]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - PHOS/AliPHOSGeometry.cxx
Removed global's to comply with Coding Conventions
[u/mrichter/AliRoot.git] / PHOS / AliPHOSGeometry.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18//_________________________________________________________________________
19// Geometry class for PHOS : singleton
20// The EMC modules are parametrized so that any configuration can be easily implemented
21// The title is used to identify the type of CPV used. So far only PPSD implemented
22//
23//*-- Author: Yves Schutz (SUBATECH)
24
25// --- ROOT system ---
26
27#include "TVector3.h"
28#include "TRotation.h"
29
30// --- Standard library ---
31
32#include <iostream.h>
33
34// --- AliRoot header files ---
35
36#include "AliPHOSGeometry.h"
37#include "AliPHOSPpsdRecPoint.h"
38#include "AliConst.h"
39
40ClassImp(AliPHOSGeometry)
41
42 AliPHOSGeometry * AliPHOSGeometry::fgGeom = 0 ;
43
44//____________________________________________________________________________
45AliPHOSGeometry::~AliPHOSGeometry(void)
46{
47 // dtor
48
49 fRotMatrixArray->Delete() ;
50 delete fRotMatrixArray ;
51
52 delete fPHOSAngle ;
53}
54
55//____________________________________________________________________________
56Bool_t AliPHOSGeometry::AbsToRelNumbering(const Int_t AbsId, Int_t * relid)
57{
58 // Converts the absolute numbering into the following array/
59 // relid[0] = PHOS Module number 1:fNModules
60 // relid[1] = 0 if PbW04
61 // = PPSD Module number 1:fNumberOfModulesPhi*fNumberOfModulesZ*2 (2->up and bottom level)
62 // relid[2] = Row number inside a PHOS or PPSD module
63 // relid[3] = Column number inside a PHOS or PPSD module
64
65 Bool_t rv = kTRUE ;
66 Float_t id = AbsId ;
67
68 Int_t phosmodulenumber = (Int_t)TMath:: Ceil( id / ( GetNPhi() * GetNZ() ) ) ;
69
70 if ( phosmodulenumber > GetNModules() ) { // its a PPSD pad
71
72 id -= GetNPhi() * GetNZ() * GetNModules() ;
73 Float_t tempo = 2 * GetNumberOfModulesPhi() * GetNumberOfModulesZ() * GetNumberOfPadsPhi() * GetNumberOfPadsZ() ;
74 relid[0] = (Int_t)TMath::Ceil( id / tempo ) ;
75 id -= ( relid[0] - 1 ) * tempo ;
76 relid[1] = (Int_t)TMath::Ceil( id / ( GetNumberOfPadsPhi() * GetNumberOfPadsZ() ) ) ;
77 id -= ( relid[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ() ;
78 relid[2] = (Int_t)TMath::Ceil( id / GetNumberOfPadsPhi() ) ;
79 relid[3] = (Int_t) ( id - ( relid[2] - 1 ) * GetNumberOfPadsPhi() ) ;
80 }
81 else { // its a PW04 crystal
82
83 relid[0] = phosmodulenumber ;
84 relid[1] = 0 ;
85 id -= ( phosmodulenumber - 1 ) * GetNPhi() * GetNZ() ;
86 relid[2] = (Int_t)TMath::Ceil( id / GetNPhi() ) ;
87 relid[3] = (Int_t)( id - ( relid[2] - 1 ) * GetNPhi() ) ;
88 }
89 return rv ;
90}
91//____________________________________________________________________________
92void AliPHOSGeometry::EmcModuleCoverage(const Int_t mod, Double_t & tm, Double_t & tM, Double_t & pm, Double_t & pM, Option_t * opt)
93{
94 // calculates the angular coverage in theta and phi of a EMC module
95
96 Double_t conv ;
97 if ( opt == kRadian )
98 conv = 1. ;
99 else if ( opt == kDegre )
100 conv = 180. / TMath::Pi() ;
101 else {
102 cout << "<I> AliPHOSGeometry::EmcXtalCoverage : " << opt << " unknown option; result in radian " << endl ;
103 conv = 1. ;
104 }
105
106 Float_t phi = GetPHOSAngle(mod) * (TMath::Pi() / 180.) ;
107 Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
108 + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ;
109
110 Double_t angle = TMath::ATan( GetCrystalSize(0)*GetNPhi() / (2 * y0) ) ;
111 phi = phi + 1.5 * TMath::Pi() ; // to follow the convention of the particle generator(PHOS is between 230 and 310 deg.)
112 Double_t max = phi - angle ;
113 Double_t min = phi + angle ;
114 pM = TMath::Max(max, min) * conv ;
115 pm = TMath::Min(max, min) * conv ;
116
117 angle = TMath::ATan( GetCrystalSize(2)*GetNZ() / (2 * y0) ) ;
118 max = TMath::Pi() / 2. + angle ; // to follow the convention of the particle generator(PHOS is at 90 deg.)
119 min = TMath::Pi() / 2. - angle ;
120 tM = TMath::Max(max, min) * conv ;
121 tm = TMath::Min(max, min) * conv ;
122
123}
124
125//____________________________________________________________________________
126void AliPHOSGeometry::EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt)
127{
128 // calculates the angular coverage in theta and phi of a single crystal in a EMC module
129
130 Double_t conv ;
131 if ( opt == kRadian )
132 conv = 1. ;
133 else if ( opt == kDegre )
134 conv = 180. / TMath::Pi() ;
135 else {
136 cout << "<I> AliPHOSGeometry::EmcXtalCoverage : " << opt << " unknown option; result in radian " << endl ;
137 conv = 1. ;
138 }
139
140 Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
141 + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ;
142 theta = 2 * TMath::ATan( GetCrystalSize(2) / (2 * y0) ) * conv ;
143 phi = 2 * TMath::ATan( GetCrystalSize(0) / (2 * y0) ) * conv ;
144}
145
146
147//____________________________________________________________________________
148void AliPHOSGeometry::ImpactOnEmc(const Double_t theta, const Double_t phi, Int_t & ModuleNumber, Double_t & z, Double_t & x)
149{
150 // calculates the impact coordinates of a neutral particle
151 // emitted in direction theta and phi in ALICE
152
153 // searches for the PHOS EMC module
154 ModuleNumber = 0 ;
155 Double_t tm, tM, pm, pM ;
156 Int_t index = 1 ;
157 while ( ModuleNumber == 0 && index <= GetNModules() ) {
158 EmcModuleCoverage(index, tm, tM, pm, pM) ;
159 if ( (theta >= tm && theta <= tM) && (phi >= pm && phi <= pM ) )
160 ModuleNumber = index ;
161 index++ ;
162 }
163 if ( ModuleNumber != 0 ) {
164 Float_t phi0 = GetPHOSAngle(ModuleNumber) * (TMath::Pi() / 180.) + 1.5 * TMath::Pi() ;
165 Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
166 + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ;
167 Double_t angle = phi - phi0;
168 x = y0 * TMath::Tan(angle) ;
169 angle = theta - TMath::Pi() / 2 ;
170 z = y0 * TMath::Tan(angle) ;
171 }
172}
173
174//____________________________________________________________________________
175void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrix & gmat)
176{
177 // Calculates the ALICE global coordinates of a RecPoint and the error matrix
178
179 AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ;
180 TVector3 localposition ;
181
182 tmpPHOS->GetLocalPosition(gpos) ;
183
184
185 if ( tmpPHOS->IsEmc() ) // it is a EMC crystal
186 { gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() +
187 GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ;
188
189 }
190 else
191 { // it is a PPSD pad
192 AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ;
193 if (tmpPpsd->GetUp() ) // it is an upper module
194 {
195 gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() -
196 GetLeadToMicro2Gap() - GetLeadConverterThickness() -
197 GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 ) ) ;
198 }
199 else // it is a lower module
200 gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ;
201 }
202
203 Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ;
204 Double_t const kRADDEG = 180.0 / kPI ;
205 Float_t rphi = phi / kRADDEG ;
206
207 TRotation rot ;
208 rot.RotateZ(-rphi) ; // a rotation around Z by angle
209
210 TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
211 gpos.Transform(rot) ; // rotate the baby
212
213}
214
215//____________________________________________________________________________
216void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos)
217{
218 // Calculates the ALICE global coordinates of a RecPoint
219
220 AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ;
221 TVector3 localposition ;
222 tmpPHOS->GetLocalPosition(gpos) ;
223
224
225 if ( tmpPHOS->IsEmc() ) // it is a EMC crystal
226 { gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() +
227 GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ;
228 }
229 else
230 { // it is a PPSD pad
231 AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ;
232 if (tmpPpsd->GetUp() ) // it is an upper module
233 {
234 gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() -
235 GetLeadToMicro2Gap() - GetLeadConverterThickness() -
236 GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 ) ) ;
237 }
238 else // it is a lower module
239 gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ;
240 }
241
242 Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ;
243 Double_t const kRADDEG = 180.0 / kPI ;
244 Float_t rphi = phi / kRADDEG ;
245
246 TRotation rot ;
247 rot.RotateZ(-rphi) ; // a rotation around Z by angle
248
249 TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
250 gpos.Transform(rot) ; // rotate the baby
251}
252
253//____________________________________________________________________________
254void AliPHOSGeometry::Init(void)
255{
256 // Initializes the PHOS parameters
257
258 kDegre = "deg" ;
259 kRadian = "rad" ;
260
261 fRotMatrixArray = new TObjArray(fNModules) ;
262
263 cout << "PHOS geometry setup: parameters for option " << fName << " " << fTitle << endl ;
264 if ( ((strcmp( fName, "default" )) == 0) || ((strcmp( fName, "GPS2" )) == 0) ) {
265 fInit = kTRUE ;
266 this->InitPHOS() ;
267 this->InitPPSD() ;
268 this->SetPHOSAngles() ;
269 }
270 else {
271 fInit = kFALSE ;
272 cout << "PHOS Geometry setup: option not defined " << fName << endl ;
273 }
274}
275
276//____________________________________________________________________________
277void AliPHOSGeometry::InitPHOS(void)
278{
279 // Initializes the EMC parameters
280
281 fNPhi = 64 ;
282 fNZ = 64 ;
283 fNModules = 5 ;
284
285 fPHOSAngle = new Float_t[fNModules] ;
286 Int_t index ;
287 for ( index = 0; index < fNModules; index++ )
288 fPHOSAngle[index] = 0.0 ; // Module position angles are set in CreateGeometry()
289
290 fXtlSize[0] = 2.2 ;
291 fXtlSize[1] = 18.0 ;
292 fXtlSize[2] = 2.2 ;
293
294 // all these numbers coming next are subject to changes
295
296 fOuterBoxThickness[0] = 2.8 ;
297 fOuterBoxThickness[1] = 5.0 ;
298 fOuterBoxThickness[2] = 5.0 ;
299
300 fUpperPlateThickness = 4.0 ;
301
302 fSecondUpperPlateThickness = 5.0 ;
303
304 fCrystalSupportHeight = 6.95 ;
305 fCrystalWrapThickness = 0.01 ;
306 fCrystalHolderThickness = 0.005 ;
307 fModuleBoxThickness = 2.0 ;
308 fIPtoOuterCoverDistance = 447.0 ;
309 fIPtoCrystalSurface = 460.0 ;
310
311 fPinDiodeSize[0] = 1.71 ; //Values given by Odd Harald feb 2000
312 fPinDiodeSize[1] = 0.0280 ; // 0.0280 is the depth of active layer in the silicon
313 fPinDiodeSize[2] = 1.61 ;
314
315 fUpperCoolingPlateThickness = 0.06 ;
316 fSupportPlateThickness = 10.0 ;
317 fLowerThermoPlateThickness = 3.0 ;
318 fLowerTextolitPlateThickness = 1.0 ;
319 fGapBetweenCrystals = 0.03 ;
320
321 fTextolitBoxThickness[0] = 1.5 ;
322 fTextolitBoxThickness[1] = 0.0 ;
323 fTextolitBoxThickness[2] = 3.0 ;
324
325 fAirThickness[0] = 1.56 ;
326 fAirThickness[1] = 20.5175 ;
327 fAirThickness[2] = 2.48 ;
328
329 Float_t xtalModulePhiSize = fNPhi * ( fXtlSize[0] + 2 * fGapBetweenCrystals ) ;
330 Float_t xtalModuleZSize = fNZ * ( fXtlSize[2] + 2 * fGapBetweenCrystals ) ;
331
332 // The next dimensions are calculated from the above parameters
333
334 fOuterBoxSize[0] = xtalModulePhiSize + 2 * ( fAirThickness[0] + fModuleBoxThickness
335 + fTextolitBoxThickness[0] + fOuterBoxThickness[0] ) ;
336 fOuterBoxSize[1] = ( fXtlSize[1] + fCrystalSupportHeight + fCrystalWrapThickness + fCrystalHolderThickness )
337 + 2 * (fAirThickness[1] + fModuleBoxThickness + fTextolitBoxThickness[1] + fOuterBoxThickness[1] ) ;
338 fOuterBoxSize[2] = xtalModuleZSize + 2 * ( fAirThickness[2] + fModuleBoxThickness
339 + fTextolitBoxThickness[2] + fOuterBoxThickness[2] ) ;
340
341 fTextolitBoxSize[0] = fOuterBoxSize[0] - 2 * fOuterBoxThickness[0] ;
342 fTextolitBoxSize[1] = fOuterBoxSize[1] - fOuterBoxThickness[1] - fUpperPlateThickness ;
343 fTextolitBoxSize[2] = fOuterBoxSize[2] - 2 * fOuterBoxThickness[2] ;
344
345 fAirFilledBoxSize[0] = fTextolitBoxSize[0] - 2 * fTextolitBoxThickness[0] ;
346 fAirFilledBoxSize[1] = fTextolitBoxSize[1] - fSecondUpperPlateThickness ;
347 fAirFilledBoxSize[2] = fTextolitBoxSize[2] - 2 * fTextolitBoxThickness[2] ;
348
349}
350
351//____________________________________________________________________________
352void AliPHOSGeometry::InitPPSD(void)
353{
354 // Initializes the PPSD parameters
355
356 fAnodeThickness = 0.0009 ;
357 fAvalancheGap = 0.01 ;
358 fCathodeThickness = 0.0009 ;
359 fCompositeThickness = 0.3 ;
360 fConversionGap = 0.6 ;
361 fLeadConverterThickness = 0.56 ;
362 fLeadToMicro2Gap = 0.1 ;
363 fLidThickness = 0.2 ;
364 fMicro1ToLeadGap = 0.1 ;
365 fMicromegasWallThickness = 0.6 ;
366 fNumberOfModulesPhi = 4 ;
367 fNumberOfModulesZ = 4 ;
368 fNumberOfPadsPhi = 24 ;
369 fNumberOfPadsZ = 24 ;
370 fPCThickness = 0.1 ;
371 fPhiDisplacement = 0.8 ;
372 fZDisplacement = 0.8 ;
373
374 fMicromegas1Thickness = fLidThickness + 2 * fCompositeThickness + fCathodeThickness + fPCThickness
375 + fAnodeThickness + fConversionGap + fAvalancheGap ;
376 fMicromegas2Thickness = fMicromegas1Thickness ;
377
378
379 fPPSDModuleSize[0] = 38.0 ;
380 fPPSDModuleSize[1] = fMicromegas1Thickness ;
381 fPPSDModuleSize[2] = 38.0 ;
382
383 fPPSDBoxSize[0] = fNumberOfModulesPhi * fPPSDModuleSize[0] + 2 * fPhiDisplacement ;
384 fPPSDBoxSize[1] = fMicromegas2Thickness + fMicromegas2Thickness + fLeadConverterThickness + fMicro1ToLeadGap + fLeadToMicro2Gap ;
385 fPPSDBoxSize[2] = fNumberOfModulesZ * fPPSDModuleSize[2] + 2 * fZDisplacement ;
386
387 fIPtoTopLidDistance = fIPtoOuterCoverDistance - fPPSDBoxSize[1] - 1. ;
388
389}
390
391//____________________________________________________________________________
392AliPHOSGeometry * AliPHOSGeometry::GetInstance()
393{
394 // Returns the pointer of the unique instance
395
396 return (AliPHOSGeometry *) fgGeom ;
397}
398
399//____________________________________________________________________________
400AliPHOSGeometry * AliPHOSGeometry::GetInstance(const Text_t* name, const Text_t* title)
401{
402 // Returns the pointer of the unique instance
403
404 AliPHOSGeometry * rv = 0 ;
405 if ( fgGeom == 0 ) {
406 fgGeom = new AliPHOSGeometry(name, title) ;
407 rv = (AliPHOSGeometry * ) fgGeom ;
408 }
409 else {
410 if ( strcmp(fgGeom->GetName(), name) != 0 ) {
411 cout << "AliPHOSGeometry <E> : current geometry is " << fgGeom->GetName() << endl
412 << " you cannot call " << name << endl ;
413 }
414 else
415 rv = (AliPHOSGeometry *) fgGeom ;
416 }
417 return rv ;
418}
419
420//____________________________________________________________________________
421Bool_t AliPHOSGeometry::RelToAbsNumbering(const Int_t * relid, Int_t & AbsId)
422{
423 // Converts the relative numbering into the absolute numbering
424 // AbsId = 1:fNModules * fNPhi * fNZ -> PbWO4
425 // AbsId = 1:fNModules * 2 * (fNumberOfModulesPhi * fNumberOfModulesZ) * fNumberOfPadsPhi * fNumberOfPadsZ -> PPSD
426
427 Bool_t rv = kTRUE ;
428
429 if ( relid[1] > 0 ) { // its a PPSD pad
430
431 AbsId = GetNPhi() * GetNZ() * GetNModules() // the offset to separate emcal crystals from PPSD pads
432 + ( relid[0] - 1 ) * GetNumberOfModulesPhi() * GetNumberOfModulesZ() // the pads offset of PHOS modules
433 * GetNumberOfPadsPhi() * GetNumberOfPadsZ() * 2
434 + ( relid[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ() // the pads offset of PPSD modules
435 + ( relid[2] - 1 ) * GetNumberOfPadsPhi() // the pads offset of a PPSD row
436 + relid[3] ; // the column number
437 }
438 else {
439 if ( relid[1] == 0 ) { // its a Phos crystal
440 AbsId = ( relid[0] - 1 ) * GetNPhi() * GetNZ() // the offset of PHOS modules
441 + ( relid[2] - 1 ) * GetNPhi() // the offset of a xtal row
442 + relid[3] ; // the column number
443 }
444 }
445
446 return rv ;
447}
448
449//____________________________________________________________________________
450
451void AliPHOSGeometry::RelPosInAlice(const Int_t id, TVector3 & pos )
452{
453 // Converts the absolute numbering into the global ALICE coordinates
454
455 if (id > 0) {
456
457 Int_t relid[4] ;
458
459 AbsToRelNumbering(id , relid) ;
460
461 Int_t phosmodule = relid[0] ;
462
463 Float_t y0 = 0 ;
464
465 if ( relid[1] == 0 ) // it is a PbW04 crystal
466 { y0 = -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
467 + GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ;
468 }
469 if ( relid[1] > 0 ) { // its a PPSD pad
470 if ( relid[1] > GetNumberOfModulesPhi() * GetNumberOfModulesZ() ) // its an bottom module
471 {
472 y0 = -( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ;
473 }
474 else // its an upper module
475 y0 = -( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - GetLeadToMicro2Gap()
476 - GetLeadConverterThickness() - GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0) ;
477 }
478
479 Float_t x, z ;
480 RelPosInModule(relid, x, z) ;
481
482 pos.SetX(x) ;
483 pos.SetZ(z) ;
484 pos.SetY( TMath::Sqrt(x*x + z*z + y0*y0) ) ;
485
486
487
488 Float_t phi = GetPHOSAngle( phosmodule) ;
489 Double_t const kRADDEG = 180.0 / kPI ;
490 Float_t rphi = phi / kRADDEG ;
491
492 TRotation rot ;
493 rot.RotateZ(-rphi) ; // a rotation around Z by angle
494
495 TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
496
497 pos.Transform(rot) ; // rotate the baby
498 }
499 else {
500 pos.SetX(0.);
501 pos.SetY(0.);
502 pos.SetZ(0.);
503 }
504}
505
506//____________________________________________________________________________
507void AliPHOSGeometry::RelPosInModule(const Int_t * relid, Float_t & x, Float_t & z)
508{
509 // Converts the relative numbering into the local PHOS-module (x, z) coordinates
510
511 Int_t ppsdmodule ;
512 Int_t row = relid[2] ; //offset along z axiz
513 Int_t column = relid[3] ; //offset along x axiz
514
515 Float_t padsizeZ = GetPPSDModuleSize(2)/ GetNumberOfPadsZ();
516 Float_t padsizeX = GetPPSDModuleSize(0)/ GetNumberOfPadsPhi();
517
518 if ( relid[1] == 0 ) { // its a PbW04 crystal
519 x = -( GetNPhi()/2. - row + 0.5 ) * GetCrystalSize(0) ; // position ox Xtal with respect
520 z = ( GetNZ() /2. - column + 0.5 ) * GetCrystalSize(2) ; // of center of PHOS module
521 }
522 else {
523 if ( relid[1] > GetNumberOfModulesPhi() * GetNumberOfModulesZ() )
524 ppsdmodule = relid[1]-GetNumberOfModulesPhi() * GetNumberOfModulesZ();
525 else ppsdmodule = relid[1] ;
526 Int_t modrow = 1+(Int_t)TMath::Ceil( (Float_t)ppsdmodule / GetNumberOfModulesPhi()-1. ) ;
527 Int_t modcol = ppsdmodule - ( modrow - 1 ) * GetNumberOfModulesPhi() ;
528 Float_t x0 = ( GetNumberOfModulesPhi() / 2. - modrow + 0.5 ) * GetPPSDModuleSize(0) ;
529 Float_t z0 = ( GetNumberOfModulesZ() / 2. - modcol + 0.5 ) * GetPPSDModuleSize(2) ;
530 x = - ( GetNumberOfPadsPhi()/2. - row - 0.5 ) * padsizeX + x0 ; // position of pad with respect
531 z = ( GetNumberOfPadsZ()/2. - column - 0.5 ) * padsizeZ - z0 ; // of center of PHOS module
532 }
533}
534
535//____________________________________________________________________________
536void AliPHOSGeometry::SetPHOSAngles()
537{
538 // Calculates the position in ALICE of the PHOS modules
539
540 Double_t const kRADDEG = 180.0 / kPI ;
541 Float_t pphi = TMath::ATan( fOuterBoxSize[0] / ( 2.0 * fIPtoOuterCoverDistance ) ) ;
542 pphi *= kRADDEG ;
543
544 for( Int_t i = 1; i <= fNModules ; i++ ) {
545 Float_t angle = pphi * 2 * ( i - fNModules / 2.0 - 0.5 ) ;
546 fPHOSAngle[i-1] = - angle ;
547 }
548}
549
550//____________________________________________________________________________
551void AliPHOSGeometry::SetLeadConverterThickness(Float_t e)
552{
553 // should ultimately disappear
554
555 cout << " AliPHOSGeometry WARNING : You have changed LeadConverterThickness from "
556 << fLeadConverterThickness << " to " << e << endl ;
557
558 fLeadConverterThickness = e ;
559}