN[2]-2*fDimZN[2]);
1728
1729 // --- Position the neutron calorimeter in ZDC2 (left line)
1730 // -- No Rotation of ZDCs
1731 gMC->Gspos("ZNEU", 2, "ZDC2", fPosZN2[0], fPosZN2[1], fPosZN2[2]+fDimZN[2], 0, "ONLY");
1732 //Ch debug
1733 //printf("\n ZN left -> %f < z < %f cm\n",fPosZNl[2],fPosZNl[2]+2*fDimZN[2]);
1734
1735
1736 // -------------------------------------------------------------------------------
1737 //--> Proton calorimeter (ZP)
1738
1739 gMC->Gsvolu("ZPRO", "BOX ", idtmed[2], fDimZP, 3); // Passive material
1740 gMC->Gsvolu("ZPF1", "TUBE", idtmed[3], fFibZP, 3); // Active material
1741 gMC->Gsvolu("ZPF2", "TUBE", idtmed[4], fFibZP, 3);
1742 gMC->Gsvolu("ZPF3", "TUBE", idtmed[4], fFibZP, 3);
1743 gMC->Gsvolu("ZPF4", "TUBE", idtmed[3], fFibZP, 3);
1744 gMC->Gsvolu("ZPG1", "BOX ", idtmed[12], fGrvZP, 3); // Empty grooves
1745 gMC->Gsvolu("ZPG2", "BOX ", idtmed[12], fGrvZP, 3);
1746 gMC->Gsvolu("ZPG3", "BOX ", idtmed[12], fGrvZP, 3);
1747 gMC->Gsvolu("ZPG4", "BOX ", idtmed[12], fGrvZP, 3);
1748
1749 //-- Divide ZPRO in towers(for hits purposes)
1750
1751 gMC->Gsdvn("ZPTX", "ZPRO", fTowZP[0], 1); // x-tower
1752 gMC->Gsdvn("ZP1 ", "ZPTX", fTowZP[1], 2); // y-tower
1753
1754
1755 //-- Divide ZP1 in minitowers
1756 // fDivZP[0]= NUMBER OF FIBERS ALONG X-AXIS PER MINITOWER,
1757 // fDivZP[1]= NUMBER OF FIBERS ALONG Y-AXIS PER MINITOWER
1758 // (4 fiber per minitower)
1759
1760 gMC->Gsdvn("ZPSL", "ZP1 ", fDivZP[1], 2); // Slices
1761 gMC->Gsdvn("ZPST", "ZPSL", fDivZP[0], 1); // Sticks
1762
1763 // --- Position the empty grooves in the sticks (4 grooves per stick)
1764 dx = fDimZP[0] / fTowZP[0] / fDivZP[0] / 2.;
1765 dy = fDimZP[1] / fTowZP[1] / fDivZP[1] / 2.;
1766
1767 gMC->Gspos("ZPG1", 1, "ZPST", 0.-dx, 0.+dy, 0., 0, "ONLY");
1768 gMC->Gspos("ZPG2", 1, "ZPST", 0.+dx, 0.+dy, 0., 0, "ONLY");
1769 gMC->Gspos("ZPG3", 1, "ZPST", 0.-dx, 0.-dy, 0., 0, "ONLY");
1770 gMC->Gspos("ZPG4", 1, "ZPST", 0.+dx, 0.-dy, 0., 0, "ONLY");
1771
1772 // --- Position the fibers in the grooves
1773 gMC->Gspos("ZPF1", 1, "ZPG1", 0., 0., 0., 0, "ONLY");
1774 gMC->Gspos("ZPF2", 1, "ZPG2", 0., 0., 0., 0, "ONLY");
1775 gMC->Gspos("ZPF3", 1, "ZPG3", 0., 0., 0., 0, "ONLY");
1776 gMC->Gspos("ZPF4", 1, "ZPG4", 0., 0., 0., 0, "ONLY");
1777
1778
1779 // --- Position the proton calorimeter in ZDC
1780 gMC->Gspos("ZPRO", 1, "ZDC ", fPosZP1[0], fPosZP1[1], fPosZP1[2]-fDimZP[2], irotzdc, "ONLY");
1781 //Ch debug
1782 //printf("\n ZP -> %f < z < %f cm\n",fPosZP[2],fPosZP[2]-2*fDimZP[2]);
1783
1784 // --- Position the proton calorimeter in ZDC2 (left line)
1785 // --- No Rotation of ZDCs
1786 gMC->Gspos("ZPRO", 2, "ZDC2", fPosZP2[0], fPosZP2[1], fPosZP2[2]+fDimZP[2], 0, "ONLY");
1787 //Ch debug
1788 //printf("\n ZP left -> %f < z < %f cm\n",fPosZPl[2],fPosZPl[2]+2*fDimZP[2]);
1789
1790
1791 // -------------------------------------------------------------------------------
1792 // -> EM calorimeter (ZEM)
1793
1794 gMC->Gsvolu("ZEM ", "PARA", idtmed[10], fDimZEM, 6);
1795
1796 Int_t irot1, irot2;
1797 gMC->Matrix(irot1,0.,0.,90.,90.,-90.,0.); // Rotation matrix 1
1798 gMC->Matrix(irot2,180.,0.,90.,fDimZEM[3]+90.,90.,fDimZEM[3]);// Rotation matrix 2
1799 //printf("irot1 = %d, irot2 = %d \n", irot1, irot2);
1800
1801 gMC->Gsvolu("ZEMF", "TUBE", idtmed[3], fFibZEM, 3); // Active material
1802
1803 gMC->Gsdvn("ZETR", "ZEM ", fDivZEM[2], 1); // Tranches
1804
1805 dimPb[0] = kDimZEMPb; // Lead slices
1806 dimPb[1] = fDimZEM[2];
1807 dimPb[2] = fDimZEM[1];
1808 //dimPb[3] = fDimZEM[3]; //controllare
1809 dimPb[3] = 90.-fDimZEM[3]; //originale
1810 dimPb[4] = 0.;
1811 dimPb[5] = 0.;
1812 gMC->Gsvolu("ZEL0", "PARA", idtmed[5], dimPb, 6);
1813 gMC->Gsvolu("ZEL1", "PARA", idtmed[5], dimPb, 6);
1814 gMC->Gsvolu("ZEL2", "PARA", idtmed[5], dimPb, 6);
1815
1816 // --- Position the lead slices in the tranche
1817 Float_t zTran = fDimZEM[0]/fDivZEM[2];
1818 Float_t zTrPb = -zTran+kDimZEMPb;
1819 gMC->Gspos("ZEL0", 1, "ZETR", zTrPb, 0., 0., 0, "ONLY");
1820 gMC->Gspos("ZEL1", 1, "ZETR", kDimZEMPb, 0., 0., 0, "ONLY");
1821
1822 // --- Vacuum zone (to be filled with fibres)
1823 dimVoid[0] = (zTran-2*kDimZEMPb)/2.;
1824 dimVoid[1] = fDimZEM[2];
1825 dimVoid[2] = fDimZEM[1];
1826 dimVoid[3] = 90.-fDimZEM[3];
1827 dimVoid[4] = 0.;
1828 dimVoid[5] = 0.;
1829 gMC->Gsvolu("ZEV0", "PARA", idtmed[10], dimVoid,6);
1830 gMC->Gsvolu("ZEV1", "PARA", idtmed[10], dimVoid,6);
1831
1832 // --- Divide the vacuum slice into sticks along x axis
1833 gMC->Gsdvn("ZES0", "ZEV0", fDivZEM[0], 3);
1834 gMC->Gsdvn("ZES1", "ZEV1", fDivZEM[0], 3);
1835
1836 // --- Positioning the fibers into the sticks
1837 gMC->Gspos("ZEMF", 1,"ZES0", 0., 0., 0., irot2, "ONLY");
1838 gMC->Gspos("ZEMF", 1,"ZES1", 0., 0., 0., irot2, "ONLY");
1839
1840 // --- Positioning the vacuum slice into the tranche
1841 Float_t displFib = fDimZEM[1]/fDivZEM[0];
1842 gMC->Gspos("ZEV0", 1,"ZETR", -dimVoid[0], 0., 0., 0, "ONLY");
1843 gMC->Gspos("ZEV1", 1,"ZETR", -dimVoid[0]+zTran, 0., displFib, 0, "ONLY");
1844
1845 // --- Positioning the ZEM into the ZDC - rotation for 90 degrees
1846 // NB -> In AliZDCv3 ZEM is positioned in ALIC (instead of in ZDC) volume
1847 // beacause it's impossible to make a ZDC pcon volume to contain
1848 // both hadronics and EM calorimeters.
1849 gMC->Gspos("ZEM ", 1,"ALIC", -fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY");
1850
1851 // Second EM ZDC (same side w.r.t. IP, just on the other side w.r.t. beam pipe)
1852 gMC->Gspos("ZEM ", 2,"ALIC", fPosZEM[0], fPosZEM[1], fPosZEM[2]+fDimZEM[0], irot1, "ONLY");
1853
1854 // --- Adding last slice at the end of the EM calorimeter
1855 Float_t zLastSlice = fPosZEM[2]+kDimZEMPb+2*fDimZEM[0];
1856 gMC->Gspos("ZEL2", 1,"ALIC", fPosZEM[0], fPosZEM[1], zLastSlice, irot1, "ONLY");
1857 //Ch debug
1858 //printf("\n ZEM lenght = %f cm\n",2*fZEMLength);
1859 //printf("\n ZEM -> %f < z < %f cm\n",fPosZEM[2],fPosZEM[2]+2*fZEMLength+zLastSlice+kDimZEMPb);
1860
1861}
1862
1863//_____________________________________________________________________________
1864void AliZDCv3::DrawModule() const
1865{
1866 //
1867 // Draw a shaded view of the Zero Degree Calorimeter version 1
1868 //
1869
1870 // Set everything unseen
1871 gMC->Gsatt("*", "seen", -1);
1872 //
1873 // Set ALIC mother transparent
1874 gMC->Gsatt("ALIC","SEEN",0);
1875 //
1876 // Set the volumes visible
1877 gMC->Gsatt("ZDC ","SEEN",0);
1878 gMC->Gsatt("QT01","SEEN",1);
1879 gMC->Gsatt("QT02","SEEN",1);
1880 gMC->Gsatt("QT03","SEEN",1);
1881 gMC->Gsatt("QT04","SEEN",1);
1882 gMC->Gsatt("QT05","SEEN",1);
1883 gMC->Gsatt("QT06","SEEN",1);
1884 gMC->Gsatt("QT07","SEEN",1);
1885 gMC->Gsatt("QT08","SEEN",1);
1886 gMC->Gsatt("QT09","SEEN",1);
1887 gMC->Gsatt("QT10","SEEN",1);
1888 gMC->Gsatt("QT11","SEEN",1);
1889 gMC->Gsatt("QT12","SEEN",1);
1890 gMC->Gsatt("QT13","SEEN",1);
1891 gMC->Gsatt("QT14","SEEN",1);
1892 gMC->Gsatt("QT15","SEEN",1);
1893 gMC->Gsatt("QT16","SEEN",1);
1894 gMC->Gsatt("QT17","SEEN",1);
1895 gMC->Gsatt("QT18","SEEN",1);
1896 gMC->Gsatt("QC01","SEEN",1);
1897 gMC->Gsatt("QC02","SEEN",1);
1898 gMC->Gsatt("QC03","SEEN",1);
1899 gMC->Gsatt("QC04","SEEN",1);
1900 gMC->Gsatt("QC05","SEEN",1);
1901 gMC->Gsatt("QTD1","SEEN",1);
1902 gMC->Gsatt("QTD2","SEEN",1);
1903 gMC->Gsatt("QTD3","SEEN",1);
1904 gMC->Gsatt("MQXL","SEEN",1);
1905 gMC->Gsatt("YMQL","SEEN",1);
1906 gMC->Gsatt("MQX ","SEEN",1);
1907 gMC->Gsatt("YMQ ","SEEN",1);
1908 gMC->Gsatt("ZQYX","SEEN",1);
1909 gMC->Gsatt("MD1 ","SEEN",1);
1910 gMC->Gsatt("MD1V","SEEN",1);
1911 gMC->Gsatt("YD1 ","SEEN",1);
1912 gMC->Gsatt("MD2 ","SEEN",1);
1913 gMC->Gsatt("YD2 ","SEEN",1);
1914 gMC->Gsatt("ZNEU","SEEN",0);
1915 gMC->Gsatt("ZNF1","SEEN",0);
1916 gMC->Gsatt("ZNF2","SEEN",0);
1917 gMC->Gsatt("ZNF3","SEEN",0);
1918 gMC->Gsatt("ZNF4","SEEN",0);
1919 gMC->Gsatt("ZNG1","SEEN",0);
1920 gMC->Gsatt("ZNG2","SEEN",0);
1921 gMC->Gsatt("ZNG3","SEEN",0);
1922 gMC->Gsatt("ZNG4","SEEN",0);
1923 gMC->Gsatt("ZNTX","SEEN",0);
1924 gMC->Gsatt("ZN1 ","COLO",4);
1925 gMC->Gsatt("ZN1 ","SEEN",1);
1926 gMC->Gsatt("ZNSL","SEEN",0);
1927 gMC->Gsatt("ZNST","SEEN",0);
1928 gMC->Gsatt("ZPRO","SEEN",0);
1929 gMC->Gsatt("ZPF1","SEEN",0);
1930 gMC->Gsatt("ZPF2","SEEN",0);
1931 gMC->Gsatt("ZPF3","SEEN",0);
1932 gMC->Gsatt("ZPF4","SEEN",0);
1933 gMC->Gsatt("ZPG1","SEEN",0);
1934 gMC->Gsatt("ZPG2","SEEN",0);
1935 gMC->Gsatt("ZPG3","SEEN",0);
1936 gMC->Gsatt("ZPG4","SEEN",0);
1937 gMC->Gsatt("ZPTX","SEEN",0);
1938 gMC->Gsatt("ZP1 ","COLO",6);
1939 gMC->Gsatt("ZP1 ","SEEN",1);
1940 gMC->Gsatt("ZPSL","SEEN",0);
1941 gMC->Gsatt("ZPST","SEEN",0);
1942 gMC->Gsatt("ZEM ","COLO",7);
1943 gMC->Gsatt("ZEM ","SEEN",1);
1944 gMC->Gsatt("ZEMF","SEEN",0);
1945 gMC->Gsatt("ZETR","SEEN",0);
1946 gMC->Gsatt("ZEL0","SEEN",0);
1947 gMC->Gsatt("ZEL1","SEEN",0);
1948 gMC->Gsatt("ZEL2","SEEN",0);
1949 gMC->Gsatt("ZEV0","SEEN",0);
1950 gMC->Gsatt("ZEV1","SEEN",0);
1951 gMC->Gsatt("ZES0","SEEN",0);
1952 gMC->Gsatt("ZES1","SEEN",0);
1953
1954 //
1955 gMC->Gdopt("hide", "on");
1956 gMC->Gdopt("shad", "on");
1957 gMC->Gsatt("*", "fill", 7);
1958 gMC->SetClipBox(".");
1959 gMC->SetClipBox("*", 0, 100, -100, 100, 12000, 16000);
1960 gMC->DefaultRange();
1961 gMC->Gdraw("alic", 40, 30, 0, 488, 220, .07, .07);
1962 gMC->Gdhead(1111, "Zero Degree Calorimeter Version 1");
1963 gMC->Gdman(18, 4, "MAN");
1964}
1965
1966//_____________________________________________________________________________
1967void AliZDCv3::CreateMaterials()
1968{
1969 //
1970 // Create Materials for the Zero Degree Calorimeter
1971 //
1972
1973 Int_t *idtmed = fIdtmed->GetArray();
1974
1975 Float_t dens, ubuf[1], wmat[2], a[2], z[2];
1976 Int_t i;
1977
1978 // --- Store in UBUF r0 for nuclear radius calculation R=r0*A**1/3
1979
1980 // --- Tantalum -> ZN passive material
1981 ubuf[0] = 1.1;
1982 AliMaterial(1, "TANT", 180.95, 73., 16.65, .4, 11.9, ubuf, 1);
1983
1984 // --- Tungsten
1985// ubuf[0] = 1.11;
1986// AliMaterial(1, "TUNG", 183.85, 74., 19.3, .35, 10.3, ubuf, 1);
1987
1988 // --- Brass (CuZn) -> ZP passive material
1989 dens = 8.48;
1990 a[0] = 63.546;
1991 a[1] = 65.39;
1992 z[0] = 29.;
1993 z[1] = 30.;
1994 wmat[0] = .63;
1995 wmat[1] = .37;
1996 AliMixture(2, "BRASS ", a, z, dens, 2, wmat);
1997
1998 // --- SiO2
1999 dens = 2.64;
2000 a[0] = 28.086;
2001 a[1] = 15.9994;
2002 z[0] = 14.;
2003 z[1] = 8.;
2004 wmat[0] = 1.;
2005 wmat[1] = 2.;
2006 AliMixture(3, "SIO2 ", a, z, dens, -2, wmat);
2007
2008 // --- Lead
2009 ubuf[0] = 1.12;
2010 AliMaterial(5, "LEAD", 207.19, 82., 11.35, .56, 18.5, ubuf, 1);
2011
2012 // --- Copper (energy loss taken into account)
2013 ubuf[0] = 1.10;
2014 AliMaterial(6, "COPP0", 63.54, 29., 8.96, 1.4, 0., ubuf, 1);
2015
2016 // --- Copper (energy loss taken into account) *** For the left line
2017 ubuf[0] = 1.10;
2018 AliMaterial(13, "COPP1", 63.54, 29., 8.96, 1.4, 0., ubuf, 1);
2019
2020
2021 // --- Iron (energy loss taken into account)
2022 ubuf[0] = 1.1;
2023 AliMaterial(7, "IRON0", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
2024
2025 // --- Iron (no energy loss)
2026 ubuf[0] = 1.1;
2027 AliMaterial(8, "IRON1", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
2028
2029 // --- Iron (energy loss taken into account) *** For the left line
2030 ubuf[0] = 1.1;
2031 AliMaterial(14, "IRON2", 55.85, 26., 7.87, 1.76, 0., ubuf, 1);
2032
2033 // ---------------------------------------------------------
2034 Float_t aResGas[3]={1.008,12.0107,15.9994};
2035 Float_t zResGas[3]={1.,6.,8.};
2036 Float_t wResGas[3]={0.28,0.28,0.44};
2037 Float_t dResGas = 3.2E-14;
2038
2039 // --- Vacuum (no magnetic field)
2040 AliMixture(10, "VOID", aResGas, zResGas, dResGas, 3, wResGas);
2041 //AliMaterial(10, "VOID", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0);
2042
2043 // --- Vacuum (with magnetic field)
2044 AliMixture(11, "VOIM", aResGas, zResGas, dResGas, 3, wResGas);
2045 //AliMaterial(11, "VOIM", 1e-16, 1e-16, 1e-16, 1e16, 1e16, ubuf,0);
2046
2047 // --- Air (no magnetic field)
2048 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
2049 Float_t zAir[4]={6.,7.,8.,18.};
2050 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
2051 Float_t dAir = 1.20479E-3;
2052 //
2053 AliMixture(12, "Air $", aAir, zAir, dAir, 4, wAir);
2054 //AliMaterial(12, "Air $", 14.61, 7.3, .001205, 30420., 67500., ubuf, 0);
2055
2056 // --- Definition of tracking media:
2057
2058 // --- Tantalum = 1 ;
2059 // --- Brass = 2 ;
2060 // --- Fibers (SiO2) = 3 ;
2061 // --- Fibers (SiO2) = 4 ;
2062 // --- Lead = 5 ;
2063 // --- Copper (with energy loss)= 6 ;
2064 // --- Copper (with energy loss)= 13 ;
2065 // --- Iron (with energy loss) = 7 ;
2066 // --- Iron (without energy loss) = 8 ;
2067 // --- Vacuum (no field) = 10
2068 // --- Vacuum (with field) = 11
2069 // --- Air (no field) = 12
2070
2071 // ****************************************************
2072 // Tracking media parameters
2073 //
2074 Float_t epsil = 0.01; // Tracking precision,
2075 Float_t stmin = 0.01; // Min. value 4 max. step (cm)
2076 Float_t stemax = 1.; // Max. step permitted (cm)
2077 Float_t tmaxfd = 0.; // Maximum angle due to field (degrees)
2078 Float_t deemax = -1.; // Maximum fractional energy loss
2079 Float_t nofieldm = 0.; // Max. field value (no field)
2080 Float_t fieldm = 45.; // Max. field value (with field)
2081 Int_t isvol = 0; // ISVOL =0 -> not sensitive volume
2082 Int_t isvolActive = 1; // ISVOL =1 -> sensitive volume
2083 Int_t inofld = 0; // IFIELD=0 -> no magnetic field
2084 Int_t ifield =2; // IFIELD=2 -> magnetic field defined in AliMagFC.h
2085 // *****************************************************
2086
2087 AliMedium(1, "ZTANT", 1, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2088 AliMedium(2, "ZBRASS",2, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2089 AliMedium(3, "ZSIO2", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2090 AliMedium(4, "ZQUAR", 3, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2091 AliMedium(5, "ZLEAD", 5, isvolActive, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2092 AliMedium(6, "ZCOPP", 6, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2093 AliMedium(7, "ZIRON", 7, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2094 AliMedium(8, "ZIRONN",8, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2095 AliMedium(10,"ZVOID",10, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2096 AliMedium(12,"ZAIR", 12, isvol, inofld, nofieldm, tmaxfd, stemax, deemax, epsil, stmin);
2097 //
2098 AliMedium(11,"ZVOIM",11, isvol, ifield, fieldm, tmaxfd, stemax, deemax, epsil, stmin);
2099
2100 // Thresholds for showering in the ZDCs
2101 i = 1; //tantalum
2102 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
2103 gMC->Gstpar(idtmed[i], "CUTELE", .001);
2104 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
2105 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
2106 i = 2; //brass
2107 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
2108 gMC->Gstpar(idtmed[i], "CUTELE", .001);
2109 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
2110 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
2111 i = 5; //lead
2112 gMC->Gstpar(idtmed[i], "CUTGAM", .001);
2113 gMC->Gstpar(idtmed[i], "CUTELE", .001);
2114 gMC->Gstpar(idtmed[i], "CUTNEU", .01);
2115 gMC->Gstpar(idtmed[i], "CUTHAD", .01);
2116
2117 // Avoid too detailed showering in TDI
2118 i = 6; //copper (ZCOPP)
2119 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
2120 gMC->Gstpar(idtmed[i], "CUTELE", .1);
2121 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
2122 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
2123
2124 // Avoid too detailed showering along the left beam line
2125 i = 13; //copper (ZCOPPL)
2126 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
2127 gMC->Gstpar(idtmed[i], "CUTELE", .1);
2128 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
2129 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
2130
2131 // Avoid too detailed showering along the beam line
2132 i = 7; //iron with energy loss (ZIRON)
2133 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
2134 gMC->Gstpar(idtmed[i], "CUTELE", .1);
2135 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
2136 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
2137
2138 // Avoid too detailed showering along the beam line
2139 i = 8; //iron with energy loss (ZIRONN)
2140 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
2141 gMC->Gstpar(idtmed[i], "CUTELE", .1);
2142 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
2143 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
2144
2145 // Avoid too detailed showering along the beam line
2146 i = 14; //iron with energy loss (ZIRONL)
2147 gMC->Gstpar(idtmed[i], "CUTGAM", .1);
2148 gMC->Gstpar(idtmed[i], "CUTELE", .1);
2149 gMC->Gstpar(idtmed[i], "CUTNEU", 1.);
2150 gMC->Gstpar(idtmed[i], "CUTHAD", 1.);
2151
2152 // Avoid interaction in fibers (only energy loss allowed)
2153 i = 3; //fibers (ZSI02)
2154 gMC->Gstpar(idtmed[i], "DCAY", 0.);
2155 gMC->Gstpar(idtmed[i], "MULS", 0.);
2156 gMC->Gstpar(idtmed[i], "PFIS", 0.);
2157 gMC->Gstpar(idtmed[i], "MUNU", 0.);
2158 gMC->Gstpar(idtmed[i], "LOSS", 1.);
2159 gMC->Gstpar(idtmed[i], "PHOT", 0.);
2160 gMC->Gstpar(idtmed[i], "COMP", 0.);
2161 gMC->Gstpar(idtmed[i], "PAIR", 0.);
2162 gMC->Gstpar(idtmed[i], "BREM", 0.);
2163 gMC->Gstpar(idtmed[i], "DRAY", 0.);
2164 gMC->Gstpar(idtmed[i], "ANNI", 0.);
2165 gMC->Gstpar(idtmed[i], "HADR", 0.);
2166 i = 4; //fibers (ZQUAR)
2167 gMC->Gstpar(idtmed[i], "DCAY", 0.);
2168 gMC->Gstpar(idtmed[i], "MULS", 0.);
2169 gMC->Gstpar(idtmed[i], "PFIS", 0.);
2170 gMC->Gstpar(idtmed[i], "MUNU", 0.);
2171 gMC->Gstpar(idtmed[i], "LOSS", 1.);
2172 gMC->Gstpar(idtmed[i], "PHOT", 0.);
2173 gMC->Gstpar(idtmed[i], "COMP", 0.);
2174 gMC->Gstpar(idtmed[i], "PAIR", 0.);
2175 gMC->Gstpar(idtmed[i], "BREM", 0.);
2176 gMC->Gstpar(idtmed[i], "DRAY", 0.);
2177 gMC->Gstpar(idtmed[i], "ANNI", 0.);
2178 gMC->Gstpar(idtmed[i], "HADR", 0.);
2179
2180 // Avoid interaction in void
2181 i = 11; //void with field
2182 gMC->Gstpar(idtmed[i], "DCAY", 0.);
2183 gMC->Gstpar(idtmed[i], "MULS", 0.);
2184 gMC->Gstpar(idtmed[i], "PFIS", 0.);
2185 gMC->Gstpar(idtmed[i], "MUNU", 0.);
2186 gMC->Gstpar(idtmed[i], "LOSS", 0.);
2187 gMC->Gstpar(idtmed[i], "PHOT", 0.);
2188 gMC->Gstpar(idtmed[i], "COMP", 0.);
2189 gMC->Gstpar(idtmed[i], "PAIR", 0.);
2190 gMC->Gstpar(idtmed[i], "BREM", 0.);
2191 gMC->Gstpar(idtmed[i], "DRAY", 0.);
2192 gMC->Gstpar(idtmed[i], "ANNI", 0.);
2193 gMC->Gstpar(idtmed[i], "HADR", 0.);
2194
2195 //
2196 fMedSensZN = idtmed[1]; // Sensitive volume: ZN passive material
2197 fMedSensZP = idtmed[2]; // Sensitive volume: ZP passive material
2198 fMedSensF1 = idtmed[3]; // Sensitive volume: fibres type 1
2199 fMedSensF2 = idtmed[4]; // Sensitive volume: fibres type 2
2200 fMedSensZEM = idtmed[5]; // Sensitive volume: ZEM passive material
2201 fMedSensCu = idtmed[6]; // Sensitive volume: TDI Cu shield
2202 fMedSensPI = idtmed[7]; // Sensitive volume: beam pipes
2203 fMedSensGR = idtmed[12]; // Sensitive volume: air into the grooves
2204
2205}
2206
2207//_____________________________________________________________________________
2208void AliZDCv3::Init()
2209{
2210 InitTables();
2211}
2212
2213//_____________________________________________________________________________
2214void AliZDCv3::InitTables()
2215{
2216 //
2217 // Read light tables for Cerenkov light production parameterization
2218 //
2219
2220 Int_t k, j;
2221
2222 char *lightfName1,*lightfName2,*lightfName3,*lightfName4,
2223 *lightfName5,*lightfName6,*lightfName7,*lightfName8;
2224 FILE *fp1, *fp2, *fp3, *fp4, *fp5, *fp6, *fp7, *fp8;
2225
2226 // --- Reading light tables for ZN
2227 lightfName1 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362207s");
2228 if((fp1 = fopen(lightfName1,"r")) == NULL){
2229 printf("Cannot open file fp1 \n");
2230 return;
2231 }
2232 lightfName2 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362208s");
2233 if((fp2 = fopen(lightfName2,"r")) == NULL){
2234 printf("Cannot open file fp2 \n");
2235 return;
2236 }
2237 lightfName3 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362209s");
2238 if((fp3 = fopen(lightfName3,"r")) == NULL){
2239 printf("Cannot open file fp3 \n");
2240 return;
2241 }
2242 lightfName4 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620362210s");
2243 if((fp4 = fopen(lightfName4,"r")) == NULL){
2244 printf("Cannot open file fp4 \n");
2245 return;
2246 }
2247
2248 for(k=0; k<fNalfan; k++){
2249 for(j=0; j<fNben; j++){
2250 fscanf(fp1,"%f",&fTablen[0][k][j]);
2251 fscanf(fp2,"%f",&fTablen[1][k][j]);
2252 fscanf(fp3,"%f",&fTablen[2][k][j]);
2253 fscanf(fp4,"%f",&fTablen[3][k][j]);
2254 }
2255 }
2256 fclose(fp1);
2257 fclose(fp2);
2258 fclose(fp3);
2259 fclose(fp4);
2260
2261 // --- Reading light tables for ZP and ZEM
2262 lightfName5 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552207s");
2263 if((fp5 = fopen(lightfName5,"r")) == NULL){
2264 printf("Cannot open file fp5 \n");
2265 return;
2266 }
2267 lightfName6 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552208s");
2268 if((fp6 = fopen(lightfName6,"r")) == NULL){
2269 printf("Cannot open file fp6 \n");
2270 return;
2271 }
2272 lightfName7 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552209s");
2273 if((fp7 = fopen(lightfName7,"r")) == NULL){
2274 printf("Cannot open file fp7 \n");
2275 return;
2276 }
2277 lightfName8 = gSystem->ExpandPathName("$ALICE/$ALICE_LEVEL/ZDC/light22620552210s");
2278 if((fp8 = fopen(lightfName8,"r")) == NULL){
2279 printf("Cannot open file fp8 \n");
2280 return;
2281 }
2282
2283 for(k=0; k<fNalfap; k++){
2284 for(j=0; j<fNbep; j++){
2285 fscanf(fp5,"%f",&fTablep[0][k][j]);
2286 fscanf(fp6,"%f",&fTablep[1][k][j]);
2287 fscanf(fp7,"%f",&fTablep[2][k][j]);
2288 fscanf(fp8,"%f",&fTablep[3][k][j]);
2289 }
2290 }
2291 fclose(fp5);
2292 fclose(fp6);
2293 fclose(fp7);
2294 fclose(fp8);
2295}
2296//_____________________________________________________________________________
2297void AliZDCv3::StepManager()
2298{
2299 //
2300 // Routine called at every step in the Zero Degree Calorimeters
2301 //
2302
2303 Int_t j, vol[2], ibeta=0, ialfa, ibe, nphe;
2304 Float_t x[3], xdet[3], destep, hits[10], m, ekin, um[3], ud[3], be, out;
2305 //Float_t radius;
2306 Float_t xalic[3], z, guiEff, guiPar[4]={0.31,-0.0004,0.0197,0.7958};
2307 TLorentzVector s, p;
2308 const char *knamed;
2309
2310// ((TGeant3*)gMC)->Gpcxyz();
2311
2312
2313 for (j=0;j<10;j++) hits[j]=-999.;
2314
2315 // Right line
2316 // --- This part is for no shower developement in beam pipe and TDI
2317 // If particle interacts with beam pipe or TDI -> return
2318 if((gMC->CurrentMedium() == fMedSensPI) || (gMC->CurrentMedium() == fMedSensCu)){
2319 // If option NoShower is set -> StopTrack
2320 if(fNoShower==1) {
2321 if(gMC->CurrentMedium() == fMedSensPI) {
2322 knamed = gMC->CurrentVolName();
2323 if(!strncmp(knamed,"YMQ",3)) fpLostIT += 1;
2324 if(!strncmp(knamed,"YD1",3)) fpLostD1 += 1;
2325 }
2326 else if(gMC->CurrentMedium() == fMedSensCu){ // NB->Cu = TDI or D1 vacuum chamber
2327 knamed = gMC->CurrentVolName();
2328 if(!strncmp(knamed,"MD1",3)) fpLostD1 += 1;
2329 if(!strncmp(knamed,"QTD",3)) fpLostTDI += 1;
2330 }
2331 printf("\n # of spectators lost in IT = %d\n",fpLostIT);
2332 printf("\n # of spectators lost in D1 = %d\n",fpLostD1);
2333 printf("\n # of spectators lost in TDI = %d\n\n",fpLostTDI);
2334 gMC->StopTrack();
2335 }
2336 return;
2337 }
2338
2339
2340 if((gMC->CurrentMedium() == fMedSensZN) || (gMC->CurrentMedium() == fMedSensZP) ||
2341 (gMC->CurrentMedium() == fMedSensGR) || (gMC->CurrentMedium() == fMedSensF1) ||
2342 (gMC->CurrentMedium() == fMedSensF2) || (gMC->CurrentMedium() == fMedSensZEM)){
2343
2344
2345 //Particle coordinates
2346 gMC->TrackPosition(s);
2347 for(j=0; j<=2; j++) x[j] = s[j];
2348 hits[0] = x[0];
2349 hits[1] = x[1];
2350 hits[2] = x[2];
2351
2352 // Determine in which ZDC the particle is
2353 knamed = gMC->CurrentVolName();
2354 if(!strncmp(knamed,"ZN",2)){
2355 if(x[2]<0.) vol[0]=1;
2356 else if(x[2]>=0.) vol[0]=4;
2357 }
2358 else if(!strncmp(knamed,"ZP",2)){
2359 if(x[2]<0.) vol[0]=2;
2360 else if(x[2]>=0.) vol[0]=5;
2361 }
2362 else if(!strncmp(knamed,"ZE",2)) vol[0]=3;
2363
2364 // Determine in which quadrant the particle is
2365 if(vol[0]==1){ //Quadrant in ZN
2366 // Calculating particle coordinates inside ZN
2367 xdet[0] = x[0]-fPosZN1[0];
2368 xdet[1] = x[1]-fPosZN1[1];
2369 // Calculating quadrant in ZN
2370 if(xdet[0]<=0.){
2371 if(xdet[1]>=0.) vol[1]=1;
2372 else if(xdet[1]<0.) vol[1]=3;
2373 }
2374 else if(xdet[0]>0.){
2375 if(xdet[1]>=0.) vol[1]=2;
2376 else if(xdet[1]<0.) vol[1]=4;
2377 }
2378 if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4))
2379 printf("\n ZDC StepManager->ERROR in ZN!!! vol[1] = %d, xdet[0] = %f,"
2380 "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]);
2381 }
2382
2383 else if(vol[0]==2){ //Quadrant in ZP
2384 // Calculating particle coordinates inside ZP
2385 xdet[0] = x[0]-fPosZP1[0];
2386 xdet[1] = x[1]-fPosZP1[1];
2387 if(xdet[0]>=fDimZP[0]) xdet[0]=fDimZP[0]-0.01;
2388 if(xdet[0]<=-fDimZP[0]) xdet[0]=-fDimZP[0]+0.01;
2389 // Calculating tower in ZP
2390 Float_t xqZP = xdet[0]/(fDimZP[0]/2.);
2391 for(int i=1; i<=4; i++){
2392 if(xqZP>=(i-3) && xqZP<(i-2)){
2393 vol[1] = i;
2394 break;
2395 }
2396 }
2397 if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4))
2398 printf(" ZDC StepManager->ERROR in ZP!!! vol[1] = %d, xdet[0] = %f,"
2399 "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]);
2400 }
2401
2402 // Quadrant in ZEM: vol[1] = 1 -> particle in 1st ZEM (placed at x = 8.5 cm)
2403 // vol[1] = 2 -> particle in 2nd ZEM (placed at x = -8.5 cm)
2404 else if(vol[0] == 3){
2405 if(x[0]>0.){
2406 vol[1] = 1;
2407 // Particle x-coordinate inside ZEM1
2408 xdet[0] = x[0]-fPosZEM[0];
2409 }
2410 else{
2411 vol[1] = 2;
2412 // Particle x-coordinate inside ZEM2
2413 xdet[0] = x[0]+fPosZEM[0];
2414 }
2415 xdet[1] = x[1]-fPosZEM[1];
2416 }
2417
2418 else if(vol[0]==4){ //Quadrant in ZN LEFT
2419 // Calculating particle coordinates inside ZN
2420 xdet[0] = x[0]-fPosZN2[0];
2421 xdet[1] = x[1]-fPosZN2[1];
2422 // Calculating quadrant in ZN
2423 if(xdet[0]<=0.){
2424 if(xdet[1]>=0.) vol[1]=3;
2425 else if(xdet[1]<0.) vol[1]=1;
2426 }
2427 else if(xdet[0]>0.){
2428 if(xdet[1]>=0.) vol[1]=4;
2429 else if(xdet[1]<0.) vol[1]=2;
2430 }
2431 if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4))
2432 printf("\n ZDC StepManager->ERROR in ZN!!! vol[1] = %d, xdet[0] = %f,"
2433 "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]);
2434 }
2435
2436 else if(vol[0]==5){ //Quadrant in ZP LEFT
2437 // Calculating particle coordinates inside ZP
2438 xdet[0] = x[0]-fPosZP2[0];
2439 xdet[1] = x[1]-fPosZP2[1];
2440 if(xdet[0]>=fDimZP[0]) xdet[0]=fDimZP[0]-0.01;
2441 if(xdet[0]<=-fDimZP[0]) xdet[0]=-fDimZP[0]+0.01;
2442 // Calculating tower in ZP
2443 Float_t xqZP = xdet[0]/(fDimZP[0]/2.);
2444 for(int i=1; i<=4; i++){
2445 if(xqZP>=(i-3) && xqZP<(i-2)){
2446 vol[1] = i;
2447 break;
2448 }
2449 }
2450 if((vol[1]!=1) && (vol[1]!=2) && (vol[1]!=3) && (vol[1]!=4))
2451 printf(" ZDC StepManager->ERROR in ZP!!! vol[1] = %d, xdet[0] = %f,"
2452 "xdet[1] = %f\n",vol[1], xdet[0], xdet[1]);
2453 }
2454
2455
2456 // Store impact point and kinetic energy of the ENTERING particle
2457
2458 if(gMC->IsTrackEntering()){
2459 //Particle energy
2460 gMC->TrackMomentum(p);
2461 hits[3] = p[3];
2462 // Impact point on ZDC
2463 hits[4] = xdet[0];
2464 hits[5] = xdet[1];
2465 hits[6] = 0;
2466 hits[7] = 0;
2467 hits[8] = 0;
2468 hits[9] = 0;
2469
2470 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2471
2472 if(fNoShower==1){
2473 fpDetected += 1;
2474 gMC->StopTrack();
2475 if(vol[0]==1) printf("\n # of detected neutrons (ZN right)= %d\n\n",fpDetected);
2476 if(vol[0]==2) printf("\n # of detected protons (ZP right)= %d\n\n",fpDetected);
2477 if(vol[0]==4) printf("\n # of detected neutrons (ZN left) = %d\n\n",fpDetected);
2478 if(vol[0]==5) printf("\n # of detected protons (ZP left) = %d\n\n",fpDetected);
2479 return;
2480 }
2481 }
2482
2483 // Charged particles -> Energy loss
2484 if((destep=gMC->Edep())){
2485 if(gMC->IsTrackStop()){
2486 gMC->TrackMomentum(p);
2487 m = gMC->TrackMass();
2488 ekin = p[3]-m;
2489 hits[9] = ekin;
2490 hits[7] = 0.;
2491 hits[8] = 0.;
2492 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2493 }
2494 else{
2495 hits[9] = destep;
2496 hits[7] = 0.;
2497 hits[8] = 0.;
2498 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2499 }
2500 }
2501 }
2502
2503
2504 // *** Light production in fibres
2505 if((gMC->CurrentMedium() == fMedSensF1) || (gMC->CurrentMedium() == fMedSensF2)){
2506
2507 //Select charged particles
2508 if((destep=gMC->Edep())){
2509
2510 // Particle velocity
2511 Float_t beta = 0.;
2512 gMC->TrackMomentum(p);
2513 Float_t ptot=TMath::Sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]);
2514 if(p[3] > 0.00001) beta = ptot/p[3];
2515 else return;
2516 if(beta<0.67)return;
2517 else if((beta>=0.67) && (beta<=0.75)) ibeta = 0;
2518 else if((beta>0.75) && (beta<=0.85)) ibeta = 1;
2519 else if((beta>0.85) && (beta<=0.95)) ibeta = 2;
2520 else if(beta>0.95) ibeta = 3;
2521
2522 // Angle between particle trajectory and fibre axis
2523 // 1 -> Momentum directions
2524 um[0] = p[0]/ptot;
2525 um[1] = p[1]/ptot;
2526 um[2] = p[2]/ptot;
2527 gMC->Gmtod(um,ud,2);
2528 // 2 -> Angle < limit angle
2529 Double_t alfar = TMath::ACos(ud[2]);
2530 Double_t alfa = alfar*kRaddeg;
2531 if(alfa>=110.) return;
2532 //
2533 ialfa = Int_t(1.+alfa/2.);
2534
2535 // Distance between particle trajectory and fibre axis
2536 gMC->TrackPosition(s);
2537 for(j=0; j<=2; j++){
2538 x[j] = s[j];
2539 }
2540 gMC->Gmtod(x,xdet,1);
2541 if(TMath::Abs(ud[0])>0.00001){
2542 Float_t dcoeff = ud[1]/ud[0];
2543 be = TMath::Abs((xdet[1]-dcoeff*xdet[0])/TMath::Sqrt(dcoeff*dcoeff+1.));
2544 }
2545 else{
2546 be = TMath::Abs(ud[0]);
2547 }
2548
2549 ibe = Int_t(be*1000.+1);
2550 //if((vol[0]==1)) radius = fFibZN[1];
2551 //else if((vol[0]==2)) radius = fFibZP[1];
2552
2553 //Looking into the light tables
2554 Float_t charge = gMC->TrackCharge();
2555
2556 if((vol[0]==1)) { // (1) ZN fibres
2557 if(ibe>fNben) ibe=fNben;
2558 out = charge*charge*fTablen[ibeta][ialfa][ibe];
2559 nphe = gRandom->Poisson(out);
2560 // Ch. debug
2561 //if(ibeta==3) printf("\t %f \t %f \t %f\n",alfa, be, out);
2562 //printf("\t ibeta = %d, ialfa = %d, ibe = %d -> nphe = %d\n\n",ibeta,ialfa,ibe,nphe);
2563 if(gMC->CurrentMedium() == fMedSensF1){
2564 hits[7] = nphe; //fLightPMQ
2565 hits[8] = 0;
2566 hits[9] = 0;
2567 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2568 }
2569 else{
2570 hits[7] = 0;
2571 hits[8] = nphe; //fLightPMC
2572 hits[9] = 0;
2573 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2574 }
2575 }
2576 else if((vol[0]==2)) { // (2) ZP fibres
2577 if(ibe>fNbep) ibe=fNbep;
2578 out = charge*charge*fTablep[ibeta][ialfa][ibe];
2579 nphe = gRandom->Poisson(out);
2580 if(gMC->CurrentMedium() == fMedSensF1){
2581 hits[7] = nphe; //fLightPMQ
2582 hits[8] = 0;
2583 hits[9] = 0;
2584 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2585 }
2586 else{
2587 hits[7] = 0;
2588 hits[8] = nphe; //fLightPMC
2589 hits[9] = 0;
2590 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2591 }
2592 }
2593 else if((vol[0]==3)) { // (3) ZEM fibres
2594 if(ibe>fNbep) ibe=fNbep;
2595 out = charge*charge*fTablep[ibeta][ialfa][ibe];
2596 gMC->TrackPosition(s);
2597 for(j=0; j<=2; j++){
2598 xalic[j] = s[j];
2599 }
2600 // z-coordinate from ZEM front face
2601 // NB-> fPosZEM[2]+fZEMLength = -1000.+2*10.3 = 979.69 cm
2602 z = -xalic[2]+fPosZEM[2]+2*fZEMLength-xalic[1];
2603// z = xalic[2]-fPosZEM[2]-fZEMLength-xalic[1]*(TMath::Tan(45.*kDegrad));
2604// printf("\n fPosZEM[2]+2*fZEMLength = %f", fPosZEM[2]+2*fZEMLength);
2605 guiEff = guiPar[0]*(guiPar[1]*z*z+guiPar[2]*z+guiPar[3]);
2606 out = out*guiEff;
2607 nphe = gRandom->Poisson(out);
2608// printf(" out*guiEff = %f nphe = %d", out, nphe);
2609 if(vol[1] == 1){
2610 hits[7] = 0;
2611 hits[8] = nphe; //fLightPMC (ZEM1)
2612 hits[9] = 0;
2613 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2614 }
2615 else{
2616 hits[7] = nphe; //fLightPMQ (ZEM2)
2617 hits[8] = 0;
2618 hits[9] = 0;
2619 AddHit(gAlice->GetMCApp()->GetCurrentTrackNumber(), vol, hits);
2620 }
2621 }
2622 }
2623 }
2624}