]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - ITS/AliITSClusterFinderSDD.cxx
Transition to NewIO
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//
19// Cluster finder
20// for Silicon
21// Drift Detector
22//
23#include <Riostream.h>
24
25#include <TMath.h>
26#include <math.h>
27
28#include "AliITSClusterFinderSDD.h"
29#include "AliITSMapA1.h"
30#include "AliITS.h"
31#include "AliITSdigit.h"
32#include "AliITSRawCluster.h"
33#include "AliITSRecPoint.h"
34#include "AliITSsegmentation.h"
35#include "AliITSresponseSDD.h"
36#include "AliRun.h"
37
38ClassImp(AliITSClusterFinderSDD)
39
40//______________________________________________________________________
41AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
42 AliITSresponse *response,
43 TClonesArray *digits,
44 TClonesArray *recp){
45 // standard constructor
46
47 fSegmentation = seg;
48 fResponse = response;
49 fDigits = digits;
50 fClusters = recp;
51 fNclusters = fClusters->GetEntriesFast();
52 SetCutAmplitude();
53 SetDAnode();
54 SetDTime();
55 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
56 // SetMinPeak();
57 SetMinNCells();
58 SetMaxNCells();
59 SetTimeCorr();
60 SetMinCharge();
61 fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
62}
63//______________________________________________________________________
64AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
65 // default constructor
66
67 fSegmentation = 0;
68 fResponse = 0;
69 fDigits = 0;
70 fClusters = 0;
71 fNclusters = 0;
72 fMap = 0;
73 fCutAmplitude = 0;
74 fDAnode = 0;
75 fDTime = 0;
76 fMinPeak = 0;
77 fMinNCells = 0;
78 fMaxNCells = 0;
79 fTimeCorr = 0;
80 fMinCharge = 0;
81 /*
82 SetDAnode();
83 SetDTime();
84 SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
85 SetMinNCells();
86 SetMaxNCells();
87 SetTimeCorr();
88 SetMinCharge();
89 */
90}
91//____________________________________________________________________________
92AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
93 // destructor
94
95 if(fMap) delete fMap;
96}
97//______________________________________________________________________
98void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
99 // set the signal threshold for cluster finder
100 Float_t baseline,noise,noiseAfterEl;
101
102 fResponse->GetNoiseParam(noise,baseline);
103 noiseAfterEl = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
104 fCutAmplitude = (Int_t)((baseline + nsigma*noiseAfterEl));
105}
106//______________________________________________________________________
107void AliITSClusterFinderSDD::Find1DClusters(){
108 // find 1D clusters
109 static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
110
111 // retrieve the parameters
112 Int_t fNofMaps = fSegmentation->Npz();
113 Int_t fMaxNofSamples = fSegmentation->Npx();
114 Int_t fNofAnodes = fNofMaps/2;
115 Int_t dummy = 0;
116 Float_t fTimeStep = fSegmentation->Dpx(dummy);
117 Float_t fSddLength = fSegmentation->Dx();
118 Float_t fDriftSpeed = fResponse->DriftSpeed();
119 Float_t anodePitch = fSegmentation->Dpz(dummy);
120
121 // map the signal
122 fMap->ClearMap();
123 fMap->SetThreshold(fCutAmplitude);
124 fMap->FillMap();
125
126 Float_t noise;
127 Float_t baseline;
128 fResponse->GetNoiseParam(noise,baseline);
129
130 Int_t nofFoundClusters = 0;
131 Int_t i;
132 Float_t **dfadc = new Float_t*[fNofAnodes];
133 for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
134 Float_t fadc = 0.;
135 Float_t fadc1 = 0.;
136 Float_t fadc2 = 0.;
137 Int_t j,k,idx,l,m;
138 for(j=0;j<2;j++) {
139 for(k=0;k<fNofAnodes;k++) {
140 idx = j*fNofAnodes+k;
141 // signal (fadc) & derivative (dfadc)
142 dfadc[k][255]=0.;
143 for(l=0; l<fMaxNofSamples; l++) {
144 fadc2=(Float_t)fMap->GetSignal(idx,l);
145 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
146 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
147 } // samples
148 } // anodes
149
150 for(k=0;k<fNofAnodes;k++) {
151 //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
152 idx = j*fNofAnodes+k;
153 Int_t imax = 0;
154 Int_t imaxd = 0;
155 Int_t it = 0;
156 while(it <= fMaxNofSamples-3) {
157 imax = it;
158 imaxd = it;
159 // maximum of signal
160 Float_t fadcmax = 0.;
161 Float_t dfadcmax = 0.;
162 Int_t lthrmina = 1;
163 Int_t lthrmint = 3;
164 Int_t lthra = 1;
165 Int_t lthrt = 0;
166 for(m=0;m<20;m++) {
167 Int_t id = it+m;
168 if(id>=fMaxNofSamples) break;
169 fadc=(float)fMap->GetSignal(idx,id);
170 if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
171 if(fadc > (float)fCutAmplitude) {
172 lthrt++;
173 } // end if
174 if(dfadc[k][id] > dfadcmax) {
175 dfadcmax = dfadc[k][id];
176 imaxd = id;
177 } // end if
178 } // end for m
179 it = imaxd;
180 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
181 // cluster charge
182 Int_t tstart = it-2;
183 if(tstart < 0) tstart = 0;
184 Bool_t ilcl = 0;
185 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
186 if(ilcl) {
187 nofFoundClusters++;
188 Int_t tstop = tstart;
189 Float_t dfadcmin = 10000.;
190 Int_t ij;
191 for(ij=0; ij<20; ij++) {
192 if(tstart+ij > 255) { tstop = 255; break; }
193 fadc=(float)fMap->GetSignal(idx,tstart+ij);
194 if((dfadc[k][tstart+ij] < dfadcmin) &&
195 (fadc > fCutAmplitude)) {
196 tstop = tstart+ij+5;
197 if(tstop > 255) tstop = 255;
198 dfadcmin = dfadc[k][it+ij];
199 } // end if
200 } // end for ij
201
202 Float_t clusterCharge = 0.;
203 Float_t clusterAnode = k+0.5;
204 Float_t clusterTime = 0.;
205 Int_t clusterMult = 0;
206 Float_t clusterPeakAmplitude = 0.;
207 Int_t its,peakpos = -1;
208 Float_t n, baseline;
209 fResponse->GetNoiseParam(n,baseline);
210 for(its=tstart; its<=tstop; its++) {
211 fadc=(float)fMap->GetSignal(idx,its);
212 if(fadc>baseline) fadc -= baseline;
213 else fadc = 0.;
214 clusterCharge += fadc;
215 // as a matter of fact we should take the peak
216 // pos before FFT
217 // to get the list of tracks !!!
218 if(fadc > clusterPeakAmplitude) {
219 clusterPeakAmplitude = fadc;
220 //peakpos=fMap->GetHitIndex(idx,its);
221 Int_t shift = (int)(fTimeCorr/fTimeStep);
222 if(its>shift && its<(fMaxNofSamples-shift))
223 peakpos = fMap->GetHitIndex(idx,its+shift);
224 else peakpos = fMap->GetHitIndex(idx,its);
225 if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
226 } // end if
227 clusterTime += fadc*its;
228 if(fadc > 0) clusterMult++;
229 if(its == tstop) {
230 clusterTime /= (clusterCharge/fTimeStep); // ns
231 if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
232 //ns
233 } // end if
234 } // end for its
235
236 Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
237 anodePitch;
238 Float_t clusterDriftPath = clusterTime*fDriftSpeed;
239 clusterDriftPath = fSddLength-clusterDriftPath;
240 if(clusterCharge <= 0.) break;
241 AliITSRawClusterSDD clust(j+1,//i
242 clusterAnode,clusterTime,//ff
243 clusterCharge, //f
244 clusterPeakAmplitude, //f
245 peakpos, //i
246 0.,0.,clusterDriftPath,//fff
247 clusteranodePath, //f
248 clusterMult, //i
249 0,0,0,0,0,0,0);//7*i
250 iTS->AddCluster(1,&clust);
251 it = tstop;
252 } // ilcl
253 it++;
254 } // while (samples)
255 } // anodes
256 } // detectors (2)
257
258 for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
259 delete [] dfadc;
260
261 return;
262}
263
264
265
266//______________________________________________________________________
267void AliITSClusterFinderSDD::Find1DClustersE(){
268 // find 1D clusters
269 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
270 // retrieve the parameters
271 Int_t fNofMaps = fSegmentation->Npz();
272 Int_t fMaxNofSamples = fSegmentation->Npx();
273 Int_t fNofAnodes = fNofMaps/2;
274 Int_t dummy=0;
275 Float_t fTimeStep = fSegmentation->Dpx( dummy );
276 Float_t fSddLength = fSegmentation->Dx();
277 Float_t fDriftSpeed = fResponse->DriftSpeed();
278 Float_t anodePitch = fSegmentation->Dpz( dummy );
279 Float_t n, baseline;
280 fResponse->GetNoiseParam( n, baseline );
281 // map the signal
282 fMap->ClearMap();
283 fMap->SetThreshold( fCutAmplitude );
284 fMap->FillMap();
285
286 Int_t nClu = 0;
287 // cout << "Search cluster... "<< endl;
288 for( Int_t j=0; j<2; j++ ){
289 for( Int_t k=0; k<fNofAnodes; k++ ){
290 Int_t idx = j*fNofAnodes+k;
291 Bool_t on = kFALSE;
292 Int_t start = 0;
293 Int_t nTsteps = 0;
294 Float_t fmax = 0.;
295 Int_t lmax = 0;
296 Float_t charge = 0.;
297 Float_t time = 0.;
298 Float_t anode = k+0.5;
299 Int_t peakpos = -1;
300 for( Int_t l=0; l<fMaxNofSamples; l++ ){
301 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
302 if( fadc > 0.0 ){
303 if( on == kFALSE && l<fMaxNofSamples-4){
304 // star RawCluster (reset var.)
305 Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
306 if( fadc1 < fadc ) continue;
307 start = l;
308 fmax = 0.;
309 lmax = 0;
310 time = 0.;
311 charge = 0.;
312 on = kTRUE;
313 nTsteps = 0;
314 } // end if on...
315 nTsteps++ ;
316 if( fadc > baseline ) fadc -= baseline;
317 else fadc=0.;
318 charge += fadc;
319 time += fadc*l;
320 if( fadc > fmax ){
321 fmax = fadc;
322 lmax = l;
323 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
324 if( l > shift && l < (fMaxNofSamples-shift) )
325 peakpos = fMap->GetHitIndex( idx, l+shift );
326 else
327 peakpos = fMap->GetHitIndex( idx, l );
328 if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
329 } // end if fadc
330 }else{ // end fadc>0
331 if( on == kTRUE ){
332 if( nTsteps > 2 ){
333 // min # of timesteps for a RawCluster
334 // Found a RawCluster...
335 Int_t stop = l-1;
336 time /= (charge/fTimeStep); // ns
337 // time = lmax*fTimeStep; // ns
338 if( time > fTimeCorr ) time -= fTimeCorr; // ns
339 Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
340 Float_t driftPath = time*fDriftSpeed;
341 driftPath = fSddLength-driftPath;
342 AliITSRawClusterSDD clust(j+1,anode,time,charge,
343 fmax, peakpos,0.,0.,
344 driftPath,anodePath,
345 nTsteps,start,stop,
346 start, stop, 1, k, k );
347 iTS->AddCluster( 1, &clust );
348 // clust.PrintInfo();
349 nClu++;
350 } // end if nTsteps
351 on = kFALSE;
352 } // end if on==kTRUE
353 } // end if fadc>0
354 } // samples
355 } // anodes
356 } // wings
357 // cout << "# Rawclusters " << nClu << endl;
358 return;
359}
360//_______________________________________________________________________
361Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
362 Int_t *peakX, Int_t *peakZ,
363 Float_t *peakAmp, Float_t minpeak ){
364 // search peaks on a 2D cluster
365 Int_t npeak = 0; // # peaks
366 Int_t i,j;
367 // search peaks
368 for( Int_t z=1; z<zdim-1; z++ ){
369 for( Int_t x=1; x<xdim-2; x++ ){
370 Float_t sxz = spect[x*zdim+z];
371 Float_t sxz1 = spect[(x+1)*zdim+z];
372 Float_t sxz2 = spect[(x-1)*zdim+z];
373 // search a local max. in s[x,z]
374 if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
375 if( sxz >= spect[(x+1)*zdim+z ] && sxz >= spect[(x-1)*zdim+z ] &&
376 sxz >= spect[x*zdim +z+1] && sxz >= spect[x*zdim +z-1] &&
377 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
378 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
379 // peak found
380 peakX[npeak] = x;
381 peakZ[npeak] = z;
382 peakAmp[npeak] = sxz;
383 npeak++;
384 } // end if ....
385 } // end for x
386 } // end for z
387 // search groups of peaks with same amplitude.
388 Int_t *flag = new Int_t[npeak];
389 for( i=0; i<npeak; i++ ) flag[i] = 0;
390 for( i=0; i<npeak; i++ ){
391 for( j=0; j<npeak; j++ ){
392 if( i==j) continue;
393 if( flag[j] > 0 ) continue;
394 if( peakAmp[i] == peakAmp[j] &&
395 TMath::Abs(peakX[i]-peakX[j])<=1 &&
396 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
397 if( flag[i] == 0) flag[i] = i+1;
398 flag[j] = flag[i];
399 } // end if ...
400 } // end for j
401 } // end for i
402 // make average of peak groups
403 for( i=0; i<npeak; i++ ){
404 Int_t nFlag = 1;
405 if( flag[i] <= 0 ) continue;
406 for( j=0; j<npeak; j++ ){
407 if( i==j ) continue;
408 if( flag[j] != flag[i] ) continue;
409 peakX[i] += peakX[j];
410 peakZ[i] += peakZ[j];
411 nFlag++;
412 npeak--;
413 for( Int_t k=j; k<npeak; k++ ){
414 peakX[k] = peakX[k+1];
415 peakZ[k] = peakZ[k+1];
416 peakAmp[k] = peakAmp[k+1];
417 flag[k] = flag[k+1];
418 } // end for k
419 j--;
420 } // end for j
421 if( nFlag > 1 ){
422 peakX[i] /= nFlag;
423 peakZ[i] /= nFlag;
424 } // end fi nFlag
425 } // end for i
426 delete [] flag;
427 return( npeak );
428}
429//______________________________________________________________________
430void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
431 Float_t *spe, Float_t *integral){
432 // function used to fit the clusters
433 // par -> parameters..
434 // par[0] number of peaks.
435 // for each peak i=1, ..., par[0]
436 // par[i] = Ampl.
437 // par[i+1] = xpos
438 // par[i+2] = zpos
439 // par[i+3] = tau
440 // par[i+4] = sigma.
441 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
442 const Int_t knParam = 5;
443 Int_t npeak = (Int_t)par[0];
444
445 memset( spe, 0, sizeof( Float_t )*zdim*xdim );
446
447 Int_t k = 1;
448 for( Int_t i=0; i<npeak; i++ ){
449 if( integral != 0 ) integral[i] = 0.;
450 Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
451 Float_t t2 = par[k+3]; // PASCAL
452 if( electronics == 2 ) { t2 *= t2; t2 *= 2; } // OLA
453 for( Int_t z=0; z<zdim; z++ ){
454 for( Int_t x=0; x<xdim; x++ ){
455 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
456 Float_t x2 = 0.;
457 Float_t signal = 0.;
458 if( electronics == 1 ){ // PASCAL
459 x2 = (x-par[k+1]+t2)/t2;
460 signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
461 // signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
462 }else if( electronics == 2 ) { // OLA
463 x2 = (x-par[k+1])*(x-par[k+1])/t2;
464 signal = par[k] * exp( -x2 - z2 );
465 } else {
466 Warning("PeakFunc","Wrong SDD Electronics = %d",electronics);
467 // exit( 1 );
468 } // end if electronicx
469 spe[x*zdim+z] += signal;
470 if( integral != 0 ) integral[i] += signal;
471 } // end for x
472 } // end for z
473 k += knParam;
474 } // end for i
475 return;
476}
477//__________________________________________________________________________
478Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
479 Float_t *speFit ) const{
480 // EVALUATES UNNORMALIZED CHI-SQUARED
481 Float_t chi2 = 0.;
482 for( Int_t z=0; z<zdim; z++ ){
483 for( Int_t x=1; x<xdim-1; x++ ){
484 Int_t index = x*zdim+z;
485 Float_t tmp = spe[index] - speFit[index];
486 chi2 += tmp*tmp;
487 } // end for x
488 } // end for z
489 return( chi2 );
490}
491//_______________________________________________________________________
492void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
493 Float_t *prm0,Float_t *steprm,
494 Float_t *chisqr,Float_t *spe,
495 Float_t *speFit ){
496 //
497 Int_t k, nnn, mmm, i;
498 Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
499 const Int_t knParam = 5;
500 Int_t npeak = (Int_t)param[0];
501 for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
502 for( k=1; k<(npeak*knParam+1); k++ ){
503 p1 = param[k];
504 delta = steprm[k];
505 d1 = delta;
506 // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
507 if( fabs( p1 ) > 1.0E-6 )
508 if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
509 else delta = (Float_t)1.0E-4;
510 // EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
511 PeakFunc( xdim, zdim, param, speFit );
512 chisq1 = ChiSqr( xdim, zdim, spe, speFit );
513 p2 = p1+delta;
514 param[k] = p2;
515 PeakFunc( xdim, zdim, param, speFit );
516 chisq2 = ChiSqr( xdim, zdim, spe, speFit );
517 if( chisq1 < chisq2 ){
518 // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
519 delta = -delta;
520 t = p1;
521 p1 = p2;
522 p2 = t;
523 t = chisq1;
524 chisq1 = chisq2;
525 chisq2 = t;
526 } // end if
527 i = 1; nnn = 0;
528 do { // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
529 nnn++;
530 p3 = p2 + delta;
531 mmm = nnn - (nnn/5)*5; // multiplo de 5
532 if( mmm == 0 ){
533 d1 = delta;
534 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW
535 delta *= 5;
536 } // end if
537 param[k] = p3;
538 // Constrain paramiters
539 Int_t kpos = (k-1) % knParam;
540 switch( kpos ){
541 case 0 :
542 if( param[k] <= 20 ) param[k] = fMinPeak;
543 break;
544 case 1 :
545 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
546 break;
547 case 2 :
548 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
549 break;
550 case 3 :
551 if( param[k] < .5 ) param[k] = .5;
552 break;
553 case 4 :
554 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
555 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
556 break;
557 }; // end switch
558 PeakFunc( xdim, zdim, param, speFit );
559 chisq3 = ChiSqr( xdim, zdim, spe, speFit );
560 if( chisq3 < chisq2 && nnn < 50 ){
561 p1 = p2;
562 p2 = p3;
563 chisq1 = chisq2;
564 chisq2 = chisq3;
565 }else i=0;
566 } while( i );
567 // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
568 a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
569 b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
570 if( a!=0 ) p0 = (Float_t)(0.5*b/a);
571 else p0 = 10000;
572 //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
573 // ERRONEOUS EVALUATION OF PARABOLA MINIMUM
574 //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
575 //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
576 //if( fabs( p2-p0 ) > dp ) p0 = p2;
577 param[k] = p0;
578 // Constrain paramiters
579 Int_t kpos = (k-1) % knParam;
580 switch( kpos ){
581 case 0 :
582 if( param[k] <= 20 ) param[k] = fMinPeak;
583 break;
584 case 1 :
585 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
586 break;
587 case 2 :
588 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
589 break;
590 case 3 :
591 if( param[k] < .5 ) param[k] = .5;
592 break;
593 case 4 :
594 if( param[k] < .288 ) param[k] = .288; // 1/sqrt(12) = 0.288
595 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
596 break;
597 }; // end switch
598 PeakFunc( xdim, zdim, param, speFit );
599 chisqt = ChiSqr( xdim, zdim, spe, speFit );
600 // DO NOT ALLOW ERRONEOUS INTERPOLATION
601 if( chisqt <= *chisqr ) *chisqr = chisqt;
602 else param[k] = prm0[k];
603 // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
604 steprm[k] = (param[k]-prm0[k])/5;
605 if( steprm[k] >= d1 ) steprm[k] = d1/5;
606 } // end for k
607 // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
608 PeakFunc( xdim, zdim, param, speFit );
609 *chisqr = ChiSqr( xdim, zdim, spe, speFit );
610 return;
611}
612//_________________________________________________________________________
613Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim,
614 Float_t *param, Float_t *spe,
615 Int_t *niter, Float_t *chir ){
616 // fit method from Comput. Phys. Commun 46(1987) 149
617 const Float_t kchilmt = 0.01; // relative accuracy
618 const Int_t knel = 3; // for parabolic minimization
619 const Int_t knstop = 50; // Max. iteration number
620 const Int_t knParam = 5;
621 Int_t npeak = (Int_t)param[0];
622 // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE
623 if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
624 Float_t degFree = (xdim*zdim - npeak*knParam)-1;
625 Int_t n, k, iterNum = 0;
626 Float_t *prm0 = new Float_t[npeak*knParam+1];
627 Float_t *step = new Float_t[npeak*knParam+1];
628 Float_t *schi = new Float_t[npeak*knParam+1];
629 Float_t *sprm[3];
630 sprm[0] = new Float_t[npeak*knParam+1];
631 sprm[1] = new Float_t[npeak*knParam+1];
632 sprm[2] = new Float_t[npeak*knParam+1];
633 Float_t chi0, chi1, reldif, a, b, prmin, dp;
634 Float_t *speFit = new Float_t[ xdim*zdim ];
635 PeakFunc( xdim, zdim, param, speFit );
636 chi0 = ChiSqr( xdim, zdim, spe, speFit );
637 chi1 = chi0;
638 for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
639 for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
640 step[k] = param[k] / 20.0 ;
641 step[k+1] = param[k+1] / 50.0;
642 step[k+2] = param[k+2] / 50.0;
643 step[k+3] = param[k+3] / 20.0;
644 step[k+4] = param[k+4] / 20.0;
645 } // end for k
646 Int_t out = 0;
647 do{
648 iterNum++;
649 chi0 = chi1;
650 Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
651 reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
652 // EXIT conditions
653 if( reldif < (float) kchilmt ){
654 *chir = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
655 *niter = iterNum;
656 out = 0;
657 break;
658 } // end if
659 if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
660 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
661 *niter = iterNum;
662 out = 0;
663 break;
664 } // end if
665 if( iterNum > 5*knstop ){
666 *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
667 *niter = iterNum;
668 out = 1;
669 break;
670 } // end if
671 if( iterNum <= knel ) continue;
672 n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
673 if( n > 3 || n == 0 ) continue;
674 schi[n-1] = chi1;
675 for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
676 if( n != 3 ) continue;
677 // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
678 // PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
679 for( k=1; k<(npeak*knParam+1); k++ ){
680 Float_t tmp0 = sprm[0][k];
681 Float_t tmp1 = sprm[1][k];
682 Float_t tmp2 = sprm[2][k];
683 a = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
684 a += (schi[2]*(tmp0-tmp1));
685 b = schi[0]*(tmp1*tmp1-tmp2*tmp2);
686 b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
687 (tmp0*tmp0-tmp1*tmp1)));
688 if ((double)a < 1.0E-6) prmin = 0;
689 else prmin = (float) (0.5*b/a);
690 dp = 5*(tmp2-tmp0);
691 if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
692 param[k] = prmin;
693 step[k] = dp/10; // OPTIMIZE SEARCH STEP
694 } // end for k
695 } while( kTRUE );
696 delete [] prm0;
697 delete [] step;
698 delete [] schi;
699 delete [] sprm[0];
700 delete [] sprm[1];
701 delete [] sprm[2];
702 delete [] speFit;
703 return( out );
704}
705
706//______________________________________________________________________
707void AliITSClusterFinderSDD::ResolveClustersE(){
708 // The function to resolve clusters if the clusters overlapping exists
709 Int_t i;
710 static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
711 // get number of clusters for this module
712 Int_t nofClusters = fClusters->GetEntriesFast();
713 nofClusters -= fNclusters;
714 Int_t fNofMaps = fSegmentation->Npz();
715 Int_t fNofAnodes = fNofMaps/2;
716 Int_t fMaxNofSamples = fSegmentation->Npx();
717 Int_t dummy=0;
718 Double_t fTimeStep = fSegmentation->Dpx( dummy );
719 Double_t fSddLength = fSegmentation->Dx();
720 Double_t fDriftSpeed = fResponse->DriftSpeed();
721 Double_t anodePitch = fSegmentation->Dpz( dummy );
722 Float_t n, baseline;
723 fResponse->GetNoiseParam( n, baseline );
724 Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
725
726 for( Int_t j=0; j<nofClusters; j++ ){
727 // get cluster information
728 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
729 Int_t astart = clusterJ->Astart();
730 Int_t astop = clusterJ->Astop();
731 Int_t tstart = clusterJ->Tstartf();
732 Int_t tstop = clusterJ->Tstopf();
733 Int_t wing = (Int_t)clusterJ->W();
734 if( wing == 2 ){
735 astart += fNofAnodes;
736 astop += fNofAnodes;
737 } // end if
738 Int_t xdim = tstop-tstart+3;
739 Int_t zdim = astop-astart+3;
740 if(xdim > 50 || zdim > 30) {
741 Warning("ResolveClustersE","xdim: %d , zdim: %d ",xdim,zdim);
742 continue;
743 }
744 Float_t *sp = new Float_t[ xdim*zdim+1 ];
745 memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
746
747 // make a local map from cluster region
748 for( Int_t ianode=astart; ianode<=astop; ianode++ ){
749 for( Int_t itime=tstart; itime<=tstop; itime++ ){
750 Float_t fadc = fMap->GetSignal( ianode, itime );
751 if( fadc > baseline ) fadc -= (Double_t)baseline;
752 else fadc = 0.;
753 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
754 sp[index] = fadc;
755 } // time loop
756 } // anode loop
757
758 // search peaks on cluster
759 const Int_t kNp = 150;
760 Int_t peakX1[kNp];
761 Int_t peakZ1[kNp];
762 Float_t peakAmp1[kNp];
763 Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
764
765 // if multiple peaks, split cluster
766 if( npeak >= 1 )
767 {
768 // cout << "npeak " << npeak << endl;
769 // clusterJ->PrintInfo();
770 Float_t *par = new Float_t[npeak*5+1];
771 par[0] = (Float_t)npeak;
772 // Initial parameters in cell dimentions
773 Int_t k1 = 1;
774 for( i=0; i<npeak; i++ ){
775 par[k1] = peakAmp1[i];
776 par[k1+1] = peakX1[i]; // local time pos. [timebin]
777 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
778 if( electronics == 1 )
779 par[k1+3] = 2.; // PASCAL
780 else if( electronics == 2 )
781 par[k1+3] = 0.7; // tau [timebin] OLA
782 par[k1+4] = .4; // sigma [anodepich]
783 k1+=5;
784 } // end for i
785 Int_t niter;
786 Float_t chir;
787 NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
788 Float_t peakX[kNp];
789 Float_t peakZ[kNp];
790 Float_t sigma[kNp];
791 Float_t tau[kNp];
792 Float_t peakAmp[kNp];
793 Float_t integral[kNp];
794 //get integrals => charge for each peak
795 PeakFunc( xdim, zdim, par, sp, integral );
796 k1 = 1;
797 for( i=0; i<npeak; i++ ){
798 peakAmp[i] = par[k1];
799 peakX[i] = par[k1+1];
800 peakZ[i] = par[k1+2];
801 tau[i] = par[k1+3];
802 sigma[i] = par[k1+4];
803 k1+=5;
804 } // end for i
805 // calculate parameter for new clusters
806 for( i=0; i<npeak; i++ ){
807 AliITSRawClusterSDD clusterI( *clusterJ );
808 Int_t newAnode = peakZ1[i]-1 + astart;
809 Int_t newiTime = peakX1[i]-1 + tstart;
810 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
811 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) )
812 shift = 0;
813 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
814 clusterI.SetPeakPos( peakpos );
815 clusterI.SetPeakAmpl( peakAmp1[i] );
816 Float_t newAnodef = peakZ[i] - 0.5 + astart;
817 Float_t newiTimef = peakX[i] - 1 + tstart;
818 if( wing == 2 ) newAnodef -= fNofAnodes;
819 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
820 newiTimef *= fTimeStep;
821 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
822 if( electronics == 1 ){
823 // newiTimef *= 0.999438; // PASCAL
824 // newiTimef += (6./fDriftSpeed - newiTimef/3000.);
825 }else if( electronics == 2 )
826 newiTimef *= 0.99714; // OLA
827 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
828 Float_t sign = ( wing == 1 ) ? -1. : 1.;
829 clusterI.SetX( driftPath*sign * 0.0001 );
830 clusterI.SetZ( anodePath * 0.0001 );
831 clusterI.SetAnode( newAnodef );
832 clusterI.SetTime( newiTimef );
833 clusterI.SetAsigma( sigma[i]*anodePitch );
834 clusterI.SetTsigma( tau[i]*fTimeStep );
835 clusterI.SetQ( integral[i] );
836 // clusterI.PrintInfo();
837 iTS->AddCluster( 1, &clusterI );
838 } // end for i
839 fClusters->RemoveAt( j );
840 delete [] par;
841 } else { // something odd
842 Warning("ResolveClustersE","--- Peak not found!!!! minpeak=%d ,cluster peak= %f , module= %d",fMinPeak,clusterJ->PeakAmpl(),fModule);
843 clusterJ->PrintInfo();
844 Warning("ResolveClustersE"," xdim= %d zdim= %d",xdim-2,zdim-2);
845 }
846 delete [] sp;
847 } // cluster loop
848 fClusters->Compress();
849// fMap->ClearMap();
850}
851
852
853//________________________________________________________________________
854void AliITSClusterFinderSDD::GroupClusters(){
855 // group clusters
856 Int_t dummy=0;
857 Float_t fTimeStep = fSegmentation->Dpx(dummy);
858 // get number of clusters for this module
859 Int_t nofClusters = fClusters->GetEntriesFast();
860 nofClusters -= fNclusters;
861 AliITSRawClusterSDD *clusterI;
862 AliITSRawClusterSDD *clusterJ;
863 Int_t *label = new Int_t [nofClusters];
864 Int_t i,j;
865 for(i=0; i<nofClusters; i++) label[i] = 0;
866 for(i=0; i<nofClusters; i++) {
867 if(label[i] != 0) continue;
868 for(j=i+1; j<nofClusters; j++) {
869 if(label[j] != 0) continue;
870 clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
871 clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
872 // 1.3 good
873 if(clusterI->T() < fTimeStep*60) fDAnode = 4.2; // TB 3.2
874 if(clusterI->T() < fTimeStep*10) fDAnode = 1.5; // TB 1.
875 Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
876 if(!pair) continue;
877 // clusterI->PrintInfo();
878 // clusterJ->PrintInfo();
879 clusterI->Add(clusterJ);
880 label[j] = 1;
881 fClusters->RemoveAt(j);
882 j=i; // <- Ernesto
883 } // J clusters
884 label[i] = 1;
885 } // I clusters
886 fClusters->Compress();
887
888 delete [] label;
889 return;
890}
891//________________________________________________________________________
892void AliITSClusterFinderSDD::SelectClusters(){
893 // get number of clusters for this module
894 Int_t nofClusters = fClusters->GetEntriesFast();
895
896 nofClusters -= fNclusters;
897 Int_t i;
898 for(i=0; i<nofClusters; i++) {
899 AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
900 Int_t rmflg = 0;
901 Float_t wy = 0.;
902 if(clusterI->Anodes() != 0.) {
903 wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
904 } // end if
905 Int_t amp = (Int_t) clusterI->PeakAmpl();
906 Int_t cha = (Int_t) clusterI->Q();
907 if(amp < fMinPeak) rmflg = 1;
908 if(cha < fMinCharge) rmflg = 1;
909 if(wy < fMinNCells) rmflg = 1;
910 //if(wy > fMaxNCells) rmflg = 1;
911 if(rmflg) fClusters->RemoveAt(i);
912 } // I clusters
913 fClusters->Compress();
914 return;
915}
916//__________________________________________________________________________
917void AliITSClusterFinderSDD::ResolveClusters(){
918 // The function to resolve clusters if the clusters overlapping exists
919/* AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
920 // get number of clusters for this module
921 Int_t nofClusters = fClusters->GetEntriesFast();
922 nofClusters -= fNclusters;
923 //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
924 // <<fNclusters<<endl;
925 Int_t fNofMaps = fSegmentation->Npz();
926 Int_t fNofAnodes = fNofMaps/2;
927 Int_t dummy=0;
928 Double_t fTimeStep = fSegmentation->Dpx(dummy);
929 Double_t fSddLength = fSegmentation->Dx();
930 Double_t fDriftSpeed = fResponse->DriftSpeed();
931 Double_t anodePitch = fSegmentation->Dpz(dummy);
932 Float_t n, baseline;
933 fResponse->GetNoiseParam(n,baseline);
934 Float_t dzz_1A = anodePitch * anodePitch / 12;
935 // fill Map of signals
936 fMap->FillMap();
937 Int_t j,i,ii,ianode,anode,itime;
938 Int_t wing,astart,astop,tstart,tstop,nanode;
939 Double_t fadc,ClusterTime;
940 Double_t q[400],x[400],z[400]; // digit charges and coordinates
941 for(j=0; j<nofClusters; j++) {
942 AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
943 Int_t ndigits = 0;
944 astart=clusterJ->Astart();
945 astop=clusterJ->Astop();
946 tstart=clusterJ->Tstartf();
947 tstop=clusterJ->Tstopf();
948 nanode=clusterJ->Anodes(); // <- Ernesto
949 wing=(Int_t)clusterJ->W();
950 if(wing == 2) {
951 astart += fNofAnodes;
952 astop += fNofAnodes;
953 } // end if
954 // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
955 // <<tstart<<","<<tstop<<endl;
956 // clear the digit arrays
957 for(ii=0; ii<400; ii++) {
958 q[ii] = 0.;
959 x[ii] = 0.;
960 z[ii] = 0.;
961 } // end for ii
962
963 for(ianode=astart; ianode<=astop; ianode++) {
964 for(itime=tstart; itime<=tstop; itime++) {
965 fadc=fMap->GetSignal(ianode,itime);
966 if(fadc>baseline) {
967 fadc-=(Double_t)baseline;
968 q[ndigits] = fadc*(fTimeStep/160); // KeV
969 anode = ianode;
970 if(wing == 2) anode -= fNofAnodes;
971 z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
972 ClusterTime = itime*fTimeStep;
973 if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
974 x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
975 if(wing == 1) x[ndigits] *= (-1);
976 // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
977 // <<fadc<<endl;
978 // cout<<"wing,anode,ndigits,charge ="<<wing<<","
979 // <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
980 ndigits++;
981 continue;
982 } // end if
983 fadc=0;
984 // cout<<"fadc=0, ndigits ="<<ndigits<<endl;
985 } // time loop
986 } // anode loop
987 // cout<<"for new cluster ndigits ="<<ndigits<<endl;
988 // Fit cluster to resolve for two separate ones --------------------
989 Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
990 Double_t dxx=0., dzz=0., dxz=0.;
991 Double_t scl = 0., tmp, tga, elps = -1.;
992 Double_t xfit[2], zfit[2], qfit[2];
993 Double_t pitchz = anodePitch*1.e-4; // cm
994 Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4; // cm
995 Double_t sigma2;
996 Int_t nfhits;
997 Int_t nbins = ndigits;
998 Int_t separate = 0;
999 // now, all lengths are in microns
1000 for (ii=0; ii<nbins; ii++) {
1001 qq += q[ii];
1002 xm += x[ii]*q[ii];
1003 zm += z[ii]*q[ii];
1004 xx += x[ii]*x[ii]*q[ii];
1005 zz += z[ii]*z[ii]*q[ii];
1006 xz += x[ii]*z[ii]*q[ii];
1007 } // end for ii
1008 xm /= qq;
1009 zm /= qq;
1010 xx /= qq;
1011 zz /= qq;
1012 xz /= qq;
1013 dxx = xx - xm*xm;
1014 dzz = zz - zm*zm;
1015 dxz = xz - xm*zm;
1016
1017 // shrink the cluster in the time direction proportionaly to the
1018 // dxx/dzz, which lineary depends from the drift path
1019 // new Ernesto........
1020 if( nanode == 1 ){
1021 dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1022 scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1023 } // end if
1024 if( nanode == 2 ){
1025 scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1026 } // end if
1027 if( nanode == 3 ){
1028 scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1029 } // end if
1030 if( nanode > 3 ){
1031 scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1032 } // end if
1033 // cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1034 // <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1035 // old Boris.........
1036 // tmp=29730. - 585.*fabs(xm/1000.);
1037 // scl=TMath::Sqrt(tmp/130000.);
1038
1039 xm *= scl;
1040 xx *= scl*scl;
1041 xz *= scl;
1042
1043 dxx = xx - xm*xm;
1044 // dzz = zz - zm*zm;
1045 dxz = xz - xm*zm;
1046 // cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1047 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1048 // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
1049
1050 if (dxx < 0.) dxx=0.;
1051 // the data if no cluster overlapping (the coordunates are in cm)
1052 nfhits = 1;
1053 xfit[0] = xm*1.e-4;
1054 zfit[0] = zm*1.e-4;
1055 qfit[0] = qq;
1056 // if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
1057
1058 if (nbins >= 7) {
1059 if (dxz==0.) tga=0.;
1060 else {
1061 tmp=0.5*(dzz-dxx)/dxz;
1062 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) :
1063 tmp+TMath::Sqrt(tmp*tmp+1);
1064 } // end if dxz
1065 elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1066 // change from microns to cm
1067 xm *= 1.e-4;
1068 zm *= 1.e-4;
1069 zz *= 1.e-8;
1070 xx *= 1.e-8;
1071 xz *= 1.e-8;
1072 dxz *= 1.e-8;
1073 dxx *= 1.e-8;
1074 dzz *= 1.e-8;
1075 // cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1076 // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1077 for (i=0; i<nbins; i++) {
1078 x[i] = x[i] *= scl;
1079 x[i] = x[i] *= 1.e-4;
1080 z[i] = z[i] *= 1.e-4;
1081 } // end for i
1082 // cout<<"!!! elps ="<<elps<<endl;
1083 if (elps < 0.3) { // try to separate hits
1084 separate = 1;
1085 tmp=atan(tga);
1086 Double_t cosa=cos(tmp),sina=sin(tmp);
1087 Double_t a1=0., x1=0., xxx=0.;
1088 for (i=0; i<nbins; i++) {
1089 tmp=x[i]*cosa + z[i]*sina;
1090 if (q[i] > a1) {
1091 a1=q[i];
1092 x1=tmp;
1093 } // end if
1094 xxx += tmp*tmp*tmp*q[i];
1095 } // end for i
1096 xxx /= qq;
1097 Double_t z12=-sina*xm + cosa*zm;
1098 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1099 xm=cosa*xm + sina*zm;
1100 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1101 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1102 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1103 for (i=0; i<33; i++) { // solve a system of equations
1104 Double_t x1_old=x1, x2_old=x2, r_old=r;
1105 Double_t c11=x1-x2;
1106 Double_t c12=r;
1107 Double_t c13=1-r;
1108 Double_t c21=x1*x1 - x2*x2;
1109 Double_t c22=2*r*x1;
1110 Double_t c23=2*(1-r)*x2;
1111 Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1112 Double_t c32=3*r*(sigma2 + x1*x1);
1113 Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1114 Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1115 Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1116 Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1117 (3*sigma2+x2*x2)-xxx);
1118 Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1119 c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1120 if (d==0.) {
1121 cout<<"*********** d=0 ***********\n";
1122 break;
1123 } // end if
1124 Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1125 f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1126 Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1127 c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1128 Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1129 c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1130 r += dr/d;
1131 x1 += d1/d;
1132 x2 += d2/d;
1133 if (fabs(x1-x1_old) > 0.0001) continue;
1134 if (fabs(x2-x2_old) > 0.0001) continue;
1135 if (fabs(r-r_old)/5 > 0.001) continue;
1136 a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1137 Double_t a2=a1*(1-r)/r;
1138 qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina +
1139 z12*cosa;
1140 qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina +
1141 z12*cosa;
1142 nfhits=2;
1143 break; // Ok !
1144 } // end for i
1145 if (i==33) cerr<<"No more iterations ! "<<endl;
1146 } // end of attempt to separate overlapped clusters
1147 } // end of nbins cut
1148 if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1149 if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1150 <<elps<<","<<nfhits<<endl;
1151 if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1152 for (i=0; i<nfhits; i++) {
1153 xfit[i] *= (1.e+4/scl);
1154 if(wing == 1) xfit[i] *= (-1);
1155 zfit[i] *= 1.e+4;
1156 // cout<<" --------- i,xfiti,zfiti,qfiti ="<<i<<","
1157 // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1158 } // end for i
1159 Int_t ncl = nfhits;
1160 if(nfhits == 1 && separate == 1) {
1161 cout<<"!!!!! no separate"<<endl;
1162 ncl = -2;
1163 } // end if
1164 if(nfhits == 2) {
1165 cout << "Split cluster: " << endl;
1166 clusterJ->PrintInfo();
1167 cout << " in: " << endl;
1168 for (i=0; i<nfhits; i++) {
1169 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
1170 -1,-1,(Float_t)qfit[i],ncl,0,0,
1171 (Float_t)xfit[i],
1172 (Float_t)zfit[i],0,0,0,0,
1173 tstart,tstop,astart,astop);
1174 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1175 // -1,(Float_t)qfit[i],0,0,0,
1176 // (Float_t)xfit[i],
1177 // (Float_t)zfit[i],0,0,0,0,
1178 // tstart,tstop,astart,astop,ncl);
1179 // ???????????
1180 // if(wing == 1) xfit[i] *= (-1);
1181 Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1182 Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1183 Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1184 Float_t peakpos = clusterJ->PeakPos();
1185 Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1186 Float_t clusterDriftPath = Time*fDriftSpeed;
1187 clusterDriftPath = fSddLength-clusterDriftPath;
1188 AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1189 Time,qfit[i],
1190 clusterPeakAmplitude,peakpos,
1191 0.,0.,clusterDriftPath,
1192 clusteranodePath,clusterJ->Samples()/2
1193 ,tstart,tstop,0,0,0,astart,astop);
1194 clust->PrintInfo();
1195 iTS->AddCluster(1,clust);
1196 // cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1197 // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1198 // <<","<<ncl<<endl;
1199 delete clust;
1200 }// nfhits loop
1201 fClusters->RemoveAt(j);
1202 } // if nfhits = 2
1203} // cluster loop
1204fClusters->Compress();
1205fMap->ClearMap();
1206*/
1207 return;
1208}
1209//______________________________________________________________________
1210void AliITSClusterFinderSDD::GetRecPoints(){
1211 // get rec points
1212 static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1213 // get number of clusters for this module
1214 Int_t nofClusters = fClusters->GetEntriesFast();
1215 nofClusters -= fNclusters;
1216 const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1217 const Float_t kconv = 1.0e-4;
1218 const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1219 const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1220 Int_t i,j;
1221 Int_t ix, iz, idx=-1;
1222 AliITSdigitSDD *dig=0;
1223 Int_t ndigits=fDigits->GetEntriesFast();
1224 for(i=0; i<nofClusters; i++) {
1225 AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1226 if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1227 if(clusterI) idx=clusterI->PeakPos();
1228 if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1229 // try peak neighbours - to be done
1230 if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1231 //// debug
1232 // cout<<"R.C. Anode = "<<clusterI->A()<<"; Time= "<<clusterI->T()<<endl;
1233 fSegmentation->LocalToDet(clusterI->X(),clusterI->Z(),ix,iz);
1234 // cout<<"From R.C. coordinates- Anode: "<<iz<<" and time: "<<ix<<endl;
1235 // end debug
1236 Int_t trks[10];
1237 Int_t notr=-1;
1238 Int_t deger = 0;
1239 if(!dig) {
1240 Warning("GetRecPoints","Cannot assign the track number\n");
1241 }
1242 else {
1243 fSegmentation->LocalToDet(clusterI->X(),clusterI->Z(),ix,iz);
1244 Int_t signal[30];
1245 for(Int_t kk=0;kk<9;kk++)trks[kk]=-2;
1246 AliITSdigitSDD * pdig = 0;
1247 for(Int_t itime=ix-1;itime<=ix+1;itime++){
1248 if(itime<0 || itime>=fSegmentation->Npx())continue;
1249 for(Int_t ianod=iz-1;ianod<=iz+1;ianod++){
1250 if(ianod<0 || ianod>=fSegmentation->Npz())continue;
1251 if(iz==(fSegmentation->Npz())/2 && ianod<iz)continue;
1252 if(iz==(fSegmentation->Npz())/2-1 && ianod>iz)continue;
1253 pdig = (AliITSdigitSDD*)fMap->GetHit(ianod,itime);
1254 if(pdig){
1255 for(Int_t kk=0;kk<3;kk++){
1256 if(kk == 0 || (kk>0 && pdig->fTracks[kk]>=0)){
1257 notr++;
1258 trks[notr]=pdig->fTracks[kk];
1259 signal[notr]=pdig->fSignal;
1260 }
1261 }
1262 }
1263 }
1264 } // for(itime....
1265 if((dig->fCoord1<(iz-1) || dig->fCoord1>(iz+1))
1266 && (dig->fCoord2<(ix-1) || dig->fCoord2>(ix+1))
1267 && dig->fTracks[0]>=-2){
1268 notr++;
1269 trks[notr]=dig->fTracks[0];
1270 signal[notr]=dig->fSignal;
1271 }
1272 for(Int_t ii=0; ii<notr;ii++){
1273 for(Int_t jj=ii+1; jj<=notr; jj++){
1274 if(trks[ii] == trks[jj]){
1275 signal[ii]+=signal[jj];
1276 signal[jj]=-100;
1277 trks[jj]=-jj-100;
1278 deger++;
1279 }
1280 }
1281 }
1282 Int_t ordtmp;
1283 for(Int_t ii=0; ii<notr;ii++){
1284 Int_t maxi = ii;
1285 for(Int_t jj=ii+1; jj<=notr; jj++){
1286 if(signal[jj]>signal[maxi])maxi=jj;
1287 }
1288 ordtmp = trks[ii];
1289 trks[ii]=trks[maxi];
1290 trks[maxi]=ordtmp;
1291 ordtmp = signal[ii];
1292 signal[ii]=signal[maxi];
1293 signal[maxi]=ordtmp;
1294 }
1295 }
1296 notr-=deger;
1297 notr++;
1298 /*
1299 if(!dig) {
1300 // try cog
1301 fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1302 dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1303 // if null try neighbours
1304 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix);
1305 if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1);
1306 if (!dig) printf("SDD: cannot assign the track number!\n");
1307 } // end if !dig
1308 */
1309 AliITSRecPoint rnew;
1310 rnew.SetX(clusterI->X());
1311 rnew.SetZ(clusterI->Z());
1312 rnew.SetQ(clusterI->Q()); // in KeV - should be ADC
1313 // cout<<"Cluster # "<<i<< " - X,Z,Q= "<<clusterI->X()<<" "<<clusterI->Z()<<" "<<clusterI->Q()<<"; Digit n= "<<idx<<endl;
1314 rnew.SetdEdX(kconvGeV*clusterI->Q());
1315 rnew.SetSigmaX2(kRMSx*kRMSx);
1316 rnew.SetSigmaZ2(kRMSz*kRMSz);
1317 if(notr>3)notr=3;
1318 if(notr>=0)for(j=0;j<notr;j++)rnew.fTracks[j]=trks[j];
1319 /*
1320 if(dig){
1321 for(j=0;j<dig->GetNTracks();j++){
1322 if(j>0 && j%4==0)cout<<endl;
1323 }
1324 cout<<endl;
1325 rnew.fTracks[0] = dig->fTracks[0];
1326 cout<<" "<<dig->fTracks[0]<<" assigned to rp 0 "<<rnew.fTracks[0]<<endl;
1327 rnew.fTracks[1] = -3;
1328 rnew.fTracks[2] = -3;
1329 j=1;
1330 while(rnew.fTracks[0]==dig->fTracks[j] &&
1331 j<dig->GetNTracks()) j++;
1332 if(j<dig->GetNTracks()){
1333 rnew.fTracks[1] = dig->fTracks[j];
1334 cout<<" Digit "<<j<<" "<<dig->fTracks[j]<<" assigned to rp 1 "<<rnew.fTracks[1]<<endl;
1335 while((rnew.fTracks[0]==dig->fTracks[j] ||
1336 rnew.fTracks[1]==dig->fTracks[j] )&&
1337 j<dig->GetNTracks()) j++;
1338 if(j<dig->GetNTracks()) {
1339 rnew.fTracks[2] = dig->fTracks[j];
1340 cout<<" Digit "<<j<<" "<<dig->fTracks[j]<<" assigned to rp 2 "<<rnew.fTracks[2]<<endl;
1341 }
1342 } // end if
1343 } // end if
1344 */
1345
1346 iTS->AddRecPoint(rnew);
1347 } // I clusters
1348// fMap->ClearMap();
1349}
1350//______________________________________________________________________
1351void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1352 // find raw clusters
1353
1354 fModule = mod;
1355
1356 Find1DClustersE();
1357 GroupClusters();
1358 SelectClusters();
1359 ResolveClustersE();
1360 GetRecPoints();
1361}
1362//_______________________________________________________________________
1363void AliITSClusterFinderSDD::Print() const{
1364 // Print SDD cluster finder Parameters
1365
1366 cout << "**************************************************" << endl;
1367 cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1368 cout << "**************************************************" << endl;
1369 cout << "Number of Clusters: " << fNclusters << endl;
1370 cout << "Anode Tolerance: " << fDAnode << endl;
1371 cout << "Time Tolerance: " << fDTime << endl;
1372 cout << "Time correction (electronics): " << fTimeCorr << endl;
1373 cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1374 cout << "Minimum Amplitude: " << fMinPeak << endl;
1375 cout << "Minimum Charge: " << fMinCharge << endl;
1376 cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1377 cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1378 cout << "**************************************************" << endl;
1379}