]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - STEER/AliRun.cxx
Syntax corrections for HP-UX
[u/mrichter/AliRoot.git] / STEER / AliRun.cxx
... / ...
CommitLineData
1///////////////////////////////////////////////////////////////////////////////
2// //
3// Control class for Alice C++ //
4// Only one single instance of this class exists. //
5// The object is created in main program aliroot //
6// and is pointed by the global gAlice. //
7// //
8// -Supports the list of all Alice Detectors (fModules). //
9// -Supports the list of particles (fParticles). //
10// -Supports the Trees. //
11// -Supports the geometry. //
12// -Supports the event display. //
13//Begin_Html
14/*
15<img src="picts/AliRunClass.gif">
16*/
17//End_Html
18//Begin_Html
19/*
20<img src="picts/alirun.gif">
21*/
22//End_Html
23// //
24///////////////////////////////////////////////////////////////////////////////
25
26#include <TFile.h>
27#include <TRandom.h>
28#include <TBRIK.h>
29#include <TNode.h>
30#include <TCint.h>
31#include <TSystem.h>
32#include <TObjectTable.h>
33
34#include "TParticle.h"
35#include "AliRun.h"
36#include "AliDisplay.h"
37
38#include "AliCallf77.h"
39
40#include <stdlib.h>
41#include <stdio.h>
42#include <string.h>
43
44AliRun *gAlice;
45
46static AliHeader *header;
47
48#ifndef WIN32
49
50# define rxgtrak rxgtrak_
51# define rxstrak rxstrak_
52# define rxkeep rxkeep_
53# define rxouth rxouth_
54#else
55
56# define rxgtrak RXGTRAK
57# define rxstrak RXSTRAK
58# define rxkeep RXKEEP
59# define rxouth RXOUTH
60#endif
61
62static TArrayF sEventEnergy;
63static TArrayF sSummEnergy;
64static TArrayF sSum2Energy;
65
66ClassImp(AliRun)
67
68//_____________________________________________________________________________
69AliRun::AliRun()
70{
71 //
72 // Default constructor for AliRun
73 //
74 header=&fHeader;
75 fRun = 0;
76 fEvent = 0;
77 fCurrent = -1;
78 fModules = 0;
79 fGenerator = 0;
80 fTreeD = 0;
81 fTreeK = 0;
82 fTreeH = 0;
83 fTreeE = 0;
84 fTreeR = 0;
85 fParticles = 0;
86 fGeometry = 0;
87 fDisplay = 0;
88 fField = 0;
89 fMC = 0;
90 fNdets = 0;
91 fImedia = 0;
92 fTrRmax = 1.e10;
93 fTrZmax = 1.e10;
94 fInitDone = kFALSE;
95 fLego = 0;
96 fPDGDB = 0; //Particle factory object!
97}
98
99//_____________________________________________________________________________
100AliRun::AliRun(const char *name, const char *title)
101 : TNamed(name,title)
102{
103 //
104 // Constructor for the main processor.
105 // Creates the geometry
106 // Creates the list of Detectors.
107 // Creates the list of particles.
108 //
109 Int_t i;
110
111 gAlice = this;
112 fTreeD = 0;
113 fTreeK = 0;
114 fTreeH = 0;
115 fTreeE = 0;
116 fTreeR = 0;
117 fTrRmax = 1.e10;
118 fTrZmax = 1.e10;
119 fGenerator = 0;
120 fInitDone = kFALSE;
121 fLego = 0;
122 fField = 0;
123
124 gROOT->GetListOfBrowsables()->Add(this,name);
125 //
126 // create the support list for the various Detectors
127 fModules = new TObjArray(77);
128 //
129 // Create the TNode geometry for the event display
130
131 BuildSimpleGeometry();
132
133
134 fNtrack=0;
135 fHgwmk=0;
136 fCurrent=-1;
137 header=&fHeader;
138 fRun = 0;
139 fEvent = 0;
140 //
141 // Create the particle stack
142 fParticles = new TClonesArray("TParticle",100);
143
144 fDisplay = 0;
145 //
146 // Create default mag field
147 SetField();
148 //
149 fMC = gMC;
150 //
151 // Prepare the tracking medium lists
152 fImedia = new TArrayI(1000);
153 for(i=0;i<1000;i++) (*fImedia)[i]=-99;
154 //
155 // Make particles
156 fPDGDB = TDatabasePDG::Instance(); //Particle factory object!
157}
158
159//_____________________________________________________________________________
160AliRun::~AliRun()
161{
162 //
163 // Defaullt AliRun destructor
164 //
165 delete fImedia;
166 delete fField;
167 delete fMC;
168 delete fGeometry;
169 delete fDisplay;
170 delete fGenerator;
171 delete fLego;
172 delete fTreeD;
173 delete fTreeK;
174 delete fTreeH;
175 delete fTreeE;
176 delete fTreeR;
177 if (fModules) {
178 fModules->Delete();
179 delete fModules;
180 }
181 if (fParticles) {
182 fParticles->Delete();
183 delete fParticles;
184 }
185}
186
187//_____________________________________________________________________________
188void AliRun::AddHit(Int_t id, Int_t track, Int_t *vol, Float_t *hits) const
189{
190 //
191 // Add a hit to detector id
192 //
193 TObjArray &dets = *fModules;
194 if(dets[id]) ((AliModule*) dets[id])->AddHit(track,vol,hits);
195}
196
197//_____________________________________________________________________________
198void AliRun::AddDigit(Int_t id, Int_t *tracks, Int_t *digits) const
199{
200 //
201 // Add digit to detector id
202 //
203 TObjArray &dets = *fModules;
204 if(dets[id]) ((AliModule*) dets[id])->AddDigit(tracks,digits);
205}
206
207//_____________________________________________________________________________
208void AliRun::Browse(TBrowser *b)
209{
210 //
211 // Called when the item "Run" is clicked on the left pane
212 // of the Root browser.
213 // It displays the Root Trees and all detectors.
214 //
215 if (fTreeK) b->Add(fTreeK,fTreeK->GetName());
216 if (fTreeH) b->Add(fTreeH,fTreeH->GetName());
217 if (fTreeD) b->Add(fTreeD,fTreeD->GetName());
218 if (fTreeE) b->Add(fTreeE,fTreeE->GetName());
219 if (fTreeR) b->Add(fTreeR,fTreeR->GetName());
220
221 TIter next(fModules);
222 AliModule *detector;
223 while((detector = (AliModule*)next())) {
224 b->Add(detector,detector->GetName());
225 }
226}
227
228//_____________________________________________________________________________
229void AliRun::Build()
230{
231 //
232 // Initialize Alice geometry
233 // Dummy routine
234 //
235}
236
237//_____________________________________________________________________________
238void AliRun::BuildSimpleGeometry()
239{
240 //
241 // Create a simple TNode geometry used by Root display engine
242 //
243 // Initialise geometry
244 //
245 fGeometry = new TGeometry("AliceGeom","Galice Geometry for Hits");
246 new TMaterial("void","Vacuum",0,0,0); //Everything is void
247 TBRIK *brik = new TBRIK("S_alice","alice volume","void",2000,2000,3000);
248 brik->SetVisibility(0);
249 new TNode("alice","alice","S_alice");
250}
251
252//_____________________________________________________________________________
253void AliRun::CleanDetectors()
254{
255 //
256 // Clean Detectors at the end of event
257 //
258 TIter next(fModules);
259 AliModule *detector;
260 while((detector = (AliModule*)next())) {
261 detector->FinishEvent();
262 }
263}
264
265//_____________________________________________________________________________
266void AliRun::CleanParents()
267{
268 //
269 // Clean Particles stack.
270 // Set parent/daughter relations
271 //
272 TClonesArray &particles = *(gAlice->Particles());
273 TParticle *part;
274 int i;
275 for(i=0; i<fNtrack; i++) {
276 part = (TParticle *)particles.UncheckedAt(i);
277 if(!part->TestBit(Daughters_Bit)) {
278 part->SetFirstDaughter(-1);
279 part->SetLastDaughter(-1);
280 }
281 }
282}
283
284//_____________________________________________________________________________
285Int_t AliRun::DistancetoPrimitive(Int_t, Int_t)
286{
287 //
288 // Return the distance from the mouse to the AliRun object
289 // Dummy routine
290 //
291 return 9999;
292}
293
294//_____________________________________________________________________________
295void AliRun::DumpPart (Int_t i)
296{
297 //
298 // Dumps particle i in the stack
299 //
300 TClonesArray &particles = *fParticles;
301 ((TParticle*) particles[i])->Print();
302}
303
304//_____________________________________________________________________________
305void AliRun::DumpPStack ()
306{
307 //
308 // Dumps the particle stack
309 //
310 TClonesArray &particles = *fParticles;
311 printf(
312 "\n\n=======================================================================\n");
313 for (Int_t i=0;i<fNtrack;i++)
314 {
315 printf("-> %d ",i); ((TParticle*) particles[i])->Print();
316 printf("--------------------------------------------------------------\n");
317 }
318 printf(
319 "\n=======================================================================\n\n");
320}
321
322//_____________________________________________________________________________
323void AliRun::SetField(Int_t type, Int_t version, Float_t scale,
324 Float_t maxField, char* filename)
325{
326 //
327 // Set magnetic field parameters
328 // type Magnetic field transport flag 0=no field, 2=helix, 3=Runge Kutta
329 // version Magnetic field map version (only 1 active now)
330 // scale Scale factor for the magnetic field
331 // maxField Maximum value for the magnetic field
332
333 //
334 // --- Sanity check on mag field flags
335 if(type<0 || type > 2) {
336 Warning("SetField",
337 "Invalid magnetic field flag: %5d; Helix tracking chosen instead\n"
338 ,type);
339 type=2;
340 }
341 if(fField) delete fField;
342 if(version==1) {
343 fField = new AliMagFC("Map1"," ",type,version,scale,maxField);
344 } else if(version<=3) {
345 fField = new AliMagFCM("Map2-3",filename,type,version,scale,maxField);
346 fField->ReadField();
347 } else {
348 Warning("SetField","Invalid map %d\n",version);
349 }
350}
351
352//_____________________________________________________________________________
353void AliRun::FillTree()
354{
355 //
356 // Fills all AliRun TTrees
357 //
358 if (fTreeK) fTreeK->Fill();
359 if (fTreeH) fTreeH->Fill();
360 if (fTreeD) fTreeD->Fill();
361 if (fTreeR) fTreeR->Fill();
362}
363
364//_____________________________________________________________________________
365void AliRun::FinishPrimary()
366{
367 //
368 // Called at the end of each primary track
369 //
370
371 // static Int_t count=0;
372 // const Int_t times=10;
373 // This primary is finished, purify stack
374 gAlice->PurifyKine();
375
376 // Write out hits if any
377 if (gAlice->TreeH()) {
378 gAlice->TreeH()->Fill();
379 }
380
381 // Reset Hits info
382 gAlice->ResetHits();
383
384 //
385 // if(++count%times==1) gObjectTable->Print();
386}
387
388//_____________________________________________________________________________
389void AliRun::FinishEvent()
390{
391 //
392 // Called at the end of the event.
393 //
394
395 //Update the energy deposit tables
396 Int_t i;
397 for(i=0;i<sEventEnergy.GetSize();i++) {
398 sSummEnergy[i]+=sEventEnergy[i];
399 sSum2Energy[i]+=sEventEnergy[i]*sEventEnergy[i];
400 }
401 sEventEnergy.Reset();
402
403 // Clean detector information
404 CleanDetectors();
405
406 // Write out the kinematics
407 if (fTreeK) {
408 CleanParents();
409 fTreeK->Fill();
410 }
411
412 // Write out the digits
413 if (fTreeD) {
414 fTreeD->Fill();
415 ResetDigits();
416 }
417
418 // Write out reconstructed clusters
419 if (fTreeR) {
420 fTreeR->Fill();
421 }
422
423 // Write out the event Header information
424 if (fTreeE) fTreeE->Fill();
425
426 // Reset stack info
427 ResetStack();
428
429 // Write Tree headers
430 // Int_t ievent = fHeader.GetEvent();
431 // char hname[30];
432 // sprintf(hname,"TreeK%d",ievent);
433 if (fTreeK) fTreeK->Write();
434 // sprintf(hname,"TreeH%d",ievent);
435 if (fTreeH) fTreeH->Write();
436 // sprintf(hname,"TreeD%d",ievent);
437 if (fTreeD) fTreeD->Write();
438 // sprintf(hname,"TreeR%d",ievent);
439 if (fTreeR) fTreeR->Write();
440}
441
442//_____________________________________________________________________________
443void AliRun::FinishRun()
444{
445 //
446 // Called at the end of the run.
447 //
448
449 // Clean detector information
450 TIter next(fModules);
451 AliModule *detector;
452 while((detector = (AliModule*)next())) {
453 detector->FinishRun();
454 }
455
456 //Output energy summary tables
457 EnergySummary();
458
459 // file is retrieved from whatever tree
460 TFile *File = 0;
461 if (fTreeK) File = fTreeK->GetCurrentFile();
462 if ((!File) && (fTreeH)) File = fTreeH->GetCurrentFile();
463 if ((!File) && (fTreeD)) File = fTreeD->GetCurrentFile();
464 if ((!File) && (fTreeE)) File = fTreeE->GetCurrentFile();
465 if( NULL==File ) {
466 Error("FinishRun","There isn't root file!");
467 exit(1);
468 }
469 File->cd();
470 fTreeE->Write();
471
472 // Clean tree information
473 delete fTreeK; fTreeK = 0;
474 delete fTreeH; fTreeH = 0;
475 delete fTreeD; fTreeD = 0;
476 delete fTreeR; fTreeR = 0;
477 delete fTreeE; fTreeE = 0;
478
479 // Write AliRun info and all detectors parameters
480 Write();
481
482 // Close output file
483 File->Write();
484 File->Close();
485}
486
487//_____________________________________________________________________________
488void AliRun::FlagTrack(Int_t track)
489{
490 //
491 // Flags a track and all its family tree to be kept
492 //
493 int curr;
494 TParticle *particle;
495
496 curr=track;
497 while(1) {
498 particle=(TParticle*)fParticles->UncheckedAt(curr);
499
500 // If the particle is flagged the three from here upward is saved already
501 if(particle->TestBit(Keep_Bit)) return;
502
503 // Save this particle
504 particle->SetBit(Keep_Bit);
505
506 // Move to father if any
507 if((curr=particle->GetFirstMother())==-1) return;
508 }
509}
510
511//_____________________________________________________________________________
512void AliRun::EnergySummary()
513{
514 //
515 // Print summary of deposited energy
516 //
517
518 Int_t ndep=0;
519 Float_t edtot=0;
520 Float_t ed, ed2;
521 Int_t kn, i, left, j, id;
522 const Float_t zero=0;
523 Int_t ievent=fHeader.GetEvent()+1;
524 //
525 // Energy loss information
526 if(ievent) {
527 printf("***************** Energy Loss Information per event (GEV) *****************\n");
528 for(kn=1;kn<sEventEnergy.GetSize();kn++) {
529 ed=sSummEnergy[kn];
530 if(ed>0) {
531 sEventEnergy[ndep]=kn;
532 if(ievent>1) {
533 ed=ed/ievent;
534 ed2=sSum2Energy[kn];
535 ed2=ed2/ievent;
536 ed2=100*TMath::Sqrt(TMath::Max(ed2-ed*ed,zero))/ed;
537 } else
538 ed2=99;
539 sSummEnergy[ndep]=ed;
540 sSum2Energy[ndep]=TMath::Min((Float_t) 99.,TMath::Max(ed2,zero));
541 edtot+=ed;
542 ndep++;
543 }
544 }
545 for(kn=0;kn<(ndep-1)/3+1;kn++) {
546 left=ndep-kn*3;
547 for(i=0;i<(3<left?3:left);i++) {
548 j=kn*3+i;
549 id=Int_t (sEventEnergy[j]+0.1);
550 printf(" %s %10.3f +- %10.3f%%;",gMC->VolName(id),sSummEnergy[j],sSum2Energy[j]);
551 }
552 printf("\n");
553 }
554 //
555 // Relative energy loss in different detectors
556 printf("******************** Relative Energy Loss per event ********************\n");
557 printf("Total energy loss per event %10.3f GeV\n",edtot);
558 for(kn=0;kn<(ndep-1)/5+1;kn++) {
559 left=ndep-kn*5;
560 for(i=0;i<(5<left?5:left);i++) {
561 j=kn*5+i;
562 id=Int_t (sEventEnergy[j]+0.1);
563 printf(" %s %10.3f%%;",gMC->VolName(id),100*sSummEnergy[j]/edtot);
564 }
565 printf("\n");
566 }
567 for(kn=0;kn<75;kn++) printf("*");
568 printf("\n");
569 }
570 //
571 // Reset the TArray's
572 sEventEnergy.Set(0);
573 sSummEnergy.Set(0);
574 sSum2Energy.Set(0);
575}
576
577//_____________________________________________________________________________
578AliModule *AliRun::GetModule(const char *name)
579{
580 //
581 // Return pointer to detector from name
582 //
583 return (AliModule*)fModules->FindObject(name);
584}
585
586//_____________________________________________________________________________
587AliDetector *AliRun::GetDetector(const char *name)
588{
589 //
590 // Return pointer to detector from name
591 //
592 return (AliDetector*)fModules->FindObject(name);
593}
594
595//_____________________________________________________________________________
596Int_t AliRun::GetModuleID(const char *name)
597{
598 //
599 // Return galice internal detector identifier from name
600 //
601 Int_t i=-1;
602 TObject *mod=fModules->FindObject(name);
603 if(mod) i=fModules->IndexOf(mod);
604 return i;
605}
606
607//_____________________________________________________________________________
608Int_t AliRun::GetEvent(Int_t event)
609{
610 //
611 // Connect the Trees Kinematics and Hits for event # event
612 // Set branch addresses
613 //
614
615 // Reset existing structures
616 ResetStack();
617 ResetHits();
618 ResetDigits();
619
620 // Delete Trees already connected
621 if (fTreeK) delete fTreeK;
622 if (fTreeH) delete fTreeH;
623 if (fTreeD) delete fTreeD;
624 if (fTreeR) delete fTreeR;
625
626 // Get header from file
627 if(fTreeE) fTreeE->GetEntry(event);
628 else Error("GetEvent","Cannot file Header Tree\n");
629
630 // Get Kine Tree from file
631 char treeName[20];
632 sprintf(treeName,"TreeK%d",event);
633 fTreeK = (TTree*)gDirectory->Get(treeName);
634 if (fTreeK) fTreeK->SetBranchAddress("Particles", &fParticles);
635 else Error("GetEvent","cannot find Kine Tree for event:%d\n",event);
636
637 // Get Hits Tree header from file
638 sprintf(treeName,"TreeH%d",event);
639 fTreeH = (TTree*)gDirectory->Get(treeName);
640 if (!fTreeH) {
641 Error("GetEvent","cannot find Hits Tree for event:%d\n",event);
642 }
643
644 // Get Digits Tree header from file
645 sprintf(treeName,"TreeD%d",event);
646 fTreeD = (TTree*)gDirectory->Get(treeName);
647 if (!fTreeD) {
648 printf("WARNING: cannot find Digits Tree for event:%d\n",event);
649 }
650
651
652 // Get Reconstruct Tree header from file
653 sprintf(treeName,"TreeR%d",event);
654 fTreeR = (TTree*)gDirectory->Get(treeName);
655 if (!fTreeR) {
656 // printf("WARNING: cannot find Reconstructed Tree for event:%d\n",event);
657 }
658
659 // Set Trees branch addresses
660 TIter next(fModules);
661 AliModule *detector;
662 while((detector = (AliModule*)next())) {
663 detector->SetTreeAddress();
664 }
665
666 if (fTreeK) fTreeK->GetEvent(0);
667 fNtrack = Int_t (fParticles->GetEntries());
668 return fNtrack;
669}
670
671//_____________________________________________________________________________
672TGeometry *AliRun::GetGeometry()
673{
674 //
675 // Import Alice geometry from current file
676 // Return pointer to geometry object
677 //
678 if (!fGeometry) fGeometry = (TGeometry*)gDirectory->Get("AliceGeom");
679 //
680 // Unlink and relink nodes in detectors
681 // This is bad and there must be a better way...
682 //
683 TList *tnodes=fGeometry->GetListOfNodes();
684 TNode *alice=(TNode*)tnodes->At(0);
685 TList *gnodes=alice->GetListOfNodes();
686
687 TIter next(fModules);
688 AliModule *detector;
689 while((detector = (AliModule*)next())) {
690 detector->SetTreeAddress();
691 TList *dnodes=detector->Nodes();
692 Int_t j;
693 TNode *node, *node1;
694 for ( j=0; j<dnodes->GetSize(); j++) {
695 node = (TNode*) dnodes->At(j);
696 node1 = (TNode*) gnodes->FindObject(node->GetName());
697 dnodes->Remove(node);
698 dnodes->AddAt(node1,j);
699 }
700 }
701 return fGeometry;
702}
703
704//_____________________________________________________________________________
705void AliRun::GetNextTrack(Int_t &mtrack, Int_t &ipart, Float_t *pmom,
706 Float_t &e, Float_t *vpos, Float_t *polar,
707 Float_t &tof)
708{
709 //
710 // Return next track from stack of particles
711 //
712 TVector3 pol;
713 fCurrent=-1;
714 TParticle *track;
715 for(Int_t i=fNtrack-1; i>=0; i--) {
716 track=(TParticle*) fParticles->UncheckedAt(i);
717 if(!track->TestBit(Done_Bit)) {
718 //
719 // The track has not yet been processed
720 fCurrent=i;
721 ipart=track->GetPdgCode();
722 pmom[0]=track->Px();
723 pmom[1]=track->Py();
724 pmom[2]=track->Pz();
725 e =track->Energy();
726 vpos[0]=track->Vx();
727 vpos[1]=track->Vy();
728 vpos[2]=track->Vz();
729 track->GetPolarisation(pol);
730 polar[0]=pol.X();
731 polar[1]=pol.Y();
732 polar[2]=pol.Z();
733 tof=track->T();
734 track->SetBit(Done_Bit);
735 break;
736 }
737 }
738 mtrack=fCurrent;
739 //
740 // stop and start timer when we start a primary track
741 Int_t nprimaries = fHeader.GetNprimary();
742 if (fCurrent >= nprimaries) return;
743 if (fCurrent < nprimaries-1) {
744 fTimer.Stop();
745 track=(TParticle*) fParticles->UncheckedAt(fCurrent+1);
746 // track->SetProcessTime(fTimer.CpuTime());
747 }
748 fTimer.Start();
749}
750
751//_____________________________________________________________________________
752Int_t AliRun::GetPrimary(Int_t track)
753{
754 //
755 // return number of primary that has generated track
756 //
757 int current, parent;
758 TParticle *part;
759 //
760 parent=track;
761 while (1) {
762 current=parent;
763 part = (TParticle *)fParticles->UncheckedAt(current);
764 parent=part->GetFirstMother();
765 if(parent<0) return current;
766 }
767}
768
769//_____________________________________________________________________________
770void AliRun::Init(const char *setup)
771{
772 //
773 // Initialize the Alice setup
774 //
775
776 gROOT->LoadMacro(setup);
777 gInterpreter->ProcessLine("Config();");
778
779 gMC->DefineParticles(); //Create standard MC particles
780
781 TObject *objfirst, *objlast;
782
783 fNdets = fModules->GetLast()+1;
784
785 //
786 //=================Create Materials, geometry, histograms, etc
787 TIter next(fModules);
788 AliModule *detector;
789 while((detector = (AliModule*)next())) {
790 detector->SetTreeAddress();
791 objlast = gDirectory->GetList()->Last();
792
793 // Initialise detector materials, geometry, histograms,etc
794 detector->CreateMaterials();
795 detector->CreateGeometry();
796 detector->BuildGeometry();
797 detector->Init();
798
799 // Add Detector histograms in Detector list of histograms
800 if (objlast) objfirst = gDirectory->GetList()->After(objlast);
801 else objfirst = gDirectory->GetList()->First();
802 while (objfirst) {
803 detector->Histograms()->Add(objfirst);
804 objfirst = gDirectory->GetList()->After(objfirst);
805 }
806 }
807 SetTransPar(); //Read the cuts for all materials
808
809 MediaTable(); //Build the special IMEDIA table
810
811 //Close the geometry structure
812 gMC->Ggclos();
813
814 //Initialise geometry deposition table
815 sEventEnergy.Set(gMC->NofVolumes()+1);
816 sSummEnergy.Set(gMC->NofVolumes()+1);
817 sSum2Energy.Set(gMC->NofVolumes()+1);
818
819 //Create the color table
820 gMC->SetColors();
821
822 //Compute cross-sections
823 gMC->Gphysi();
824
825 //Write Geometry object to current file.
826 fGeometry->Write();
827
828 fInitDone = kTRUE;
829}
830
831//_____________________________________________________________________________
832void AliRun::MediaTable()
833{
834 //
835 // Built media table to get from the media number to
836 // the detector id
837 //
838 Int_t kz, nz, idt, lz, i, k, ind;
839 // Int_t ibeg;
840 TObjArray &dets = *gAlice->Detectors();
841 AliModule *det;
842 //
843 // For all detectors
844 for (kz=0;kz<fNdets;kz++) {
845 // If detector is defined
846 if((det=(AliModule*) dets[kz])) {
847 TArrayI &idtmed = *(det->GetIdtmed());
848 for(nz=0;nz<100;nz++) {
849 // Find max and min material number
850 if((idt=idtmed[nz])) {
851 det->LoMedium() = det->LoMedium() < idt ? det->LoMedium() : idt;
852 det->HiMedium() = det->HiMedium() > idt ? det->HiMedium() : idt;
853 }
854 }
855 if(det->LoMedium() > det->HiMedium()) {
856 det->LoMedium() = 0;
857 det->HiMedium() = 0;
858 } else {
859 if(det->HiMedium() > fImedia->GetSize()) {
860 Error("MediaTable","Increase fImedia from %d to %d",
861 fImedia->GetSize(),det->HiMedium());
862 return;
863 }
864 // Tag all materials in rage as belonging to detector kz
865 for(lz=det->LoMedium(); lz<= det->HiMedium(); lz++) {
866 (*fImedia)[lz]=kz;
867 }
868 }
869 }
870 }
871 //
872 // Print summary table
873 printf(" Traking media ranges:\n");
874 for(i=0;i<(fNdets-1)/6+1;i++) {
875 for(k=0;k< (6<fNdets-i*6?6:fNdets-i*6);k++) {
876 ind=i*6+k;
877 det=(AliModule*)dets[ind];
878 if(det)
879 printf(" %6s: %3d -> %3d;",det->GetName(),det->LoMedium(),
880 det->HiMedium());
881 else
882 printf(" %6s: %3d -> %3d;","NULL",0,0);
883 }
884 printf("\n");
885 }
886}
887
888//____________________________________________________________________________
889void AliRun::SetGenerator(AliGenerator *generator)
890{
891 //
892 // Load the event generator
893 //
894 if(!fGenerator) fGenerator = generator;
895}
896
897//____________________________________________________________________________
898void AliRun::SetTransPar(char* filename)
899{
900 //
901 // Read filename to set the transport parameters
902 //
903
904
905 const Int_t ncuts=10;
906 const Int_t nflags=11;
907 const Int_t npars=ncuts+nflags;
908 const char pars[npars][7] = {"CUTGAM" ,"CUTELE","CUTNEU","CUTHAD","CUTMUO",
909 "BCUTE","BCUTM","DCUTE","DCUTM","PPCUTM","ANNI",
910 "BREM","COMP","DCAY","DRAY","HADR","LOSS",
911 "MULS","PAIR","PHOT","RAYL"};
912 char line[256];
913 char detName[7];
914 char* filtmp;
915 Float_t cut[ncuts];
916 Int_t flag[nflags];
917 Int_t i, itmed, iret, ktmed, kz;
918 FILE *lun;
919 //
920 // See whether the file is there
921 filtmp=gSystem->ExpandPathName(filename);
922 lun=fopen(filtmp,"r");
923 delete [] filtmp;
924 if(!lun) {
925 Warning("SetTransPar","File %s does not exist!\n",filename);
926 return;
927 }
928 //
929 printf(" "); for(i=0;i<60;i++) printf("*"); printf("\n");
930 printf(" *%59s\n","*");
931 printf(" * Please check carefully what you are doing!%10s\n","*");
932 printf(" *%59s\n","*");
933 //
934 while(1) {
935 // Initialise cuts and flags
936 for(i=0;i<ncuts;i++) cut[i]=-99;
937 for(i=0;i<nflags;i++) flag[i]=-99;
938 itmed=0;
939 for(i=0;i<256;i++) line[i]='\0';
940 // Read up to the end of line excluded
941 iret=fscanf(lun,"%[^\n]",line);
942 if(iret<0) {
943 //End of file
944 fclose(lun);
945 printf(" *%59s\n","*");
946 printf(" "); for(i=0;i<60;i++) printf("*"); printf("\n");
947 return;
948 }
949 // Read the end of line
950 fscanf(lun,"%*c");
951 if(!iret) continue;
952 if(line[0]=='*') continue;
953 // Read the numbers
954 iret=sscanf(line,"%s %d %f %f %f %f %f %f %f %f %f %f %d %d %d %d %d %d %d %d %d %d %d",
955 detName,&itmed,&cut[0],&cut[1],&cut[2],&cut[3],&cut[4],&cut[5],&cut[6],&cut[7],&cut[8],
956 &cut[9],&flag[0],&flag[1],&flag[2],&flag[3],&flag[4],&flag[5],&flag[6],&flag[7],
957 &flag[8],&flag[9],&flag[10]);
958 if(!iret) continue;
959 if(iret<0) {
960 //reading error
961 Warning("SetTransPar","Error reading file %s\n",filename);
962 continue;
963 }
964 // Check that the module exist
965 AliModule *mod = GetModule(detName);
966 if(mod) {
967 // Get the array of media numbers
968 TArrayI &idtmed = *mod->GetIdtmed();
969 // Check that the tracking medium code is valid
970 if(0<=itmed && itmed < 100) {
971 ktmed=idtmed[itmed];
972 if(!ktmed) {
973 Warning("SetTransPar","Invalid tracking medium code %d for %s\n",itmed,mod->GetName());
974 continue;
975 }
976 // Set energy thresholds
977 for(kz=0;kz<ncuts;kz++) {
978 if(cut[kz]>=0) {
979 printf(" * %-6s set to %10.3E for tracking medium code %4d for %s\n",
980 pars[kz],cut[kz],itmed,mod->GetName());
981 gMC->Gstpar(ktmed,pars[kz],cut[kz]);
982 }
983 }
984 // Set transport mechanisms
985 for(kz=0;kz<nflags;kz++) {
986 if(flag[kz]>=0) {
987 printf(" * %-6s set to %10d for tracking medium code %4d for %s\n",
988 pars[ncuts+kz],flag[kz],itmed,mod->GetName());
989 gMC->Gstpar(ktmed,pars[ncuts+kz],Float_t(flag[kz]));
990 }
991 }
992 } else {
993 Warning("SetTransPar","Invalid medium code %d *\n",itmed);
994 continue;
995 }
996 } else {
997 Warning("SetTransPar","Module %s not present\n",detName);
998 continue;
999 }
1000 }
1001}
1002
1003//_____________________________________________________________________________
1004void AliRun::MakeTree(Option_t *option)
1005{
1006 //
1007 // Create the ROOT trees
1008 // Loop on all detectors to create the Root branch (if any)
1009 //
1010
1011 //
1012 // Analyse options
1013 char *K = strstr(option,"K");
1014 char *H = strstr(option,"H");
1015 char *E = strstr(option,"E");
1016 char *D = strstr(option,"D");
1017 char *R = strstr(option,"R");
1018 //
1019 if (K && !fTreeK) fTreeK = new TTree("TreeK0","Kinematics");
1020 if (H && !fTreeH) fTreeH = new TTree("TreeH0","Hits");
1021 if (D && !fTreeD) fTreeD = new TTree("TreeD0","Digits");
1022 if (E && !fTreeE) fTreeE = new TTree("TE","Header");
1023 if (R && !fTreeR) fTreeR = new TTree("TreeR0","Reconstruction");
1024 if (fTreeH) fTreeH->SetAutoSave(1000000000); //no autosave
1025 //
1026 // Create a branch for hits/digits for each detector
1027 // Each branch is a TClonesArray. Each data member of the Hits classes
1028 // will be in turn a subbranch of the detector master branch
1029 TIter next(fModules);
1030 AliModule *detector;
1031 while((detector = (AliModule*)next())) {
1032 if (H || D || R) detector->MakeBranch(option);
1033 }
1034 // Create a branch for particles
1035 if (fTreeK && K) fTreeK->Branch("Particles",&fParticles,4000);
1036
1037 // Create a branch for Header
1038 if (fTreeE && E) fTreeE->Branch("Header","AliHeader",&header,4000);
1039}
1040
1041//_____________________________________________________________________________
1042Int_t AliRun::PurifyKine(Int_t lastSavedTrack, Int_t nofTracks)
1043{
1044 //
1045 // PurifyKine with external parameters
1046 //
1047 fHgwmk = lastSavedTrack;
1048 fNtrack = nofTracks;
1049 PurifyKine();
1050 return fHgwmk;
1051}
1052
1053//_____________________________________________________________________________
1054void AliRun::PurifyKine()
1055{
1056 //
1057 // Compress kinematic tree keeping only flagged particles
1058 // and renaming the particle id's in all the hits
1059 //
1060 TClonesArray &particles = *fParticles;
1061 int nkeep=fHgwmk+1, parent, i;
1062 TParticle *part, *partnew, *father;
1063 AliHit *OneHit;
1064 int *map = new int[particles.GetEntries()];
1065
1066 // Save in Header total number of tracks before compression
1067 fHeader.SetNtrack(fHeader.GetNtrack()+fNtrack-fHgwmk);
1068
1069 // Preset map, to be removed later
1070 for(i=0; i<fNtrack; i++) {
1071 if(i<=fHgwmk) map[i]=i ; else map[i] = -99 ;}
1072 // Second pass, build map between old and new numbering
1073 for(i=fHgwmk+1; i<fNtrack; i++) {
1074 part = (TParticle *)particles.UncheckedAt(i);
1075 if(part->TestBit(Keep_Bit)) {
1076
1077 // This particle has to be kept
1078 map[i]=nkeep;
1079 if(i!=nkeep) {
1080
1081 // Old and new are different, have to copy
1082 partnew = (TParticle *)particles.UncheckedAt(nkeep);
1083 *partnew = *part;
1084 } else partnew = part;
1085
1086 // as the parent is always *before*, it must be already
1087 // in place. This is what we are checking anyway!
1088 if((parent=partnew->GetFirstMother())>fHgwmk) {
1089 if(map[parent]==-99) printf("map[%d] = -99!\n",parent);
1090 partnew->SetFirstMother(map[parent]);
1091 }
1092 nkeep++;
1093 }
1094 }
1095 fNtrack=nkeep;
1096
1097 // Fix daughters information
1098 for (i=fHgwmk+1; i<fNtrack; i++) {
1099 part = (TParticle *)particles.UncheckedAt(i);
1100 parent = part->GetFirstMother();
1101 father = (TParticle *)particles.UncheckedAt(parent);
1102 if(father->TestBit(Daughters_Bit)) {
1103
1104 if(i<father->GetFirstDaughter()) father->SetFirstDaughter(i);
1105 if(i>father->GetLastDaughter()) father->SetLastDaughter(i);
1106 } else {
1107 // Iitialise daughters info for first pass
1108 father->SetFirstDaughter(i);
1109 father->SetLastDaughter(i);
1110 father->SetBit(Daughters_Bit);
1111 }
1112 }
1113
1114 // Now loop on all detectors and reset the hits
1115 TIter next(fModules);
1116 AliModule *detector;
1117 while((detector = (AliModule*)next())) {
1118 if (!detector->Hits()) continue;
1119 TClonesArray &vHits=*(detector->Hits());
1120 if(vHits.GetEntries() != detector->GetNhits())
1121 printf("vHits.GetEntries()!=detector->GetNhits(): %d != %d\n",
1122 vHits.GetEntries(),detector->GetNhits());
1123 for (i=0; i<detector->GetNhits(); i++) {
1124 OneHit = (AliHit *)vHits.UncheckedAt(i);
1125 OneHit->SetTrack(map[OneHit->GetTrack()]);
1126 }
1127 }
1128
1129 fHgwmk=nkeep-1;
1130 particles.SetLast(fHgwmk);
1131 delete [] map;
1132}
1133
1134//_____________________________________________________________________________
1135void AliRun::Reset(Int_t run, Int_t idevent)
1136{
1137 //
1138 // Reset all Detectors & kinematics & trees
1139 //
1140 char hname[30];
1141 //
1142 ResetStack();
1143 ResetHits();
1144 ResetDigits();
1145
1146 // Initialise event header
1147 fHeader.Reset(run,idevent);
1148
1149 if(fTreeK) {
1150 fTreeK->Reset();
1151 sprintf(hname,"TreeK%d",idevent);
1152 fTreeK->SetName(hname);
1153 }
1154 if(fTreeH) {
1155 fTreeH->Reset();
1156 sprintf(hname,"TreeH%d",idevent);
1157 fTreeH->SetName(hname);
1158 }
1159 if(fTreeD) {
1160 fTreeD->Reset();
1161 sprintf(hname,"TreeD%d",idevent);
1162 fTreeD->SetName(hname);
1163 }
1164 if(fTreeR) {
1165 fTreeR->Reset();
1166 sprintf(hname,"TreeR%d",idevent);
1167 fTreeR->SetName(hname);
1168 }
1169}
1170
1171//_____________________________________________________________________________
1172void AliRun::ResetDigits()
1173{
1174 //
1175 // Reset all Detectors digits
1176 //
1177 TIter next(fModules);
1178 AliModule *detector;
1179 while((detector = (AliModule*)next())) {
1180 detector->ResetDigits();
1181 }
1182}
1183
1184//_____________________________________________________________________________
1185void AliRun::ResetHits()
1186{
1187 //
1188 // Reset all Detectors hits
1189 //
1190 TIter next(fModules);
1191 AliModule *detector;
1192 while((detector = (AliModule*)next())) {
1193 detector->ResetHits();
1194 }
1195}
1196
1197//_____________________________________________________________________________
1198void AliRun::ResetPoints()
1199{
1200 //
1201 // Reset all Detectors points
1202 //
1203 TIter next(fModules);
1204 AliModule *detector;
1205 while((detector = (AliModule*)next())) {
1206 detector->ResetPoints();
1207 }
1208}
1209
1210//_____________________________________________________________________________
1211void AliRun::Run(Int_t nevent, const char *setup)
1212{
1213 //
1214 // Main function to be called to process a galice run
1215 // example
1216 // Root > gAlice.Run();
1217 // a positive number of events will cause the finish routine
1218 // to be called
1219 //
1220
1221 Int_t i, todo;
1222 // check if initialisation has been done
1223 if (!fInitDone) Init(setup);
1224
1225 // Create the Root Tree with one branch per detector
1226 if(!fEvent) {
1227 gAlice->MakeTree("KHDER");
1228 }
1229
1230 todo = TMath::Abs(nevent);
1231 for (i=0; i<todo; i++) {
1232 // Process one run (one run = one event)
1233 gAlice->Reset(fRun, fEvent);
1234 gMC->Gtrigi();
1235 gMC->Gtrigc();
1236 gMC->Gtrig();
1237 gAlice->FinishEvent();
1238 fEvent++;
1239 }
1240
1241 // End of this run, close files
1242 if(nevent>0) gAlice->FinishRun();
1243}
1244
1245//_____________________________________________________________________________
1246void AliRun::RunLego(const char *setup,Int_t ntheta,Float_t themin,
1247 Float_t themax,Int_t nphi,Float_t phimin,Float_t phimax,
1248 Float_t rmin,Float_t rmax,Float_t zmax)
1249{
1250 //
1251 // Generates lego plots of:
1252 // - radiation length map phi vs theta
1253 // - radiation length map phi vs eta
1254 // - interaction length map
1255 // - g/cm2 length map
1256 //
1257 // ntheta bins in theta, eta
1258 // themin minimum angle in theta (degrees)
1259 // themax maximum angle in theta (degrees)
1260 // nphi bins in phi
1261 // phimin minimum angle in phi (degrees)
1262 // phimax maximum angle in phi (degrees)
1263 // rmin minimum radius
1264 // rmax maximum radius
1265 //
1266 //
1267 // The number of events generated = ntheta*nphi
1268 // run input parameters in macro setup (default="Config.C")
1269 //
1270 // Use macro "lego.C" to visualize the 3 lego plots in spherical coordinates
1271 //Begin_Html
1272 /*
1273 <img src="picts/AliRunLego1.gif">
1274 */
1275 //End_Html
1276 //Begin_Html
1277 /*
1278 <img src="picts/AliRunLego2.gif">
1279 */
1280 //End_Html
1281 //Begin_Html
1282 /*
1283 <img src="picts/AliRunLego3.gif">
1284 */
1285 //End_Html
1286 //
1287
1288 // check if initialisation has been done
1289 if (!fInitDone) Init(setup);
1290
1291 fLego = new AliLego("lego","lego");
1292 fLego->Init(ntheta,themin,themax,nphi,phimin,phimax,rmin,rmax,zmax);
1293 fLego->Run();
1294
1295 // Create only the Root event Tree
1296 gAlice->MakeTree("E");
1297
1298 // End of this run, close files
1299 gAlice->FinishRun();
1300}
1301
1302//_____________________________________________________________________________
1303void AliRun::SetCurrentTrack(Int_t track)
1304{
1305 //
1306 // Set current track number
1307 //
1308 fCurrent = track;
1309}
1310
1311//_____________________________________________________________________________
1312void AliRun::SetTrack(Int_t done, Int_t parent, Int_t pdg, Float_t *pmom,
1313 Float_t *vpos, Float_t *polar, Float_t tof,
1314 const char *mecha, Int_t &ntr, Float_t weight)
1315{
1316 //
1317 // Load a track on the stack
1318 //
1319 // done 0 if the track has to be transported
1320 // 1 if not
1321 // parent identifier of the parent track. -1 for a primary
1322 // pdg particle code
1323 // pmom momentum GeV/c
1324 // vpos position
1325 // polar polarisation
1326 // tof time of flight in seconds
1327 // mecha production mechanism
1328 // ntr on output the number of the track stored
1329 //
1330 TClonesArray &particles = *fParticles;
1331 TParticle *particle;
1332 Float_t mass;
1333 const Int_t firstdaughter=-1;
1334 const Int_t lastdaughter=-1;
1335 const Int_t KS=0;
1336 // const Float_t tlife=0;
1337
1338 //
1339 // Here we get the static mass
1340 // For MC is ok, but a more sophisticated method could be necessary
1341 // if the calculated mass is required
1342 // also, this method is potentially dangerous if the mass
1343 // used in the MC is not the same of the PDG database
1344 //
1345 mass = TDatabasePDG::Instance()->GetParticle(pdg)->Mass();
1346 Float_t e=TMath::Sqrt(mass*mass+pmom[0]*pmom[0]+
1347 pmom[1]*pmom[1]+pmom[2]*pmom[2]);
1348
1349 //printf("Loading particle %s mass %f ene %f No %d ip %d pos %f %f %f mom %f %f %f KS %d m %s\n",
1350 //pname,mass,e,fNtrack,pdg,vpos[0],vpos[1],vpos[2],pmom[0],pmom[1],pmom[2],KS,mecha);
1351
1352 particle=new(particles[fNtrack]) TParticle(pdg,KS,parent,-1,firstdaughter,
1353 lastdaughter,pmom[0],pmom[1],pmom[2],
1354 e,vpos[0],vpos[1],vpos[2],tof);
1355 // polar[0],polar[1],polar[2],tof,
1356 // mecha,weight);
1357 ((TParticle*)particles[fNtrack])->SetPolarisation(TVector3(polar[0],polar[1],polar[2]));
1358 ((TParticle*)particles[fNtrack])->SetWeight(weight);
1359 if(!done) particle->SetBit(Done_Bit);
1360
1361 if(parent>=0) {
1362 particle=(TParticle*) fParticles->UncheckedAt(parent);
1363 particle->SetLastDaughter(fNtrack);
1364 if(particle->GetFirstDaughter()<0) particle->SetFirstDaughter(fNtrack);
1365 } else {
1366 //
1367 // This is a primary track. Set high water mark for this event
1368 fHgwmk=fNtrack;
1369 //
1370 // Set also number if primary tracks
1371 fHeader.SetNprimary(fHgwmk+1);
1372 fHeader.SetNtrack(fHgwmk+1);
1373 }
1374 ntr = fNtrack++;
1375}
1376
1377//_____________________________________________________________________________
1378void AliRun::KeepTrack(const Int_t track)
1379{
1380 //
1381 // flags a track to be kept
1382 //
1383 TClonesArray &particles = *fParticles;
1384 ((TParticle*)particles[track])->SetBit(Keep_Bit);
1385}
1386
1387//_____________________________________________________________________________
1388void AliRun::StepManager(Int_t id) const
1389{
1390 //
1391 // Called at every step during transport
1392 //
1393
1394 Int_t copy;
1395 //
1396 // --- If lego option, do it and leave
1397 if (fLego) {
1398 fLego->StepManager();
1399 return;
1400 }
1401 //Update energy deposition tables
1402 sEventEnergy[gMC->CurrentVolID(copy)]+=gMC->Edep();
1403
1404 //Call the appropriate stepping routine;
1405 AliModule *det = (AliModule*)fModules->At(id);
1406 if(det) det->StepManager();
1407}
1408
1409//_____________________________________________________________________________
1410void AliRun::ReadEuclid(const char* filnam, const AliModule *det, char* topvol)
1411{
1412 //
1413 // read in the geometry of the detector in euclid file format
1414 //
1415 // id_det : the detector identification (2=its,...)
1416 // topvol : return parameter describing the name of the top
1417 // volume of geometry.
1418 //
1419 // author : m. maire
1420 //
1421 // 28.07.98
1422 // several changes have been made by miroslav helbich
1423 // subroutine is rewrited to follow the new established way of memory
1424 // booking for tracking medias and rotation matrices.
1425 // all used tracking media have to be defined first, for this you can use
1426 // subroutine greutmed.
1427 // top volume is searched as only volume not positioned into another
1428 //
1429
1430 Int_t i, nvol, iret, itmed, irot, numed, npar, ndiv, iaxe;
1431 Int_t ndvmx, nr, flag;
1432 char key[5], card[77], natmed[21];
1433 char name[5], mother[5], shape[5], konly[5], volst[7000][5];
1434 char *filtmp;
1435 Float_t par[50];
1436 Float_t teta1, phi1, teta2, phi2, teta3, phi3, orig, step;
1437 Float_t xo, yo, zo;
1438 Int_t idrot[5000],istop[7000];
1439 FILE *lun;
1440 //
1441 // *** The input filnam name will be with extension '.euc'
1442 filtmp=gSystem->ExpandPathName(filnam);
1443 lun=fopen(filtmp,"r");
1444 delete [] filtmp;
1445 if(!lun) {
1446 printf(" *** GREUCL *** Could not open file %s\n",filnam);
1447 return;
1448 }
1449 //* --- definition of rotation matrix 0 ---
1450 TArrayI &idtmed = *(det->GetIdtmed());
1451 idrot[0]=0;
1452 nvol=0;
1453 L10:
1454 for(i=0;i<77;i++) card[i]=0;
1455 iret=fscanf(lun,"%77[^\n]",card);
1456 if(iret<=0) goto L20;
1457 fscanf(lun,"%*c");
1458 //*
1459 strncpy(key,card,4);
1460 key[4]='\0';
1461 if (!strcmp(key,"TMED")) {
1462 sscanf(&card[5],"%d '%[^']'",&itmed,natmed);
1463 //Pad the string with blanks
1464 i=-1;
1465 while(natmed[++i]);
1466 while(i<20) natmed[i++]=' ';
1467 natmed[i]='\0';
1468 //
1469 gMC->Gckmat(idtmed[itmed],natmed);
1470 //*
1471 } else if (!strcmp(key,"ROTM")) {
1472 sscanf(&card[4],"%d %f %f %f %f %f %f",&irot,&teta1,&phi1,&teta2,&phi2,&teta3,&phi3);
1473 det->AliMatrix(idrot[irot],teta1,phi1,teta2,phi2,teta3,phi3);
1474 //*
1475 } else if (!strcmp(key,"VOLU")) {
1476 sscanf(&card[5],"'%[^']' '%[^']' %d %d", name, shape, &numed, &npar);
1477 if (npar>0) {
1478 for(i=0;i<npar;i++) fscanf(lun,"%f",&par[i]);
1479 fscanf(lun,"%*c");
1480 }
1481 gMC->Gsvolu( name, shape, idtmed[numed], par, npar);
1482 //* save the defined volumes
1483 strcpy(volst[++nvol],name);
1484 istop[nvol]=1;
1485 //*
1486 } else if (!strcmp(key,"DIVN")) {
1487 sscanf(&card[5],"'%[^']' '%[^']' %d %d", name, mother, &ndiv, &iaxe);
1488 gMC->Gsdvn ( name, mother, ndiv, iaxe );
1489 //*
1490 } else if (!strcmp(key,"DVN2")) {
1491 sscanf(&card[5],"'%[^']' '%[^']' %d %d %f %d",name, mother, &ndiv, &iaxe, &orig, &numed);
1492 gMC->Gsdvn2( name, mother, ndiv, iaxe, orig,idtmed[numed]);
1493 //*
1494 } else if (!strcmp(key,"DIVT")) {
1495 sscanf(&card[5],"'%[^']' '%[^']' %f %d %d %d", name, mother, &step, &iaxe, &numed, &ndvmx);
1496 gMC->Gsdvt ( name, mother, step, iaxe, idtmed[numed], ndvmx);
1497 //*
1498 } else if (!strcmp(key,"DVT2")) {
1499 sscanf(&card[5],"'%[^']' '%[^']' %f %d %f %d %d", name, mother, &step, &iaxe, &orig, &numed, &ndvmx);
1500 gMC->Gsdvt2 ( name, mother, step, iaxe, orig, idtmed[numed], ndvmx );
1501 //*
1502 } else if (!strcmp(key,"POSI")) {
1503 sscanf(&card[5],"'%[^']' %d '%[^']' %f %f %f %d '%[^']'", name, &nr, mother, &xo, &yo, &zo, &irot, konly);
1504 //*** volume name cannot be the top volume
1505 for(i=1;i<=nvol;i++) {
1506 if (!strcmp(volst[i],name)) istop[i]=0;
1507 }
1508 //*
1509 gMC->Gspos ( name, nr, mother, xo, yo, zo, idrot[irot], konly );
1510 //*
1511 } else if (!strcmp(key,"POSP")) {
1512 sscanf(&card[5],"'%[^']' %d '%[^']' %f %f %f %d '%[^']' %d", name, &nr, mother, &xo, &yo, &zo, &irot, konly, &npar);
1513 if (npar > 0) {
1514 for(i=0;i<npar;i++) fscanf(lun,"%f",&par[i]);
1515 fscanf(lun,"%*c");
1516 }
1517 //*** volume name cannot be the top volume
1518 for(i=1;i<=nvol;i++) {
1519 if (!strcmp(volst[i],name)) istop[i]=0;
1520 }
1521 //*
1522 gMC->Gsposp ( name, nr, mother, xo,yo,zo, idrot[irot], konly, par, npar);
1523 }
1524 //*
1525 if (strcmp(key,"END")) goto L10;
1526 //* find top volume in the geometry
1527 flag=0;
1528 for(i=1;i<=nvol;i++) {
1529 if (istop[i] && flag) {
1530 printf(" *** GREUCL *** warning: %s is another possible top volume\n",volst[i]);
1531 }
1532 if (istop[i] && !flag) {
1533 strcpy(topvol,volst[i]);
1534 printf(" *** GREUCL *** volume %s taken as a top volume\n",topvol);
1535 flag=1;
1536 }
1537 }
1538 if (!flag) {
1539 printf("*** GREUCL *** warning: top volume not found\n");
1540 }
1541 fclose (lun);
1542 //*
1543 //* commented out only for the not cernlib version
1544 printf(" *** GREUCL *** file: %s is now read in\n",filnam);
1545 //
1546 return;
1547 //*
1548 L20:
1549 printf(" *** GREUCL *** reading error or premature end of file\n");
1550}
1551
1552//_____________________________________________________________________________
1553void AliRun::ReadEuclidMedia(const char* filnam, const AliModule *det)
1554{
1555 //
1556 // read in the materials and tracking media for the detector
1557 // in euclid file format
1558 //
1559 // filnam: name of the input file
1560 // id_det: id_det is the detector identification (2=its,...)
1561 //
1562 // author : miroslav helbich
1563 //
1564 Float_t sxmgmx = gAlice->Field()->Max();
1565 Int_t isxfld = gAlice->Field()->Integ();
1566 Int_t end, i, iret, itmed;
1567 char key[5], card[130], natmed[21], namate[21];
1568 Float_t ubuf[50];
1569 char* filtmp;
1570 FILE *lun;
1571 Int_t imate;
1572 Int_t nwbuf, isvol, ifield, nmat;
1573 Float_t a, z, dens, radl, absl, fieldm, tmaxfd, stemax, deemax, epsil, stmin;
1574 //
1575 end=strlen(filnam);
1576 for(i=0;i<end;i++) if(filnam[i]=='.') {
1577 end=i;
1578 break;
1579 }
1580 //
1581 // *** The input filnam name will be with extension '.euc'
1582 printf("The file name is %s\n",filnam); //Debug
1583 filtmp=gSystem->ExpandPathName(filnam);
1584 lun=fopen(filtmp,"r");
1585 delete [] filtmp;
1586 if(!lun) {
1587 Warning("ReadEuclidMedia","Could not open file %s\n",filnam);
1588 return;
1589 }
1590 //
1591 // Retrieve Mag Field parameters
1592 Int_t ISXFLD=gAlice->Field()->Integ();
1593 Float_t SXMGMX=gAlice->Field()->Max();
1594 // TArrayI &idtmed = *(det->GetIdtmed());
1595 //
1596 L10:
1597 for(i=0;i<130;i++) card[i]=0;
1598 iret=fscanf(lun,"%4s %[^\n]",key,card);
1599 if(iret<=0) goto L20;
1600 fscanf(lun,"%*c");
1601 //*
1602 //* read material
1603 if (!strcmp(key,"MATE")) {
1604 sscanf(card,"%d '%[^']' %f %f %f %f %f %d",&imate,namate,&a,&z,&dens,&radl,&absl,&nwbuf);
1605 if (nwbuf>0) for(i=0;i<nwbuf;i++) fscanf(lun,"%f",&ubuf[i]);
1606 //Pad the string with blanks
1607 i=-1;
1608 while(namate[++i]);
1609 while(i<20) namate[i++]=' ';
1610 namate[i]='\0';
1611 //
1612 det->AliMaterial(imate,namate,a,z,dens,radl,absl,ubuf,nwbuf);
1613 //* read tracking medium
1614 } else if (!strcmp(key,"TMED")) {
1615 sscanf(card,"%d '%[^']' %d %d %d %f %f %f %f %f %f %d",
1616 &itmed,natmed,&nmat,&isvol,&ifield,&fieldm,&tmaxfd,
1617 &stemax,&deemax,&epsil,&stmin,&nwbuf);
1618 if (nwbuf>0) for(i=0;i<nwbuf;i++) fscanf(lun,"%f",&ubuf[i]);
1619 if (ifield<0) ifield=isxfld;
1620 if (fieldm<0) fieldm=sxmgmx;
1621 //Pad the string with blanks
1622 i=-1;
1623 while(natmed[++i]);
1624 while(i<20) natmed[i++]=' ';
1625 natmed[i]='\0';
1626 //
1627 det->AliMedium(itmed,natmed,nmat,isvol,ISXFLD,SXMGMX,tmaxfd,
1628 stemax,deemax,epsil,stmin,ubuf,nwbuf);
1629 // (*fImedia)[idtmed[itmed]-1]=id_det;
1630 //*
1631 }
1632 //*
1633 if (strcmp(key,"END")) goto L10;
1634 fclose (lun);
1635 //*
1636 //* commented out only for the not cernlib version
1637 Warning("ReadEuclidMedia","file: %s is now read in\n",filnam);
1638 //*
1639 return;
1640 //*
1641 L20:
1642 Warning("ReadEuclidMedia","reading error or premature end of file\n");
1643}
1644
1645//_____________________________________________________________________________
1646void AliRun::Streamer(TBuffer &R__b)
1647{
1648 //
1649 // Stream an object of class AliRun.
1650 //
1651 if (R__b.IsReading()) {
1652 Version_t R__v = R__b.ReadVersion(); if (R__v) { }
1653 TNamed::Streamer(R__b);
1654 if (!gAlice) gAlice = this;
1655 gROOT->GetListOfBrowsables()->Add(this,"Run");
1656 fTreeE = (TTree*)gDirectory->Get("TE");
1657 if (fTreeE) fTreeE->SetBranchAddress("Header", &header);
1658 else Error("Streamer","cannot find Header Tree\n");
1659 R__b >> fNtrack;
1660 R__b >> fHgwmk;
1661 R__b >> fDebug;
1662 fHeader.Streamer(R__b);
1663 R__b >> fModules;
1664 R__b >> fParticles;
1665 R__b >> fField;
1666 // R__b >> fMC;
1667 R__b >> fNdets;
1668 R__b >> fTrRmax;
1669 R__b >> fTrZmax;
1670 R__b >> fGenerator;
1671 if(R__v>1) {
1672 R__b >> fPDGDB; //Particle factory object!
1673 fTreeE->GetEntry(0);
1674 } else {
1675 fHeader.SetEvent(0);
1676 fPDGDB = TDatabasePDG::Instance(); //Particle factory object!
1677 }
1678 } else {
1679 R__b.WriteVersion(AliRun::IsA());
1680 TNamed::Streamer(R__b);
1681 R__b << fNtrack;
1682 R__b << fHgwmk;
1683 R__b << fDebug;
1684 fHeader.Streamer(R__b);
1685 R__b << fModules;
1686 R__b << fParticles;
1687 R__b << fField;
1688 // R__b << fMC;
1689 R__b << fNdets;
1690 R__b << fTrRmax;
1691 R__b << fTrZmax;
1692 R__b << fGenerator;
1693 R__b << fPDGDB; //Particle factory object!
1694 }
1695}
1696
1697
1698//_____________________________________________________________________________
1699//
1700// Interfaces to Fortran
1701//
1702//_____________________________________________________________________________
1703
1704extern "C" void type_of_call rxgtrak (Int_t &mtrack, Int_t &ipart, Float_t *pmom,
1705 Float_t &e, Float_t *vpos, Float_t *polar,
1706 Float_t &tof)
1707{
1708 //
1709 // Fetches next track from the ROOT stack for transport. Called by the
1710 // modified version of GTREVE.
1711 //
1712 // Track number in the ROOT stack. If MTRACK=0 no
1713 // mtrack more tracks are left in the stack to be
1714 // transported.
1715 // ipart Particle code in the GEANT conventions.
1716 // pmom[3] Particle momentum in GeV/c
1717 // e Particle energy in GeV
1718 // vpos[3] Particle position
1719 // tof Particle time of flight in seconds
1720 //
1721 Int_t pdg;
1722 gAlice->GetNextTrack(mtrack, pdg, pmom, e, vpos, polar, tof);
1723 ipart = gMC->IdFromPDG(pdg);
1724 mtrack++;
1725}
1726
1727//_____________________________________________________________________________
1728extern "C" void type_of_call
1729#ifndef WIN32
1730rxstrak (Int_t &keep, Int_t &parent, Int_t &ipart, Float_t *pmom,
1731 Float_t *vpos, Float_t &tof, const char* cmech, Int_t &ntr, const int cmlen)
1732#else
1733rxstrak (Int_t &keep, Int_t &parent, Int_t &ipart, Float_t *pmom,
1734 Float_t *vpos, Float_t &tof, const char* cmech, const int cmlen,
1735 Int_t &ntr)
1736#endif
1737{
1738 //
1739 // Fetches next track from the ROOT stack for transport. Called by GUKINE
1740 // and GUSTEP.
1741 //
1742 // Status of the track. If keep=0 the track is put
1743 // keep on the ROOT stack but it is not fetched for
1744 // transport.
1745 // parent Parent track. If parent=0 the track is a primary.
1746 // In GUSTEP the routine is normally called to store
1747 // secondaries generated by the current track whose
1748 // ROOT stack number is MTRACK (common SCKINE.
1749 // ipart Particle code in the GEANT conventions.
1750 // pmom[3] Particle momentum in GeV/c
1751 // vpos[3] Particle position
1752 // tof Particle time of flight in seconds
1753 //
1754 // cmech (CHARACTER*10) Particle origin. This field is user
1755 // defined and it is not used inside the GALICE code.
1756 // ntr Number assigned to the particle in the ROOT stack.
1757 //
1758 char mecha[11];
1759 Float_t polar[3]={0.,0.,0.};
1760 for(int i=0; i<10 && i<cmlen; i++) mecha[i]=cmech[i];
1761 mecha[10]=0;
1762 Int_t pdg=gMC->PDGFromId(ipart);
1763 gAlice->SetTrack(keep, parent-1, pdg, pmom, vpos, polar, tof, mecha, ntr);
1764 ntr++;
1765}
1766
1767//_____________________________________________________________________________
1768extern "C" void type_of_call rxkeep(const Int_t &n)
1769{
1770 if( NULL==gAlice ) exit(1);
1771
1772 if( n<=0 || n>gAlice->Particles()->GetEntries() )
1773 {
1774 printf(" Bad index n=%d must be 0<n<=%d\n",
1775 n,gAlice->Particles()->GetEntries());
1776 exit(1);
1777 }
1778
1779 ((TParticle*)(gAlice->Particles()->UncheckedAt(n-1)))->SetBit(Keep_Bit);
1780}
1781
1782//_____________________________________________________________________________
1783extern "C" void type_of_call rxouth ()
1784{
1785 //
1786 // Called by Gtreve at the end of each primary track
1787 //
1788 gAlice->FinishPrimary();
1789}
1790