]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - PYTHIA8/AliPythia8.cxx
changed histo binning
[u/mrichter/AliRoot.git] / PYTHIA8 / AliPythia8.cxx
... / ...
CommitLineData
1
2/**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
7 * *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
16
17/* $Id$ */
18#include <TString.h>
19#include <TVector3.h>
20#include <TMath.h>
21
22#include "AliPythia8.h"
23#include "AliLog.h"
24#include "AliStack.h"
25#include "AliPythiaRndm.h"
26
27
28ClassImp(AliPythia8)
29
30// Particles produced in string fragmentation point directly to either of the two endpoints
31// of the string (depending in the side they were generated from).
32// SetMSTU(16,2); // ????
33// String drawing almost completely minimizes string length.
34// Probability that an additional interaction gives two gluons
35// ... with color connection to nearest neighbours
36// SetPARP(85,0.9);
37// ... as closed gluon loop
38// SetPARP(86,0.95);
39// Lambda_FSR scale.
40// SetPARJ(81, 0.29);
41// Baryon production model
42// SetMSTJ(12,3);
43// String fragmentation
44// SetMSTJ(1,1);
45// sea quarks can be used for baryon formation
46// SetMSTP(88,2);
47// choice of max. virtuality for ISR
48// SetMSTP(68,1);
49// regularisation scheme of ISR
50// SetMSTP(70,2);
51// all resonance decays switched on
52// SetMSTP(41,1);
53AliPythia8* AliPythia8::fgAliPythia8=NULL;
54
55AliPythia8::AliPythia8():
56 AliTPythia8(),
57 AliPythiaBase(),
58 fProcess(kPyMb),
59 fEcms(0.),
60 fStrucFunc(kCTEQ5L),
61 fEtSeed(0.),
62 fMinEtJet(0.),
63 fRJet(0.),
64 fYScale(0.),
65 fPtScale(0.),
66 fNJetMin(0),
67 fNJetMax(0)
68{
69// Default Constructor
70//
71// Set random number
72 if (!AliPythiaRndm::GetPythiaRandom())
73 AliPythiaRndm::SetPythiaRandom(GetRandom());
74}
75
76AliPythia8::AliPythia8(const AliPythia8& pythia):
77 AliTPythia8(),
78 AliPythiaBase(),
79 fProcess(kPyMb),
80 fEcms(0.),
81 fStrucFunc(kCTEQ5L),
82 fEtSeed(0.),
83 fMinEtJet(0.),
84 fRJet(0.),
85 fYScale(0.),
86 fPtScale(0.),
87 fNJetMin(0),
88 fNJetMax(0)
89{
90 // Copy Constructor
91 pythia.Copy(*this);
92}
93
94void AliPythia8::ProcInit(Process_t process, Float_t energy, StrucFunc_t strucfunc)
95{
96// Initialise the process to generate
97 if (!AliPythiaRndm::GetPythiaRandom())
98 AliPythiaRndm::SetPythiaRandom(GetRandom());
99
100 fProcess = process;
101 fEcms = energy;
102 fStrucFunc = strucfunc;
103//...Switch off decay of pi0, K0S, Lambda, Sigma+-, Xi0-, Omega-.
104 ReadString("111:mayDecay = off");
105 ReadString("310:mayDecay = off");
106 ReadString("3122:mayDecay = off");
107 ReadString("3112:mayDecay = off");
108 ReadString("3212:mayDecay = off");
109 ReadString("3222:mayDecay = off");
110 ReadString("3312:mayDecay = off");
111 ReadString("3322:mayDecay = off");
112 ReadString("3334:mayDecay = off");
113 // Select structure function
114
115 ReadString("PDF:useLHAPDF = on");
116 ReadString(Form("PDF:LHAPDFset = %s", AliStructFuncType::PDFsetName(fStrucFunc).Data()));
117
118 // Particles produced in string fragmentation point directly to either of the two endpoints
119 // of the string (depending in the side they were generated from).
120
121// SetMSTU(16,2); // ????
122
123//
124// Pythia initialisation for selected processes//
125//
126 switch (process)
127 {
128 case kPyOldUEQ2ordered: //Old underlying events with Q2 ordered QCD processes
129// Multiple interactions on.
130 ReadString("PartonLevel:MI = on");
131// Double Gaussian matter distribution.
132 ReadString("MultipleInteractions:bProfile = 2");
133 ReadString("MultipleInteractions:coreFraction = 0.5");
134 ReadString("MultipleInteractions:coreRadius = 0.4");
135// pT0.
136 ReadString("MultipleInteractions:pTmin = 2.0");
137// Reference energy for pT0 and energy rescaling pace.
138 ReadString("MultipleInteractions:ecmRef = 1800.");
139 ReadString("MultipleInteractions:ecmPow = 0.25");
140// String drawing almost completely minimizes string length.
141// SetPARP(85,0.9);
142// SetPARP(86,0.95);
143// ISR and FSR activity.
144// Q^2 scale of the hard scattering
145 ReadString("SigmaProcess:factorMultFac = 4.");
146// Lambda_FSR scale.
147// SetPARJ(81, 0.29);
148 break;
149 case kPyOldUEQ2ordered2:
150// Old underlying events with Q2 ordered QCD processes
151// Multiple interactions on.
152 ReadString("PartonLevel:MI = on");
153// Double Gaussian matter distribution.
154 ReadString("MultipleInteractions:bProfile = 2");
155 ReadString("MultipleInteractions:coreFraction = 0.5");
156 ReadString("MultipleInteractions:coreRadius = 0.4");
157// pT0.
158 ReadString("MultipleInteractions:pTmin = 2.0");
159// Reference energy for pT0 and energy rescaling pace.
160 ReadString("MultipleInteractions:ecmRef = 1800.");
161 ReadString("MultipleInteractions:ecmPow = 0.16");
162// String drawing almost completely minimizes string length.
163// SetPARP(85,0.9);
164// SetPARP(86,0.95);
165// ISR and FSR activity.
166 ReadString("SigmaProcess:factorMultFac = 4.");
167// Lambda_FSR scale.
168// SetPARJ(81,0.29);
169 break;
170 case kPyOldPopcorn:
171// Old production mechanism: Old Popcorn
172 ReadString("HardQCD:all = on");
173// SetMSTJ(12,3);
174// (D=2) Like MSTJ(12)=2 but added prod ofthe 1er rank baryon
175// SetMSTP(88,2);
176// (D=1)see can be used to form baryons (BARYON JUNCTION)
177// SetMSTJ(1,1);
178 AtlasTuning();
179 break;
180 case kPyCharm:
181 ReadString("HardQCD:gg2ccbar = on");
182 ReadString("HardQCD:qqbar2ccbar = on");
183// heavy quark masses
184 ReadString("ParticleData:mcRun = 1.2");
185//
186// primordial pT
187 ReadString("BeamRemnants:primordialKT = on");
188 ReadString("BeamRemnants:primordialKTsoft = 0.");
189 ReadString("BeamRemnants:primordialKThard = 1.");
190 ReadString("BeamRemnants:halfScaleForKT = 0.");
191 ReadString("BeamRemnants:halfMassForKT = 0.");
192 break;
193 case kPyBeauty:
194 ReadString("HardQCD:gg2bbbar = on");
195 ReadString("HardQCD:qqbar2bbbar = on");
196 ReadString("ParticleData:mbRun = 4.75");
197 break;
198 case kPyJpsi:
199// gg->J/Psi g
200 ReadString("Charmonium:gg2QQbar[3S1(1)]g = on");
201 break;
202 case kPyJpsiChi:
203 ReadString("Charmonium:all = on");
204 break;
205 case kPyCharmUnforced:
206// gq->qg
207 ReadString("HardQCD:gq2qg = on");
208// gg->qq
209 ReadString("HardQCD:gg2qq = on");
210// gg->gg
211 ReadString("HardQCD:gg2gg = on");
212 break;
213 case kPyBeautyUnforced:
214// gq->qg
215 ReadString("HardQCD:gq2qg = on");
216// gg->qq
217 ReadString("HardQCD:gg2qq = on");
218// gg->gg
219 ReadString("HardQCD:gg2gg = on");
220 break;
221 case kPyMb:
222// Minimum Bias pp-Collisions
223//
224//
225// select Pythia min. bias model
226// single diffraction AB-->XB
227 ReadString("SoftQCD:minBias = on");
228 ReadString("SoftQCD:singleDiffractive = on");
229 ReadString("SoftQCD:doubleDiffractive = on");
230 AtlasTuning();
231 break;
232 case kPyMbDefault:
233// Minimum Bias pp-Collisions
234//
235//
236// select Pythia min. bias model
237 ReadString("SoftQCD:minBias = on");
238 ReadString("SoftQCD:singleDiffractive = on");
239 ReadString("SoftQCD:doubleDiffractive = on");
240 break;
241 case kPyLhwgMb:
242// Les Houches Working Group 05 Minimum Bias pp-Collisions: hep-ph/0604120
243// -> Pythia 6.3 or above is needed
244//
245 ReadString("SoftQCD:minBias = on");
246 ReadString("SoftQCD:singleDiffractive = on");
247 ReadString("SoftQCD:doubleDiffractive = on");
248 ReadString(Form("PDF:LHAPDFset = %s", AliStructFuncType::PDFsetName(kCTEQ6ll).Data()));
249
250// SetMSTP(68,1);
251// SetMSTP(70,2);
252// ReadString("PartonLevel:MI = on");
253// Double Gaussian matter distribution.
254 ReadString("MultipleInteractions:bProfile = 2");
255 ReadString("MultipleInteractions:coreFraction = 0.5");
256 ReadString("MultipleInteractions:coreRadius = 0.5");
257 ReadString("MultipleInteractions:expPow = 0.16");
258 ReadString("MultipleInteractions:pTmin = 2.3");
259// SetMSTP(88,1);
260// SetPARP(85,0.9); // Regulates gluon prod. mechanism
261 break;
262 case kPyMbNonDiffr:
263// Minimum Bias pp-Collisions
264//
265//
266// select Pythia min. bias model
267 ReadString("SoftQCD:minBias = on");
268 AtlasTuning();
269 break;
270 case kPyMbMSEL1:
271 ConfigHeavyFlavor();
272// Intrinsic <kT^2>
273 ReadString("BeamRemnants:primordialKT = on");
274 ReadString("BeamRemnants:primordialKTsoft = 0.");
275 ReadString("BeamRemnants:primordialKThard = 1.");
276 ReadString("BeamRemnants:halfScaleForKT = 0.");
277 ReadString("BeamRemnants:halfMassForKT = 0.");
278// Set Q-quark mass
279 ReadString("ParticleData:mcRun = 1.20");
280 ReadString("ParticleData:mbRun = 4.78");
281// Atlas Tuning
282 AtlasTuning();
283 break;
284 case kPyJets:
285//
286// QCD Jets
287//
288 ReadString("HardQCD:all = on");
289//
290// Pythia Tune A (CDF)
291//
292 ReadString("PartonLevel:MI = on");
293 ReadString("MultipleInteractions:pTmin = 2.0");
294 ReadString("MultipleInteractions:pT0Ref = 2.8");
295 ReadString("MultipleInteractions:ecmRef = 1800.");
296 ReadString("MultipleInteractions:expPow = 0.25");
297 ReadString("MultipleInteractions:bProfile = 2");
298 ReadString("MultipleInteractions:coreFraction = 0.16");
299 ReadString("MultipleInteractions:coreRadius = 0.4");
300 ReadString("SigmaProcess:factorMultFac = 2.5");
301// SetPARP(85,0.90) ; // Regulates gluon prod. mechanism
302// SetPARP(86,0.95); // Regulates gluon prod. mechanism
303 break;
304 case kPyDirectGamma:
305 ReadString("PromptPhoton:all = on");
306 break;
307 case kPyCharmPbPbMNR:
308 case kPyD0PbPbMNR:
309 case kPyDPlusPbPbMNR:
310 case kPyDPlusStrangePbPbMNR:
311 // Tuning of Pythia parameters aimed to get a resonable agreement
312 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
313 // c-cbar single inclusive and double differential distributions.
314 // This parameter settings are meant to work with Pb-Pb collisions
315 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
316 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
317 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
318 ConfigHeavyFlavor();
319 // Intrinsic <kT>
320 ReadString("BeamRemnants:primordialKT = on");
321 ReadString("BeamRemnants:primordialKTsoft = 0.");
322 ReadString("BeamRemnants:primordialKThard = 1.304");
323 ReadString("BeamRemnants:halfScaleForKT = 0.");
324 ReadString("BeamRemnants:halfMassForKT = 0.");
325 // Set c-quark mass
326 ReadString("ParticleData:mcRun = 1.20");
327 break;
328 case kPyCharmpPbMNR:
329 case kPyD0pPbMNR:
330 case kPyDPluspPbMNR:
331 case kPyDPlusStrangepPbMNR:
332 // Tuning of Pythia parameters aimed to get a resonable agreement
333 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
334 // c-cbar single inclusive and double differential distributions.
335 // This parameter settings are meant to work with p-Pb collisions
336 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
337 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
338 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
339 ConfigHeavyFlavor();
340 // Intrinsic <kT>
341 ReadString("BeamRemnants:primordialKT = on");
342 ReadString("BeamRemnants:primordialKTsoft = 0.");
343 ReadString("BeamRemnants:primordialKThard = 1.16");
344 ReadString("BeamRemnants:halfScaleForKT = 0.");
345 ReadString("BeamRemnants:halfMassForKT = 0.");
346 // Set c-quark mass
347 ReadString("ParticleData:mcRun = 1.20");
348 break;
349 case kPyCharmppMNR:
350 case kPyD0ppMNR:
351 case kPyDPlusppMNR:
352 case kPyDPlusStrangeppMNR:
353 case kPyLambdacppMNR:
354 // Tuning of Pythia parameters aimed to get a resonable agreement
355 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
356 // c-cbar single inclusive and double differential distributions.
357 // This parameter settings are meant to work with pp collisions
358 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
359 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
360 // has to be set to 2.1GeV. Example in ConfigCharmPPR.C.
361 ConfigHeavyFlavor();
362 // Intrinsic <kT^2>
363 ReadString("BeamRemnants:primordialKT = on");
364 ReadString("BeamRemnants:primordialKTsoft = 0.");
365 ReadString("BeamRemnants:primordialKThard = 1.");
366 ReadString("BeamRemnants:halfScaleForKT = 0.");
367 ReadString("BeamRemnants:halfMassForKT = 0.");
368 // Set c-quark mass
369 ReadString("ParticleData:mcRun = 1.20");
370 break;
371 case kPyCharmppMNRwmi:
372 // Tuning of Pythia parameters aimed to get a resonable agreement
373 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
374 // c-cbar single inclusive and double differential distributions.
375 // This parameter settings are meant to work with pp collisions
376 // and with kCTEQ5L PDFs.
377 // Added multiple interactions according to ATLAS tune settings.
378 // To get a "reasonable" agreement with MNR results, events have to be
379 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
380 // set to 2.76 GeV.
381 // To get a "perfect" agreement with MNR results, events have to be
382 // generated in four ptHard bins with the following relative
383 // normalizations:
384 // 2.76-3 GeV: 25%
385 // 3-4 GeV: 40%
386 // 4-8 GeV: 29%
387 // >8 GeV: 6%
388 ConfigHeavyFlavor();
389 // Intrinsic <kT^2>
390 ReadString("BeamRemnants:primordialKT = on");
391 ReadString("BeamRemnants:primordialKTsoft = 0.");
392 ReadString("BeamRemnants:primordialKThard = 1.");
393 ReadString("BeamRemnants:halfScaleForKT = 0.");
394 ReadString("BeamRemnants:halfMassForKT = 0.");
395 // Set c-quark mass
396 ReadString("ParticleData:mcRun = 1.20");
397 AtlasTuning();
398 break;
399 case kPyBeautyPbPbMNR:
400 // Tuning of Pythia parameters aimed to get a resonable agreement
401 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
402 // b-bbar single inclusive and double differential distributions.
403 // This parameter settings are meant to work with Pb-Pb collisions
404 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
405 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
406 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
407 ConfigHeavyFlavor();
408 // QCD scales
409 ReadString("SigmaProcess:factorMultFac = 1.");
410 // Intrinsic <kT>
411 ReadString("BeamRemnants:primordialKT = on");
412 ReadString("BeamRemnants:primordialKTsoft = 0.");
413 ReadString("BeamRemnants:primordialKThard = 2.035");
414 ReadString("BeamRemnants:halfScaleForKT = 0.");
415 ReadString("BeamRemnants:halfMassForKT = 0.");
416 // Set b-quark mass
417 ReadString("ParticleData:mbRun = 4.75");
418 break;
419 case kPyBeautypPbMNR:
420 // Tuning of Pythia parameters aimed to get a resonable agreement
421 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
422 // b-bbar single inclusive and double differential distributions.
423 // This parameter settings are meant to work with p-Pb collisions
424 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
425 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
426 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
427 ConfigHeavyFlavor();
428 // QCD scales
429 ReadString("SigmaProcess:factorMultFac = 1.");
430 // Intrinsic <kT>
431 ReadString("BeamRemnants:primordialKT = on");
432 ReadString("BeamRemnants:primordialKTsoft = 0.");
433 ReadString("BeamRemnants:primordialKThard = 1.6");
434 ReadString("BeamRemnants:halfScaleForKT = 0.");
435 ReadString("BeamRemnants:halfMassForKT = 0.");
436 // Set b-quark mass
437 ReadString("ParticleData:mbRun = 4.75");
438 break;
439 case kPyBeautyppMNR:
440 // Tuning of Pythia parameters aimed to get a resonable agreement
441 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
442 // b-bbar single inclusive and double differential distributions.
443 // This parameter settings are meant to work with pp collisions
444 // (AliGenPythia::SetNuclei) and with kCTEQ4L PDFs.
445 // To get a good agreement the minimum ptHard (AliGenPythia::SetPtHard)
446 // has to be set to 2.75GeV. Example in ConfigBeautyPPR.C.
447 ConfigHeavyFlavor();
448 // QCD scales
449 ReadString("SigmaProcess:factorMultFac = 1.");
450 // Intrinsic <kT>
451 ReadString("BeamRemnants:primordialKT = on");
452 ReadString("BeamRemnants:primordialKTsoft = 0.");
453 ReadString("BeamRemnants:primordialKThard = 1.0");
454 ReadString("BeamRemnants:halfScaleForKT = 0.");
455 ReadString("BeamRemnants:halfMassForKT = 0.");
456 // Set b-quark mass
457 ReadString("ParticleData:mbRun = 4.75");
458 break;
459 case kPyBeautyppMNRwmi:
460 // Tuning of Pythia parameters aimed to get a resonable agreement
461 // between with the NLO calculation by Mangano, Nason, Ridolfi for the
462 // b-bbar single inclusive and double differential distributions.
463 // This parameter settings are meant to work with pp collisions
464 // and with kCTEQ5L PDFs.
465 // Added multiple interactions according to ATLAS tune settings.
466 // To get a "reasonable" agreement with MNR results, events have to be
467 // generated with the minimum ptHard (AliGenPythia::SetPtHard)
468 // set to 2.76 GeV.
469 // To get a "perfect" agreement with MNR results, events have to be
470 // generated in four ptHard bins with the following relative
471 // normalizations:
472 // 2.76-4 GeV: 5%
473 // 4-6 GeV: 31%
474 // 6-8 GeV: 28%
475 // >8 GeV: 36%
476 ConfigHeavyFlavor();
477 // QCD scales
478 ReadString("SigmaProcess:factorMultFac = 1.");
479 // Intrinsic <kT>
480 ReadString("BeamRemnants:primordialKT = on");
481 ReadString("BeamRemnants:primordialKTsoft = 0.");
482 ReadString("BeamRemnants:primordialKThard = 1.0");
483 ReadString("BeamRemnants:halfScaleForKT = 0.");
484 ReadString("BeamRemnants:halfMassForKT = 0.");
485 // Set b-quark mass
486 ReadString("ParticleData:mbRun = 4.75");
487 AtlasTuning();
488 break;
489 case kPyW:
490 //Inclusive production of W+/-
491 //f fbar -> W+
492 ReadString("WeakSingleBoson:ffbar2W = on");
493 // Initial/final parton shower on (Pythia default)
494 // With parton showers on we are generating "W inclusive process"
495 ReadString("PartonLevel:ISR = on");
496 ReadString("PartonLevel:FSR = on");
497 break;
498 case kPyZ:
499 //Inclusive production of Z
500 //f fbar -> Z/gamma
501 ReadString("WeakSingleBoson:ffbar2gmZ = on");
502 //only Z included, not gamma
503 ReadString("WeakZ0:gmZmode = 2");
504 // Initial/final parton shower on (Pythia default)
505 // With parton showers on we are generating "Z inclusive process"
506 ReadString("PartonLevel:ISR = on");
507 ReadString("PartonLevel:FSR = on");
508 break;
509 }
510//
511// Initialize PYTHIA
512// SetMSTP(41,1); // all resonance decays switched on
513 Initialize(2212, 2212, fEcms);
514}
515
516void AliPythia8::SetNuclei(Int_t /*a1*/, Int_t /*a2*/)
517{
518// Treat protons as inside nuclei with mass numbers a1 and a2
519// The MSTP array in the PYPARS common block is used to enable and
520// select the nuclear structure functions.
521// MSTP(52) : (D=1) choice of proton and nuclear structure-function library
522// =1: internal PYTHIA acording to MSTP(51)
523// =2: PDFLIB proton s.f., with MSTP(51) = 1000xNGROUP+NSET
524// If the following mass number both not equal zero, nuclear corrections of the stf are used.
525// MSTP(192) : Mass number of nucleus side 1
526// MSTP(193) : Mass number of nucleus side 2
527// SetMSTP(52,2);
528// SetMSTP(192, a1);
529// SetMSTP(193, a2);
530}
531
532
533AliPythia8* AliPythia8::Instance()
534{
535// Set random number generator
536 if (fgAliPythia8) {
537 return fgAliPythia8;
538 } else {
539 fgAliPythia8 = new AliPythia8();
540 return fgAliPythia8;
541 }
542}
543
544void AliPythia8::PrintParticles()
545{
546// Print list of particl properties
547 ReadString("Main:showAllParticleData");
548}
549
550void AliPythia8::ResetDecayTable()
551{
552// Set default values for pythia decay switches
553// Int_t i;
554// for (i = 1; i < 501; i++) SetMDCY(i,1,fDefMDCY[i]);
555// for (i = 1; i < 2001; i++) SetMDME(i,1,fDefMDME[i]);
556}
557
558void AliPythia8::SetDecayTable()
559{
560// Set default values for pythia decay switches
561//
562// Int_t i;
563// for (i = 1; i < 501; i++) fDefMDCY[i] = GetMDCY(i,1);
564// for (i = 1; i < 2001; i++) fDefMDME[i] = GetMDME(i,1);
565}
566
567void AliPythia8::Pyclus(Int_t& njet)
568{
569// Call Pythia clustering algorithm
570//
571 Bool_t ok = fClusterJet.analyze(Pythia8()->event, fYScale, fPtScale, fNJetMin, fNJetMax);
572 njet = 0;
573 if (ok) njet = fClusterJet.size();
574}
575
576void AliPythia8::Pycell(Int_t& njet)
577{
578// Call Pythia jet reconstruction algorithm
579//
580 Bool_t ok = fCellJet.analyze(Pythia8()->event, fMinEtJet, fRJet, fEtSeed);
581 njet = 0;
582 if (ok) njet = fCellJet.size();
583}
584
585void AliPythia8::GetJet(Int_t i, Float_t& px, Float_t& py, Float_t& pz, Float_t& e)
586{
587 // Get jet number i
588 Float_t et = fCellJet.eT(i);
589 px = et * TMath::Cos(fCellJet.phiWeighted(i));
590 py = et * TMath::Sin(fCellJet.phiWeighted(i));
591 pz = et * TMath::SinH(fCellJet.etaWeighted(i));
592 e = et * TMath::CosH(fCellJet.etaWeighted(i));
593}
594
595void AliPythia8::GenerateEvent()
596{
597 // Generate one event
598 AliTPythia8::GenerateEvent();
599}
600
601void AliPythia8::GenerateMIEvent()
602{
603 // New multiple interaction scenario
604 AliWarning("Not implemented. No event will be generated");
605}
606
607void AliPythia8::PrintStatistics()
608{
609 // End of run statistics
610 AliTPythia8::PrintStatistics();
611}
612
613void AliPythia8::EventListing()
614{
615 // End of run statistics
616 AliTPythia8::EventListing();
617}
618
619Int_t AliPythia8::ProcessCode()
620{
621 // Returns the subprocess code for the current event
622 printf("Process %5d %5d \n", Pythia8()->info.code(), Pythia8()->info.codeSub());
623
624 return Pythia8()->info.codeSub();
625}
626
627void AliPythia8::ConfigHeavyFlavor()
628{
629 //
630 // Default configuration for Heavy Flavor production
631 //
632 // All QCD processes
633 //
634 ReadString("HardQCD:all = on");
635
636 // No multiple interactions
637 ReadString("PartonLevel:MI = off");
638 ReadString("MultipleInteractions:pTmin = 0.0");
639 ReadString("MultipleInteractions:pT0Ref = 0.0");
640
641 // Initial/final parton shower on (Pythia default)
642 ReadString("PartonLevel:ISR = on");
643 ReadString("PartonLevel:FSR = on");
644
645 // 2nd order alpha_s
646 ReadString("SigmaProcess:alphaSorder = 2");
647
648 // QCD scales
649 ReadString("SigmaProcess:renormScale2 = 2");
650 ReadString("SigmaProcess:renormMultFac = 1.");
651}
652
653void AliPythia8::AtlasTuning()
654{
655 //
656 // Configuration for the ATLAS tuning
657 ReadString(Form("PDF:LHAPDFset = %s", AliStructFuncType::PDFsetName(kCTEQ5L).Data()));
658 ReadString("PartonLevel:MI = on");
659 ReadString("MultipleInteractions:pTmin = 1.9");
660 ReadString("MultipleInteractions:pT0Ref = 1.8");
661 ReadString("MultipleInteractions:ecmRef = 1000.");
662 ReadString("MultipleInteractions:expPow = 0.16");
663 ReadString("MultipleInteractions:bProfile = 2");
664 ReadString("MultipleInteractions:coreFraction = 0.16");
665 ReadString("MultipleInteractions:coreRadius = 0.5");
666// SetPARP(85,0.33); // Regulates gluon prod. mechanism
667// SetPARP(86,0.66); // Regulates gluon prod. mechanism
668 ReadString("SigmaProcess:factorMultFac = 1.");
669}
670
671void AliPythia8::SetPtHardRange(Float_t ptmin, Float_t ptmax)
672{
673 // Set the pt hard range
674 ReadString(Form("PhaseSpace:pTHatMin = %13.3f", ptmin));
675 ReadString(Form("PhaseSpace:pTHatMax = %13.3f", ptmax));
676}
677
678void AliPythia8::SetYHardRange(Float_t /*ymin*/, Float_t /*ymax*/)
679{
680 // Set the y hard range
681 printf("YHardRange not implemented in Pythia8 !!!\n");
682
683}
684
685
686void AliPythia8::SetFragmentation(Int_t flag)
687{
688 // Switch fragmentation on/off
689 if (flag) {
690 ReadString("HadronLevel:Hadronize = on");
691 } else {
692 ReadString("HadronLevel:Hadronize = off");
693 }
694}
695
696void AliPythia8::SetInitialAndFinalStateRadiation(Int_t flag1, Int_t flag2)
697{
698// initial state radiation
699 if (flag1) {
700 ReadString("PartonLevel:ISR = on");
701 } else {
702 ReadString("PartonLevel:ISR = off");
703 }
704// final state radiation
705 if (flag2) {
706 ReadString("PartonLevel:FSR = on");
707 } else {
708 ReadString("PartonLevel:FSR = off");
709 }
710}
711
712void AliPythia8::SetIntrinsicKt(Float_t kt)
713{
714 ReadString("BeamRemnants:primordialKT = on");
715 ReadString("BeamRemnants:primordialKTsoft = 0.");
716 ReadString(Form("BeamRemnants:primordialKThard = %13.3f", kt));
717 ReadString("BeamRemnants:halfScaleForKT = 0.");
718 ReadString("BeamRemnants:halfMassForKT = 0.");
719}
720
721void AliPythia8::SwitchHFOff()
722{
723 // Switch off heavy flavor
724 // Maximum number of quark flavours used in pdf
725 ReadString("PDFinProcess:nQuarkIn = 3");
726 // Maximum number of flavors that can be used in showers
727 ReadString("TimeShower:nGluonToQuark = 3");
728 ReadString("SpaceShower:nQuarkIn = 3");
729
730
731}
732
733void AliPythia8::SetPycellParameters(Float_t etaMax, Int_t nEta, Int_t nPhi,
734 Float_t thresh, Float_t etseed, Float_t minet, Float_t r)
735{
736// Set pycell parameters
737 fCellJet = Pythia8::CellJet( etaMax, nEta, nPhi, 2, 0, 0., 0., thresh);
738 fEtSeed = etseed;
739 fMinEtJet = minet;
740 fRJet = r;
741}
742
743void AliPythia8::ModifiedSplitting()
744{
745//
746// We have to see how to implement this in Pythia8 !!!
747//
748 // Modified splitting probability as a model for quenching
749// SetPARJ(200, 0.8);
750// SetMSTJ(41, 1); // QCD radiation only
751// SetMSTJ(42, 2); // angular ordering
752// SetMSTJ(44, 2); // option to run alpha_s
753// SetMSTJ(47, 0); // No correction back to hard scattering element
754// SetMSTJ(50, 0); // No coherence in first branching
755// SetPARJ(82, 1.); // Cut off for parton showers
756}
757
758
759void AliPythia8::InitQuenching(Float_t /*cMin*/, Float_t /*cMax*/, Float_t /*k*/, Int_t /*iECMethod*/, Float_t /*zmax*/, Int_t /*ngmax*/)
760{
761 //
762 //
763 AliWarning("Not implemented !");
764}
765
766void AliPythia8::SwitchHadronisationOff()
767{
768 // Switch off hadronisation
769 ReadString("HadronLevel:Hadronize = off");
770}
771
772void AliPythia8::SwitchHadronisationOn()
773{
774 // Switch on hadronisarion
775 ReadString("HadronLevel:Hadronize = on");
776}
777
778
779void AliPythia8::GetXandQ(Float_t& x1, Float_t& x2, Float_t& q)
780{
781 // Get x1, x2 and Q for this event
782
783 q = Pythia8()->info.QFac();
784 x1 = Pythia8()->info.x1();
785 x2 = Pythia8()->info.x2();
786
787}
788
789Float_t AliPythia8::GetXSection()
790{
791 // Get the total cross-section
792 return Pythia8()->info.sigmaGen();
793}
794
795Float_t AliPythia8::GetPtHard()
796{
797 // Get the pT hard for this event
798 return Pythia8()->info.pTHat();
799}
800
801
802
803
804AliPythia8& AliPythia8::operator=(const AliPythia8& rhs)
805{
806// Assignment operator
807 rhs.Copy(*this);
808 return *this;
809}
810
811 void AliPythia8::Copy(TObject&) const
812{
813 //
814 // Copy
815 //
816 Fatal("Copy","Not implemented!\n");
817}
818
819//
820// To be implemented
821//
822void AliPythia8::SetNumberOfParticles(Int_t /*i*/)
823{
824 AliWarning("Not implemented");
825}
826
827void AliPythia8::EditEventList(Int_t /*i*/)
828{
829 AliWarning("Not implemented");
830}
831
832void AliPythia8::Pyquen(Double_t /*a*/, Int_t /*b*/, Double_t /*c*/)
833{
834 AliWarning("Cannot be used with Pythia8");
835}
836
837void AliPythia8::HadronizeEvent()
838{
839 // Needs access to HadronLevel ?
840 AliWarning("Not yet implemented");
841}
842
843void AliPythia8::GetQuenchingParameters(Double_t& /*xp*/, Double_t& /*yp*/, Double_t* /*z[4]*/)
844{
845 AliWarning("Not yet implemented");
846}
847
848void AliPythia8::LoadEvent(AliStack* /*stack*/, Int_t /*flag*/, Int_t /*reHadr*/)
849{
850 AliWarning("Not yet implemented");
851}