]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - STEER/AliESDtrack.h
TFluka::GetPrimaryElectronKineticEnergy
[u/mrichter/AliRoot.git] / STEER / AliESDtrack.h
... / ...
CommitLineData
1#ifndef ALIESDTRACK_H
2#define ALIESDTRACK_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
8//-------------------------------------------------------------------------
9// Class AliESDtrack
10// This is the class to deal with during the physics analysis of data
11//
12// Origin: Iouri Belikov, CERN, Jouri.Belikov@cern.ch
13//-------------------------------------------------------------------------
14/*****************************************************************************
15 * Use GetExternalParameters() and GetExternalCovariance() to access the *
16 * track information regardless of its internal representation. *
17 * This formation is now fixed in the following way: *
18 * external param0: local Y-coordinate of a track (cm) *
19 * external param1: local Z-coordinate of a track (cm) *
20 * external param2: local sine of the track momentum azimuthal angle *
21 * external param3: tangent of the track momentum dip angle *
22 * external param4: 1/pt (1/(GeV/c)) *
23 *****************************************************************************/
24
25#include <TBits.h>
26#include "AliExternalTrackParam.h"
27#include "AliPID.h"
28#include "AliESDfriendTrack.h"
29
30class AliESDVertex;
31class AliKalmanTrack;
32class AliTrackPointArray;
33
34class AliESDtrack : public AliExternalTrackParam {
35public:
36 AliESDtrack();
37 AliESDtrack(const AliESDtrack& track);
38 virtual ~AliESDtrack();
39 const AliESDfriendTrack *GetFriendTrack() const {return fFriendTrack;}
40 void SetFriendTrack(const AliESDfriendTrack *t) {
41 delete fFriendTrack; fFriendTrack=new AliESDfriendTrack(*t);
42 }
43 void AddCalibObject(TObject * object); // add calib object to the list
44 TObject * GetCalibObject(Int_t index); // return calib objct at given position
45 void MakeMiniESDtrack();
46 void SetID(Int_t id) { fID =id;}
47 Int_t GetID() const { return fID;}
48 void SetStatus(ULong_t flags) {fFlags|=flags;}
49 void ResetStatus(ULong_t flags) {fFlags&=~flags;}
50 Bool_t UpdateTrackParams(const AliKalmanTrack *t, ULong_t flags);
51 void SetIntegratedLength(Double_t l) {fTrackLength=l;}
52 void SetIntegratedTimes(const Double_t *times);
53 void SetESDpid(const Double_t *p);
54 void GetESDpid(Double_t *p) const;
55
56 Bool_t IsOn(Int_t mask) const {return (fFlags&mask)>0;}
57 ULong_t GetStatus() const {return fFlags;}
58 Int_t GetLabel() const {return fLabel;}
59 void SetLabel(Int_t label) {fLabel = label;}
60
61 void GetExternalParameters(Double_t &x, Double_t p[5]) const;
62 void GetExternalCovariance(Double_t cov[15]) const;
63
64 Double_t GetIntegratedLength() const {return fTrackLength;}
65 void GetIntegratedTimes(Double_t *times) const;
66 Double_t GetMass() const;
67
68 Bool_t GetConstrainedPxPyPz(Double_t *p) const {
69 if (!fCp) return kFALSE;
70 return fCp->GetPxPyPz(p);
71 }
72 Bool_t GetConstrainedXYZ(Double_t *r) const {
73 if (!fCp) return kFALSE;
74 return fCp->GetXYZ(r);
75 }
76 const AliExternalTrackParam *GetConstrainedExternalParameters() const {
77 return fCp;
78 }
79 Bool_t GetConstrainedExternalParameters
80 (Double_t &alpha, Double_t &x, Double_t p[5]) const;
81 Bool_t GetConstrainedExternalCovariance(Double_t cov[15]) const;
82 Double_t GetConstrainedChi2() const {return fCchi2;}
83
84
85 Bool_t GetInnerPxPyPz(Double_t *p) const {
86 if (!fIp) return kFALSE;
87 return fIp->GetPxPyPz(p);
88 }
89 const AliExternalTrackParam * GetInnerParam() const { return fIp;}
90 Bool_t GetInnerXYZ(Double_t *r) const {
91 if (!fIp) return kFALSE;
92 return fIp->GetXYZ(r);
93 }
94 Bool_t GetInnerExternalParameters
95 (Double_t &alpha, Double_t &x, Double_t p[5]) const;
96 Bool_t GetInnerExternalCovariance(Double_t cov[15]) const;
97
98 const AliExternalTrackParam * GetOuterParam() const { return fOp;}
99 Bool_t GetOuterPxPyPz(Double_t *p) const {
100 if (!fOp) return kFALSE;
101 return fOp->GetPxPyPz(p);
102 }
103 Bool_t GetOuterXYZ(Double_t *r) const {
104 if (!fOp) return kFALSE;
105 return fOp->GetXYZ(r);
106 }
107 Bool_t GetOuterExternalParameters
108 (Double_t &alpha, Double_t &x, Double_t p[5]) const;
109 Bool_t GetOuterExternalCovariance(Double_t cov[15]) const;
110
111
112 Int_t GetNcls(Int_t idet) const;
113 Int_t GetClusters(Int_t idet, Int_t *idx) const;
114
115 void SetITSpid(const Double_t *p);
116 void GetITSpid(Double_t *p) const;
117 Float_t GetITSsignal() const {return fITSsignal;}
118 Float_t GetITSchi2() const {return fITSchi2;}
119 Int_t GetITSclusters(Int_t *idx) const;
120 Int_t GetITSLabel() const {return fITSLabel;}
121 void SetITStrack(AliKalmanTrack * track){
122 fFriendTrack->SetITStrack(track);
123 }
124 AliKalmanTrack *GetITStrack(){
125 return fFriendTrack->GetITStrack();
126 }
127
128 void SetTPCpid(const Double_t *p);
129 void GetTPCpid(Double_t *p) const;
130 void SetTPCPoints(Float_t points[4]){
131 for (Int_t i=0;i<4;i++) fTPCPoints[i]=points[i];
132 }
133 void SetTPCPointsF(UChar_t findable){fTPCnclsF = findable;}
134 Int_t GetTPCNcls() const { return fTPCncls;}
135 Int_t GetTPCNclsF() const { return fTPCnclsF;}
136 Float_t GetTPCPoints(Int_t i) const {return fTPCPoints[i];}
137 void SetKinkIndexes(Int_t points[3]) {
138 for (Int_t i=0;i<3;i++) fKinkIndexes[i] = points[i];
139 }
140 void SetV0Indexes(Int_t points[3]) {
141 for (Int_t i=0;i<3;i++) fV0Indexes[i] = points[i];
142 }
143 void SetTPCsignal(Float_t signal, Float_t sigma, UChar_t npoints){
144 fTPCsignal = signal; fTPCsignalS = sigma; fTPCsignalN = npoints;
145 }
146 Float_t GetTPCsignal() const {return fTPCsignal;}
147 Float_t GetTPCsignalSigma() const {return fTPCsignalS;}
148 Float_t GetTPCsignalN() const {return fTPCsignalN;}
149 Float_t GetTPCchi2() const {return fTPCchi2;}
150 Int_t GetTPCclusters(Int_t *idx) const;
151 Float_t GetTPCdensity(Int_t row0, Int_t row1) const;
152 Int_t GetTPCLabel() const {return fTPCLabel;}
153 Int_t GetKinkIndex(Int_t i) const { return fKinkIndexes[i];}
154 Int_t GetV0Index(Int_t i) const { return fV0Indexes[i];}
155 const TBits& GetTPCClusterMap() const {return fTPCClusterMap;}
156
157 void SetTRDpid(const Double_t *p);
158 void SetTRDQuality(Float_t quality){fTRDQuality=quality;}
159 Float_t GetTRDQuality()const {return fTRDQuality;}
160 void SetTRDBudget(Float_t budget){fTRDBudget=budget;}
161 Float_t GetTRDBudget()const {return fTRDBudget;}
162 void SetTRDsignals(Float_t dedx, Int_t i, Int_t j) {fTRDsignals[i][j]=dedx;}
163 void SetTRDTimBin(Int_t timbin, Int_t i) {fTRDTimBin[i]=timbin;}
164 void GetTRDpid(Double_t *p) const;
165 Float_t GetTRDsignal() const {return fTRDsignal;}
166 Float_t GetTRDsignals(Int_t iPlane, Int_t iSlice=-1) const { if (iSlice == -1)
167 return (fTRDsignals[iPlane][0] + fTRDsignals[iPlane][1] + fTRDsignals[iPlane][2])/3.0;
168 return fTRDsignals[iPlane][iSlice];
169 }
170 Int_t GetTRDTimBin(Int_t i) const {return fTRDTimBin[i];}
171 Float_t GetTRDchi2() const {return fTRDchi2;}
172 Int_t GetTRDclusters(Int_t *idx) const;
173 Int_t GetTRDncls() const {return fTRDncls;}
174 void SetTRDpid(Int_t iSpecies, Float_t p);
175 Float_t GetTRDpid(Int_t iSpecies) const;
176 Int_t GetTRDLabel() const {return fTRDLabel;}
177
178 void SetTRDtrack(AliKalmanTrack * track){
179 fFriendTrack->SetTRDtrack(track);
180 }
181 AliKalmanTrack *GetTRDtrack(){
182 return fFriendTrack->GetTRDtrack();
183 }
184
185 void SetTOFsignal(Double_t tof) {fTOFsignal=tof;}
186 Float_t GetTOFsignal() const {return fTOFsignal;}
187 void SetTOFsignalToT(Double_t ToT) {fTOFsignalToT=ToT;}
188 Float_t GetTOFsignalToT() const {return fTOFsignalToT;}
189 Float_t GetTOFchi2() const {return fTOFchi2;}
190 void SetTOFpid(const Double_t *p);
191 void SetTOFLabel(const Int_t *p);
192 void GetTOFpid(Double_t *p) const;
193 void GetTOFLabel(Int_t *p) const;
194 void GetTOFInfo(Float_t *info) const;
195 void SetTOFInfo(Float_t *info);
196 Int_t GetTOFCalChannel() const {return fTOFCalChannel;}
197 Int_t GetTOFcluster() const {return fTOFindex;}
198 void SetTOFcluster(Int_t index) {fTOFindex=index;}
199 void SetTOFCalChannel(Int_t index) {fTOFCalChannel=index;}
200
201 void SetRICHsignal(Double_t beta) {fRICHsignal=beta;}
202 Float_t GetRICHsignal() const {return fRICHsignal;}
203 void SetRICHpid(const Double_t *p);
204 void GetRICHpid(Double_t *p) const;
205 void SetRICHchi2(Double_t chi2) {fRICHchi2=chi2;}
206 Float_t GetRICHchi2() const {return fRICHchi2;}
207 void SetRICHcluster(Int_t index) {fRICHindex=index;}
208 Int_t GetRICHcluster() const {return fRICHindex;}
209 void SetRICHnclusters(Int_t n) {fRICHncls=n;}
210 Int_t GetRICHnclusters() const {return fRICHncls;}
211 void SetRICHthetaPhi(Float_t theta, Float_t phi) {
212 fRICHtheta=theta; fRICHphi=phi;
213 }
214 void GetRICHthetaPhi(Float_t &theta, Float_t &phi) const {
215 theta=fRICHtheta; phi=fRICHphi;
216 }
217 void SetRICHdxdy(Float_t dx, Float_t dy) {
218 fRICHdx=dx; fRICHdy=dy;
219 }
220 void GetRICHdxdy(Float_t &dx, Float_t &dy) const {
221 dx=fRICHdx; dy=fRICHdy;
222 }
223 void SetRICHmipXY(Float_t x, Float_t y) {
224 fRICHmipX=x; fRICHmipY=y;
225 }
226 void GetRICHmipXY(Float_t &x, Float_t &y) const {
227 x=fRICHmipX; y=fRICHmipY;
228 }
229 Bool_t IsRICH() const {return fFlags&kRICHpid;}
230
231 Int_t GetEMCALcluster() {return fEMCALindex;}
232 void SetEMCALcluster(Int_t index) {fEMCALindex=index;}
233 Bool_t IsEMCAL() const {return fFlags&kEMCALmatch;}
234
235 void SetTrackPointArray(AliTrackPointArray *points);
236 const AliTrackPointArray *GetTrackPointArray() const;
237
238 Bool_t RelateToVertex(const AliESDVertex *vtx, Double_t b, Double_t maxd);
239 void GetImpactParameters(Float_t &xy,Float_t &z) const {xy=fD; z=fZ;}
240 void GetImpactParameters(Float_t p[2], Float_t cov[3]) const {
241 p[0]=fD; p[1]=fZ; cov[0]=fCdd; cov[1]=fCdz; cov[2]=fCzz;
242 }
243 virtual void Print(Option_t * opt) const ;
244
245 //MI
246 Bool_t PropagateTo(Double_t x, Double_t b, Double_t mass, Double_t maxStep,
247 Bool_t rotateTo=kTRUE, Double_t maxSnp=0.8);
248
249 enum {
250 kITSin=0x0001,kITSout=0x0002,kITSrefit=0x0004,kITSpid=0x0008,
251 kTPCin=0x0010,kTPCout=0x0020,kTPCrefit=0x0040,kTPCpid=0x0080,
252 kTRDin=0x0100,kTRDout=0x0200,kTRDrefit=0x0400,kTRDpid=0x0800,
253 kTOFin=0x1000,kTOFout=0x2000,kTOFrefit=0x4000,kTOFpid=0x8000,
254 kRICHpid=0x20000,
255 kEMCALmatch=0x40000,
256 kTRDbackup=0x80000,
257 kTRDStop=0x20000000,
258 kESDpid=0x40000000,
259 kTIME=0x80000000
260 };
261 enum {
262 kNPlane = 6,
263 kNSlice = 3,
264 kEMCALNoMatch = -999999999
265 };
266protected:
267
268
269 ULong_t fFlags; // Reconstruction status flags
270 Int_t fLabel; // Track label
271 Int_t fID; // Unique ID of the track
272 Float_t fTrackLength; // Track length
273 Float_t fD; // Impact parameter in XY plane
274 Float_t fZ; // Impact parameter in Z
275 Float_t fCdd,fCdz,fCzz; // Covariance matrix of the impact parameters
276 Float_t fTrackTime[AliPID::kSPECIES]; // TOFs estimated by the tracking
277 Float_t fR[AliPID::kSPECIES]; // combined "detector response probability"
278
279 Int_t fStopVertex; // Index of the stop vertex
280
281 AliExternalTrackParam *fCp; // Track parameters constrained to the primary vertex
282 Double_t fCchi2; // chi2 at the primary vertex
283
284
285 AliExternalTrackParam *fIp; // Track parameters at the inner wall of the TPC
286
287
288 AliExternalTrackParam *fOp; // Track parameters at the inner wall of the TRD
289
290 // ITS related track information
291 Float_t fITSchi2; // chi2 in the ITS
292 Int_t fITSncls; // number of clusters assigned in the ITS
293 Float_t fITSsignal; // detector's PID signal
294 Float_t fITSr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
295 Int_t fITSLabel; // label according TPC
296
297 // TPC related track information
298 Float_t fTPCchi2; // chi2 in the TPC
299 Int_t fTPCncls; // number of clusters assigned in the TPC
300 UShort_t fTPCnclsF; // number of findable clusters in the TPC
301 TBits fTPCClusterMap; // Map of clusters, one bit per padrow; 1 if has a cluster on given padrow
302 Float_t fTPCsignal; // detector's PID signal
303 UShort_t fTPCsignalN; // number of points used for dEdx
304 Float_t fTPCsignalS; // RMS of dEdx measurement
305 Float_t fTPCr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
306 Int_t fTPCLabel; // label according TPC
307 Float_t fTPCPoints[4]; // TPC points -first, max. dens, last and max density
308 Int_t fKinkIndexes[3];// array of indexes of posible kink candidates
309 Int_t fV0Indexes[3]; // array of indexes of posible kink candidates
310
311 // TRD related track information
312 Float_t fTRDchi2; // chi2 in the TRD
313 Int_t fTRDncls; // number of clusters assigned in the TRD
314 Int_t fTRDncls0; // number of clusters assigned in the TRD before first material cross
315 Float_t fTRDsignal; // detector's PID signal
316 Float_t fTRDsignals[kNPlane][kNSlice]; // TRD signals from all six planes in 3 slices each
317 Int_t fTRDTimBin[kNPlane]; // Time bin of Max cluster from all six planes
318 Float_t fTRDr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
319 Int_t fTRDLabel; // label according TRD
320 Float_t fTRDQuality; // trd quality factor for TOF
321 Float_t fTRDBudget; // trd material budget
322
323
324 // TOF related track information
325 Float_t fTOFchi2; // chi2 in the TOF
326 Int_t fTOFindex; // index of the assigned TOF cluster
327 Int_t fTOFCalChannel; // Channel Index of the TOF Signal
328 Float_t fTOFsignal; // detector's PID signal
329 Float_t fTOFsignalToT; // detector's ToT signal
330 Float_t fTOFr[AliPID::kSPECIES]; // "detector response probabilities" (for the PID)
331 Int_t fTOFLabel[3]; // TOF label
332 Float_t fTOFInfo[10]; //! TOF informations
333
334 // HMPID related track information
335 Float_t fRICHchi2; // chi2 in the RICH
336 Int_t fRICHncls; // number of photon clusters
337 Int_t fRICHindex; // index of the assigned MIP cluster
338 Float_t fRICHsignal; // RICH PID signal
339 Float_t fRICHr[AliPID::kSPECIES];// "detector response probabilities" (for the PID)
340 Float_t fRICHtheta; // theta of the track extrapolated to the RICH
341 Float_t fRICHphi; // phi of the track extrapolated to the RICH
342 Float_t fRICHdx; // x of the track impact minus x of the MIP
343 Float_t fRICHdy; // y of the track impact minus y of the MIP
344 Float_t fRICHmipX; // x of the MIP in LORS
345 Float_t fRICHmipY; // y of the MIP in LORS
346
347 // EMCAL related track information
348 Int_t fEMCALindex; // index of associated EMCAL cluster (AliESDCaloCluster)
349
350 AliTrackPointArray *fPoints;// Array of track space points in the global frame
351
352 AliESDfriendTrack *fFriendTrack; //! All the complementary information
353
354 private:
355
356 AliESDtrack & operator=(const AliESDtrack & ) {return *this;}
357
358 ClassDef(AliESDtrack,31) //ESDtrack
359};
360
361#endif
362