]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - STEER/AliMultiplicity.h
correct for omission
[u/mrichter/AliRoot.git] / STEER / AliMultiplicity.h
... / ...
CommitLineData
1#ifndef ALIMULTIPLICITY_H
2#define ALIMULTIPLICITY_H
3
4#include <TObject.h>
5#include <TBits.h>
6#include <TMath.h>
7class AliRefArray;
8
9////////////////////////////////////////////////////////
10//// Class containing multiplicity information //
11//// to stored in the ESD //
12////////////////////////////////////////////////////////
13
14class AliMultiplicity : public TObject {
15
16 public:
17 //
18 enum {kMultTrackRefs =BIT(14),// in new format (old is default for bwd.comp.) multiple cluster->track references are allowed
19 kScaleDThtbySin2=BIT(15) // scale Dtheta by 1/sin^2(theta). Default is DON'T scale, for bwd.comp.
20 };
21 AliMultiplicity(); // default constructor
22 // standard constructor
23 AliMultiplicity(Int_t ntr,Float_t *th, Float_t *ph, Float_t *dth, Float_t *dph, Int_t *labels,
24 Int_t* labelsL2, Int_t ns, Float_t *ts, Float_t *ps, Int_t *labelss, Short_t nfcL1, Short_t nfcL2, const TBits & fFastOrFiredChips);
25 AliMultiplicity(Int_t ntr, Int_t ns, Short_t nfcL1, Short_t nfcL2, const TBits & fFastOr);
26 AliMultiplicity(const AliMultiplicity& m);
27 AliMultiplicity& operator=(const AliMultiplicity& m);
28 virtual void Copy(TObject &obj) const;
29 virtual void Clear(Option_t* opt="");
30 virtual ~AliMultiplicity();
31 // methods to access tracklet information
32 Bool_t GetMultTrackRefs() const {return TestBit(kMultTrackRefs);}
33 void SetMultTrackRefs(Bool_t v) {SetBit(kMultTrackRefs,v);}
34 Bool_t GetScaleDThetaBySin2T() const {return TestBit(kScaleDThtbySin2);}
35 void SetScaleDThetaBySin2T(Bool_t v) {SetBit(kScaleDThtbySin2,v);}
36
37 //
38 Int_t GetNumberOfTracklets() const {return fNtracks;}
39 Double_t GetTheta(Int_t i) const {
40 if(i>=0 && i<fNtracks) return fTh[i];
41 Error("GetTheta","Invalid track number %d",i); return -9999.;
42 }
43 Double_t GetEta(Int_t i) const {
44 if(i>=0 && i<fNtracks) return -TMath::Log(TMath::Tan(fTh[i]/2.));
45 Error("GetEta","Invalid track number %d",i); return -9999.;
46 }
47 Double_t GetPhi(Int_t i) const {
48 if(i>=0 && i<fNtracks) return fPhi[i];
49 Error("GetPhi","Invalid track number %d",i); return -9999.;
50 }
51 Double_t GetDeltaTheta(Int_t i) const {
52 if(fDeltTh && i>=0 && i<fNtracks) return fDeltTh[i];
53 Error("GetDeltaTheta","DeltaTheta not available in data or Invalid track number %d(max %d)",i, fNtracks); return -9999.;
54 }
55 Double_t GetDeltaPhi(Int_t i) const {
56 if(i>=0 && i<fNtracks) return fDeltPhi[i];
57 Error("GetDeltaPhi","Invalid track number %d",i); return -9999.;
58 }
59
60 Double_t CalcDist(Int_t it) const;
61
62 Int_t GetLabel(Int_t i, Int_t layer) const;
63 void SetLabel(Int_t i, Int_t layer, Int_t label);
64 Int_t GetLabelSingle(Int_t i) const;
65 void SetLabelSingle(Int_t i, Int_t label);
66
67 Bool_t FreeClustersTracklet(Int_t i, Int_t mode) const;
68 Bool_t FreeSingleCluster(Int_t i, Int_t mode) const;
69
70
71// methods to access single cluster information
72 Int_t GetNumberOfSingleClusters() const {return fNsingle;}
73 Double_t GetThetaSingle(Int_t i) const {
74 if(i>=0 && i<fNsingle) return fThsingle[i];
75 Error("GetThetaSingle","Invalid cluster number %d",i); return -9999.;
76 }
77
78 Double_t GetPhiSingle(Int_t i) const {
79 if(i>=0 && i<fNsingle) return fPhisingle[i];
80 Error("GetPhisingle","Invalid cluster number %d",i); return -9999.;
81 }
82
83 Short_t GetNumberOfFiredChips(Int_t layer) const { return fFiredChips[layer]; }
84 void SetFiredChips(Int_t layer, Short_t firedChips) { fFiredChips[layer] = firedChips; }
85
86 UInt_t GetNumberOfITSClusters(Int_t layer) const { return layer<6 ? fITSClusters[layer] : 0; }
87 UInt_t GetNumberOfITSClusters(Int_t layMin, Int_t layMax) const ;
88 void SetITSClusters(Int_t layer, UInt_t clusters) { fITSClusters[layer] = clusters; }
89
90 void SetFastOrFiredChips(UInt_t chipKey){fFastOrFiredChips.SetBitNumber(chipKey);}
91 const TBits & GetFastOrFiredChips() const {return fFastOrFiredChips;}
92 Bool_t TestFastOrFiredChips(UInt_t chipKey) const {return fFastOrFiredChips.TestBitNumber(chipKey);}
93
94 void SetFiredChipMap(TBits & firedChips){fClusterFiredChips = firedChips;}
95 void SetFiredChipMap(UInt_t chipKey){fClusterFiredChips.SetBitNumber(chipKey);}
96 const TBits & GetFiredChipMap() const {return fClusterFiredChips;}
97 Bool_t TestFiredChipMap(UInt_t chipKey) const {return fClusterFiredChips.TestBitNumber(chipKey);}
98
99 Bool_t GetTrackletTrackIDs(Int_t i, Int_t mode, Int_t &spd1, Int_t &spd2) const;
100 Int_t GetTrackletTrackIDsLay(Int_t lr,Int_t i, Int_t mode, UInt_t* refs, UInt_t maxRef) const;
101 Bool_t GetSingleClusterTrackID(Int_t i, Int_t mode, Int_t &tr) const;
102 Int_t GetSingleClusterTrackIDs(Int_t i, Int_t mode, UInt_t* refs, UInt_t maxRef) const;
103
104 // array getters
105 Double_t* GetTheta() const {return (Double_t*)fTh;}
106 Double_t* GetPhi() const {return (Double_t*)fPhi;}
107 Double_t* GetDeltTheta() const {return (Double_t*)fDeltTh;}
108 Double_t* GetDeltPhi() const {return (Double_t*)fDeltPhi;}
109 Double_t* GetThetaSingle() const {return (Double_t*)fThsingle;}
110 Double_t* GetPhiSingle() const {return (Double_t*)fPhisingle;}
111 Int_t* GetLabels() const {return (Int_t*)fLabels;}
112 Int_t* GetLabels2() const {return (Int_t*)fLabelsL2;}
113 Int_t* GetLabelsSingle() const {return (Int_t*)fLabelssingle;}
114
115 void AttachTracklet2TrackRefs(AliRefArray* l1t1,AliRefArray* l1t2,AliRefArray* l2t1,AliRefArray* l2t2) {
116 fTCl2Tracks[0][0] = l1t1; fTCl2Tracks[0][1] = l1t2; fTCl2Tracks[1][0] = l2t1; fTCl2Tracks[1][1] = l2t2;
117 }
118 void AttachCluster2TrackRefs(AliRefArray* l1t1,AliRefArray* l1t2) {
119 fSCl2Tracks[0] = l1t1; fSCl2Tracks[1] = l1t2;
120 }
121 void SetTrackletData(Int_t id, const Float_t* tlet, UInt_t trSPD1=0, UInt_t trSPD2=0);
122 void SetSingleClusterData(Int_t id, const Float_t* scl,UInt_t tr=0);
123 void CompactBits();
124 //
125 void SetDPhiWindow2(Float_t v=-1) {fDPhiWindow2 = v;}
126 void SetDThetaWindow2(Float_t v=-1) {fDThetaWindow2 = v;}
127 void SetDPhiShift(Float_t v=-1) {fDPhiShift = v;}
128 void SetNStdDev(Float_t v=1) {fNStdDev = v;}
129 //
130 Float_t GetDPhiWindow2() const {return fDPhiWindow2;}
131 Float_t GetDThetaWindow2() const {return fDThetaWindow2;}
132 Float_t GetDPhiShift() const {return fDPhiShift;}
133 Float_t GetNStdDev() const {return fNStdDev;}
134
135 //
136 virtual void Print(Option_t *opt="") const;
137
138 protected:
139 void Duplicate(const AliMultiplicity &m); // used by copy ctr.
140
141 Int_t fNtracks; // Number of tracklets
142 Int_t fNsingle; // Number of clusters on SPD layer 1, not associated with a tracklet on SPD layer 2
143 //
144 Float_t fDPhiWindow2; // sigma^2 in dphi used in reco
145 Float_t fDThetaWindow2; // sigma^2 in dtheta used in reco
146 Float_t fDPhiShift; // bending shift used
147 Float_t fNStdDev; // number of standard deviations kept
148 //
149 Int_t *fLabels; //[fNtracks] array with labels of cluster in L1 used for tracklet
150 Int_t *fLabelsL2; //[fNtracks] array with labels of cluster in L2 used for tracklet
151 UInt_t* fUsedClusS; //[fNsingle] id+1 of the tracks using cluster, coded as (TPC/ITS+ITS_SA)+(ITS_SA_PURE<<16) !!! Outphased for multiple refs
152 ULong64_t* fUsedClusT; //[fNtracks] id+1 of the tracks using clusters, coded as (TPC/ITS+ITS_SA)+(ITS_SA_PURE<<16) for SPD1 and SPD2 in low and high parts
153 AliRefArray *fTCl2Tracks[2][2]; // container with multiple tracklet_cluster->track references
154 AliRefArray *fSCl2Tracks[2]; // container with multiple single_cluster->track references
155 Double32_t *fTh; //[fNtracks] array with theta values
156 Double32_t *fPhi; //[fNtracks] array with phi values
157 Double32_t *fDeltTh; //[fNtracks] array with delta theta values
158 Double32_t *fDeltPhi; //[fNtracks] array with delta phi values
159 Double32_t *fThsingle; //[fNsingle] array with theta values of L1 clusters
160 Double32_t *fPhisingle; //[fNsingle] array with phi values of L1 clusters
161 Int_t *fLabelssingle; //[fNsingle] array with labels of clusters in L1 not used for tracklets
162 Short_t fFiredChips[2]; // Number of fired chips in the two SPD layers
163 UInt_t fITSClusters[6]; // Number of ITS cluster per layer
164 TBits fFastOrFiredChips; // Map of FastOr fired chips
165 TBits fClusterFiredChips; // Map of fired chips (= at least one cluster)
166
167 ClassDef(AliMultiplicity,18);
168};
169
170inline Int_t AliMultiplicity::GetLabel(Int_t i, Int_t layer) const
171{
172 if(i>=0 && i<fNtracks) {
173 if (layer == 0) {
174 return fLabels[i];
175 } else if (layer == 1) {
176 if (fLabelsL2) {
177 return fLabelsL2[i];
178 } else {
179 Warning("GetLabel", "No information for layer 2 available !");
180 return -9999;
181 }
182 } else {
183 Error("GetLabel","Invalid layer number %d",layer); return -9999;
184 }
185 } else {
186 Error("GetLabel","Invalid track number %d",i); return -9999;
187 }
188 return -9999;
189}
190
191inline Int_t AliMultiplicity::GetLabelSingle(Int_t i) const
192{
193 if(i>=0 && i<fNsingle) {
194 return fLabelssingle[i];
195 } else {
196 Error("GetLabelSingle","Invalid cluster number %d",i); return -9999;
197 }
198 return -9999;
199}
200
201
202inline Double_t AliMultiplicity::CalcDist(Int_t i) const
203{
204 // calculate eliptical distance. theta is the angle of cl1, dtheta = tht(cl1)-tht(cl2)
205 if (i<0 && i>=fNtracks) return -1;
206 if (fDPhiWindow2<1E-9 || fDThetaWindow2<1E-9) return -1; // not stored
207 double dphi = TMath::Abs(fDeltPhi[i]) - fDPhiShift;
208 double dtheta = fDeltTh[i];
209 if (GetScaleDThetaBySin2T()) {
210 double sinTI = TMath::Sin(fTh[i]-dtheta/2);
211 sinTI *= sinTI;
212 dtheta /= sinTI>1.e-6 ? sinTI : 1.e-6;
213 }
214 return dphi*dphi/fDPhiWindow2 + dtheta*dtheta/fDThetaWindow2;
215}
216
217
218
219#endif