]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TGeant3/TGeant3.cxx
Use PDG code also for Gfpart
[u/mrichter/AliRoot.git] / TGeant3 / TGeant3.cxx
... / ...
CommitLineData
1///////////////////////////////////////////////////////////////////////////////
2// //
3// Interface Class to the Geant3.21 MonteCarlo //
4// //
5//Begin_Html
6/*
7<img src="picts/TGeant3Class.gif">
8*/
9//End_Html
10// //
11// //
12///////////////////////////////////////////////////////////////////////////////
13
14#include "TGeant3.h"
15#include "TROOT.h"
16#include "THIGZ.h"
17#include "ctype.h"
18#include <TDatabasePDG.h>
19#include "AliCallf77.h"
20
21#ifndef WIN32
22# define gzebra gzebra_
23# define grfile grfile_
24# define gpcxyz gpcxyz_
25# define ggclos ggclos_
26# define glast glast_
27# define ginit ginit_
28# define gcinit gcinit_
29# define grun grun_
30# define gtrig gtrig_
31# define gtrigc gtrigc_
32# define gtrigi gtrigi_
33# define gwork gwork_
34# define gzinit gzinit_
35# define gfmate gfmate_
36# define gfpart gfpart_
37# define gftmed gftmed_
38# define gmate gmate_
39# define gpart gpart_
40# define gsdk gsdk_
41# define gsmate gsmate_
42# define gsmixt gsmixt_
43# define gspart gspart_
44# define gstmed gstmed_
45# define gsckov gsckov_
46# define gstpar gstpar_
47# define gfkine gfkine_
48# define gfvert gfvert_
49# define gskine gskine_
50# define gsvert gsvert_
51# define gphysi gphysi_
52# define gdebug gdebug_
53# define gekbin gekbin_
54# define gfinds gfinds_
55# define gsking gsking_
56# define gskpho gskpho_
57# define gsstak gsstak_
58# define gsxyz gsxyz_
59# define gtrack gtrack_
60# define gtreve gtreve_
61# define gtreve_root gtreve_root_
62# define grndm grndm_
63# define grndmq grndmq_
64# define gdtom gdtom_
65# define glmoth glmoth_
66# define gmedia gmedia_
67# define gmtod gmtod_
68# define gsdvn gsdvn_
69# define gsdvn2 gsdvn2_
70# define gsdvs gsdvs_
71# define gsdvs2 gsdvs2_
72# define gsdvt gsdvt_
73# define gsdvt2 gsdvt2_
74# define gsord gsord_
75# define gspos gspos_
76# define gsposp gsposp_
77# define gsrotm gsrotm_
78# define gprotm gprotm_
79# define gsvolu gsvolu_
80# define gprint gprint_
81# define gdinit gdinit_
82# define gdopt gdopt_
83# define gdraw gdraw_
84# define gdrayt gdrayt_
85# define gdrawc gdrawc_
86# define gdrawx gdrawx_
87# define gdhead gdhead_
88# define gdwmn1 gdwmn1_
89# define gdwmn2 gdwmn2_
90# define gdwmn3 gdwmn3_
91# define gdxyz gdxyz_
92# define gdcxyz gdcxyz_
93# define gdman gdman_
94# define gdspec gdspec_
95# define gdtree gdtree_
96# define gdelet gdelet_
97# define gdclos gdclos_
98# define gdshow gdshow_
99# define gdopen gdopen_
100# define dzshow dzshow_
101# define gsatt gsatt_
102# define gfpara gfpara_
103# define gckpar gckpar_
104# define gckmat gckmat_
105# define geditv geditv_
106# define mzdrop mzdrop_
107
108# define setbomb setbomb_
109# define setclip setclip_
110# define gcomad gcomad_
111
112#else
113# define gzebra GZEBRA
114# define grfile GRFILE
115# define gpcxyz GPCXYZ
116# define ggclos GGCLOS
117# define glast GLAST
118# define ginit GINIT
119# define gcinit GCINIT
120# define grun GRUN
121# define gtrig GTRIG
122# define gtrigc GTRIGC
123# define gtrigi GTRIGI
124# define gwork GWORK
125# define gzinit GZINIT
126# define gfmate GFMATE
127# define gfpart GFPART
128# define gftmed GFTMED
129# define gmate GMATE
130# define gpart GPART
131# define gsdk GSDK
132# define gsmate GSMATE
133# define gsmixt GSMIXT
134# define gspart GSPART
135# define gstmed GSTMED
136# define gsckov GSCKOV
137# define gstpar GSTPAR
138# define gfkine GFKINE
139# define gfvert GFVERT
140# define gskine GSKINE
141# define gsvert GSVERT
142# define gphysi GPHYSI
143# define gdebug GDEBUG
144# define gekbin GEKBIN
145# define gfinds GFINDS
146# define gsking GSKING
147# define gskpho GSKPHO
148# define gsstak GSSTAK
149# define gsxyz GSXYZ
150# define gtrack GTRACK
151# define gtreve GTREVE
152# define gtreve_root GTREVE_ROOT
153# define grndm GRNDM
154# define grndmq GRNDMQ
155# define gdtom GDTOM
156# define glmoth GLMOTH
157# define gmedia GMEDIA
158# define gmtod GMTOD
159# define gsdvn GSDVN
160# define gsdvn2 GSDVN2
161# define gsdvs GSDVS
162# define gsdvs2 GSDVS2
163# define gsdvt GSDVT
164# define gsdvt2 GSDVT2
165# define gsord GSORD
166# define gspos GSPOS
167# define gsposp GSPOSP
168# define gsrotm GSROTM
169# define gprotm GPROTM
170# define gsvolu GSVOLU
171# define gprint GPRINT
172# define gdinit GDINIT
173# define gdopt GDOPT
174# define gdraw GDRAW
175# define gdrayt GDRAYT
176# define gdrawc GDRAWC
177# define gdrawx GDRAWX
178# define gdhead GDHEAD
179# define gdwmn1 GDWMN1
180# define gdwmn2 GDWMN2
181# define gdwmn3 GDWMN3
182# define gdxyz GDXYZ
183# define gdcxyz GDCXYZ
184# define gdman GDMAN
185# define gdfspc GDFSPC
186# define gdspec GDSPEC
187# define gdtree GDTREE
188# define gdelet GDELET
189# define gdclos GDCLOS
190# define gdshow GDSHOW
191# define gdopen GDOPEN
192# define dzshow DZSHOW
193# define gsatt GSATT
194# define gfpara GFPARA
195# define gckpar GCKPAR
196# define gckmat GCKMAT
197# define geditv GEDITV
198# define mzdrop MZDROP
199
200# define setbomb SETBOMB
201# define setclip SETCLIP
202# define gcomad GCOMAD
203
204#endif
205
206//____________________________________________________________________________
207extern "C"
208{
209 //
210 // Prototypes for GEANT functions
211 //
212 void type_of_call gzebra(const int&);
213
214 void type_of_call gpcxyz();
215
216 void type_of_call ggclos();
217
218 void type_of_call glast();
219
220 void type_of_call ginit();
221
222 void type_of_call gcinit();
223
224 void type_of_call grun();
225
226 void type_of_call gtrig();
227
228 void type_of_call gtrigc();
229
230 void type_of_call gtrigi();
231
232 void type_of_call gwork(const int&);
233
234 void type_of_call gzinit();
235
236 void type_of_call gmate();
237
238 void type_of_call gpart();
239
240 void type_of_call gsdk(Int_t &, Float_t *, Int_t *);
241
242 void type_of_call gfkine(Int_t &, Float_t *, Float_t *, Int_t &,
243 Int_t &, Float_t *, Int_t &);
244
245 void type_of_call gfvert(Int_t &, Float_t *, Int_t &, Int_t &,
246 Float_t &, Float_t *, Int_t &);
247
248 void type_of_call gskine(Float_t *,Int_t &, Int_t &, Float_t *,
249 Int_t &, Int_t &);
250
251 void type_of_call gsvert(Float_t *,Int_t &, Int_t &, Float_t *,
252 Int_t &, Int_t &);
253
254 void type_of_call gphysi();
255
256 void type_of_call gdebug();
257
258 void type_of_call gekbin();
259
260 void type_of_call gfinds();
261
262 void type_of_call gsking(Int_t &);
263
264 void type_of_call gskpho(Int_t &);
265
266 void type_of_call gsstak(Int_t &);
267
268 void type_of_call gsxyz();
269
270 void type_of_call gtrack();
271
272 void type_of_call gtreve();
273
274 void type_of_call gtreve_root();
275
276 void type_of_call grndm(Float_t *, const Int_t &);
277
278 void type_of_call grndmq(Int_t &, Int_t &, const Int_t &,
279 DEFCHARD DEFCHARL);
280
281 void type_of_call gdtom(Float_t *, Float_t *, Int_t &);
282
283 void type_of_call glmoth(DEFCHARD, Int_t &, Int_t &, Int_t *,
284 Int_t *, Int_t * DEFCHARL);
285
286 void type_of_call gmedia(Float_t *, Int_t &);
287
288 void type_of_call gmtod(Float_t *, Float_t *, Int_t &);
289
290 void type_of_call gsrotm(const Int_t &, const Float_t &, const Float_t &,
291 const Float_t &, const Float_t &, const Float_t &,
292 const Float_t &);
293
294 void type_of_call gprotm(const Int_t &);
295
296 void type_of_call grfile(const Int_t&, DEFCHARD,
297 DEFCHARD DEFCHARL DEFCHARL);
298
299 void type_of_call gfmate(const Int_t&, DEFCHARD, Float_t &, Float_t &,
300 Float_t &, Float_t &, Float_t &, Float_t *,
301 Int_t& DEFCHARL);
302
303 void type_of_call gfpart(const Int_t&, DEFCHARD, Int_t &, Float_t &,
304 Float_t &, Float_t &, Float_t *, Int_t & DEFCHARL);
305
306 void type_of_call gftmed(const Int_t&, DEFCHARD, Int_t &, Int_t &, Int_t &,
307 Float_t &, Float_t &, Float_t &, Float_t &,
308 Float_t &, Float_t &, Float_t *, Int_t * DEFCHARL);
309
310 void type_of_call gsmate(const Int_t&, DEFCHARD, Float_t &, Float_t &,
311 Float_t &, Float_t &, Float_t &, Float_t *,
312 Int_t & DEFCHARL);
313
314 void type_of_call gsmixt(const Int_t&, DEFCHARD, Float_t *, Float_t *,
315 Float_t &, Int_t &, Float_t * DEFCHARL);
316
317 void type_of_call gspart(const Int_t&, DEFCHARD, Int_t &, Float_t &,
318 Float_t &, Float_t &, Float_t *, Int_t & DEFCHARL);
319
320
321 void type_of_call gstmed(const Int_t&, DEFCHARD, Int_t &, Int_t &, Int_t &,
322 Float_t &, Float_t &, Float_t &, Float_t &,
323 Float_t &, Float_t &, Float_t *, Int_t & DEFCHARL);
324
325 void type_of_call gsckov(Int_t &itmed, Int_t &npckov, Float_t *ppckov,
326 Float_t *absco, Float_t *effic, Float_t *rindex);
327 void type_of_call gstpar(const Int_t&, DEFCHARD, Float_t & DEFCHARL);
328
329 void type_of_call gsdvn(DEFCHARD,DEFCHARD, Int_t &, Int_t &
330 DEFCHARL DEFCHARL);
331
332 void type_of_call gsdvn2(DEFCHARD,DEFCHARD, Int_t &, Int_t &, Float_t &,
333 Int_t & DEFCHARL DEFCHARL);
334
335 void type_of_call gsdvs(DEFCHARD,DEFCHARD, Float_t &, Int_t &, Int_t &
336 DEFCHARL DEFCHARL);
337
338 void type_of_call gsdvs2(DEFCHARD,DEFCHARD, Float_t &, Int_t &, Float_t &,
339 Int_t & DEFCHARL DEFCHARL);
340
341 void type_of_call gsdvt(DEFCHARD,DEFCHARD, Float_t &, Int_t &, Int_t &,
342 Int_t & DEFCHARL DEFCHARL);
343
344 void type_of_call gsdvt2(DEFCHARD,DEFCHARD, Float_t &, Int_t &, Float_t&,
345 Int_t &, Int_t & DEFCHARL DEFCHARL);
346
347 void type_of_call gsord(DEFCHARD, Int_t & DEFCHARL);
348
349 void type_of_call gspos(DEFCHARD, Int_t &, DEFCHARD, Float_t &, Float_t &,
350 Float_t &, Int_t &, DEFCHARD DEFCHARL DEFCHARL
351 DEFCHARL);
352
353 void type_of_call gsposp(DEFCHARD, Int_t &, DEFCHARD, Float_t &, Float_t &,
354 Float_t &, Int_t &, DEFCHARD,
355 Float_t *, Int_t & DEFCHARL DEFCHARL DEFCHARL);
356
357 void type_of_call gsvolu(DEFCHARD, DEFCHARD, Int_t &, Float_t *, Int_t &,
358 Int_t & DEFCHARL DEFCHARL);
359
360 void type_of_call gsatt(DEFCHARD, DEFCHARD, Int_t & DEFCHARL DEFCHARL);
361
362 void type_of_call gfpara(DEFCHARD , Int_t&, Int_t&, Int_t&, Int_t&, Float_t*,
363 Float_t* DEFCHARL);
364
365 void type_of_call gckpar(Int_t&, Int_t&, Float_t*);
366
367 void type_of_call gckmat(Int_t&, DEFCHARD DEFCHARL);
368
369 void type_of_call gprint(DEFCHARD,const int& DEFCHARL);
370
371 void type_of_call gdinit();
372
373 void type_of_call gdopt(DEFCHARD,DEFCHARD DEFCHARL DEFCHARL);
374
375 void type_of_call gdraw(DEFCHARD,Float_t &,Float_t &, Float_t &,Float_t &,
376 Float_t &, Float_t &, Float_t & DEFCHARL);
377 void type_of_call gdrayt(DEFCHARD,Float_t &,Float_t &, Float_t &,Float_t &,
378 Float_t &, Float_t &, Float_t & DEFCHARL);
379 void type_of_call gdrawc(DEFCHARD,Int_t &, Float_t &, Float_t &, Float_t &,
380 Float_t &, Float_t & DEFCHARL);
381 void type_of_call gdrawx(DEFCHARD,Float_t &, Float_t &, Float_t &, Float_t &,
382 Float_t &, Float_t &, Float_t &, Float_t &,
383 Float_t & DEFCHARL);
384 void type_of_call gdhead(Int_t &,DEFCHARD, Float_t & DEFCHARL);
385 void type_of_call gdxyz(Int_t &);
386 void type_of_call gdcxyz();
387 void type_of_call gdman(Float_t &, Float_t &);
388 void type_of_call gdwmn1(Float_t &, Float_t &);
389 void type_of_call gdwmn2(Float_t &, Float_t &);
390 void type_of_call gdwmn3(Float_t &, Float_t &);
391 void type_of_call gdspec(DEFCHARD DEFCHARL);
392 void type_of_call gdfspc(DEFCHARD, Int_t &, Int_t & DEFCHARL) {;}
393 void type_of_call gdtree(DEFCHARD, Int_t &, Int_t & DEFCHARL);
394
395 void type_of_call gdopen(Int_t &);
396 void type_of_call gdclos();
397 void type_of_call gdelet(Int_t &);
398 void type_of_call gdshow(Int_t &);
399 void type_of_call geditv(Int_t &) {;}
400
401
402 void type_of_call dzshow(DEFCHARD,const int&,const int&,DEFCHARD,const int&,
403 const int&, const int&, const int& DEFCHARL
404 DEFCHARL);
405
406 void type_of_call mzdrop(Int_t&, Int_t&, DEFCHARD DEFCHARL);
407
408 void type_of_call setbomb(Float_t &);
409 void type_of_call setclip(DEFCHARD, Float_t &,Float_t &,Float_t &,Float_t &,
410 Float_t &, Float_t & DEFCHARL);
411 void type_of_call gcomad(DEFCHARD, Int_t*& DEFCHARL);
412}
413
414//
415// Geant3 global pointer
416//
417static Int_t defSize = 600;
418
419ClassImp(TGeant3)
420
421//____________________________________________________________________________
422TGeant3::TGeant3()
423{
424 //
425 // Default constructor
426 //
427}
428
429//____________________________________________________________________________
430TGeant3::TGeant3(const char *title, Int_t nwgeant)
431 :AliMC("TGeant3",title)
432{
433 //
434 // Standard constructor for TGeant3 with ZEBRA initialisation
435 //
436
437 if(nwgeant) {
438 gzebra(nwgeant);
439 ginit();
440 gzinit();
441 } else {
442 gcinit();
443 }
444 //
445 // Load Address of Geant3 commons
446 LoadAddress();
447 //
448 // Zero number of particles
449 fNPDGCodes=0;
450}
451
452//____________________________________________________________________________
453Int_t TGeant3::CurrentMaterial(Float_t &a, Float_t &z, Float_t &dens,
454 Float_t &radl, Float_t &absl) const
455{
456 //
457 // Return the parameters of the current material during transport
458 //
459 z = fGcmate->z;
460 a = fGcmate->a;
461 dens = fGcmate->dens;
462 radl = fGcmate->radl;
463 absl = fGcmate->absl;
464 return 1; //this could be the number of elements in mixture
465}
466
467//____________________________________________________________________________
468void TGeant3::DefaultRange()
469{
470 //
471 // Set range of current drawing pad to 20x20 cm
472 //
473 if (!higz) {
474 new THIGZ(defSize);
475 gdinit();
476 }
477 higz->Range(0,0,20,20);
478}
479
480//____________________________________________________________________________
481void TGeant3::InitHIGZ()
482{
483 //
484 // Initialise HIGZ
485 //
486 if (!higz) {
487 new THIGZ(defSize);
488 gdinit();
489 }
490}
491
492//____________________________________________________________________________
493void TGeant3::LoadAddress()
494{
495 //
496 // Assigns the address of the GEANT common blocks to the structures
497 // that allow their access from C++
498 //
499 Int_t *addr;
500 gcomad(PASSCHARD("QUEST"), (int*&) fQuest PASSCHARL("QUEST"));
501 gcomad(PASSCHARD("GCBANK"),(int*&) fGcbank PASSCHARL("GCBANK"));
502 gcomad(PASSCHARD("GCLINK"),(int*&) fGclink PASSCHARL("GCLINK"));
503 gcomad(PASSCHARD("GCCUTS"),(int*&) fGccuts PASSCHARL("GCCUTS"));
504 gcomad(PASSCHARD("GCFLAG"),(int*&) fGcflag PASSCHARL("GCFLAG"));
505 gcomad(PASSCHARD("GCKINE"),(int*&) fGckine PASSCHARL("GCKINE"));
506 gcomad(PASSCHARD("GCKING"),(int*&) fGcking PASSCHARL("GCKING"));
507 gcomad(PASSCHARD("GCKIN2"),(int*&) fGckin2 PASSCHARL("GCKIN2"));
508 gcomad(PASSCHARD("GCKIN3"),(int*&) fGckin3 PASSCHARL("GCKIN3"));
509 gcomad(PASSCHARD("GCMATE"),(int*&) fGcmate PASSCHARL("GCMATE"));
510 gcomad(PASSCHARD("GCTMED"),(int*&) fGctmed PASSCHARL("GCTMED"));
511 gcomad(PASSCHARD("GCTRAK"),(int*&) fGctrak PASSCHARL("GCTRAK"));
512 gcomad(PASSCHARD("GCTPOL"),(int*&) fGctpol PASSCHARL("GCTPOL"));
513 gcomad(PASSCHARD("GCVOLU"),(int*&) fGcvolu PASSCHARL("GCVOLU"));
514 gcomad(PASSCHARD("GCNUM"), (int*&) fGcnum PASSCHARL("GCNUM"));
515 gcomad(PASSCHARD("GCSETS"),(int*&) fGcsets PASSCHARL("GCSETS"));
516 gcomad(PASSCHARD("GCPHYS"),(int*&) fGcphys PASSCHARL("GCPHYS"));
517 gcomad(PASSCHARD("GCOPTI"),(int*&) fGcopti PASSCHARL("GCOPTI"));
518 gcomad(PASSCHARD("GCTLIT"),(int*&) fGctlit PASSCHARL("GCTLIT"));
519 gcomad(PASSCHARD("GCVDMA"),(int*&) fGcvdma PASSCHARL("GCVDMA"));
520
521 gcomad(PASSCHARD("IQ"), addr PASSCHARL("IQ"));
522 fZiq = addr;
523 gcomad(PASSCHARD("LQ"), addr PASSCHARL("LQ"));
524 fZlq = addr;
525 fZq = (float*)fZiq;
526}
527
528//_____________________________________________________________________________
529void TGeant3::GeomIter()
530{
531 //
532 // Geometry iterator for moving upward in the geometry tree
533 // Initialise the iterator
534 //
535 fNextVol=fGcvolu->nlevel;
536}
537
538//____________________________________________________________________________
539Int_t TGeant3::NextVolUp(Text_t *name, Int_t &copy)
540{
541 //
542 // Geometry iterator for moving upward in the geometry tree
543 // Return next volume up
544 //
545 Int_t i, gname;
546 fNextVol--;
547 if(fNextVol>=0) {
548 gname=fGcvolu->names[fNextVol];
549 strncpy(name,(char *) &gname, 4);
550 name[4]='\0';
551 copy=fGcvolu->number[fNextVol];
552 i=fGcvolu->lvolum[fNextVol];
553 if(gname == fZiq[fGclink->jvolum+i]) return i;
554 else printf("GeomTree: Volume %s not found in bank\n",name);
555 }
556 return 0;
557}
558
559//_____________________________________________________________________________
560Int_t TGeant3::CurrentVolID(Int_t &copy) const
561{
562 //
563 // Returns the current volume ID and copy number
564 //
565 Int_t i, gname;
566 if( (i=fGcvolu->nlevel-1) < 0 ) {
567 Warning("CurrentVolID","Stack depth only %d\n",fGcvolu->nlevel);
568 } else {
569 gname=fGcvolu->names[i];
570 copy=fGcvolu->number[i];
571 i=fGcvolu->lvolum[i];
572 if(gname == fZiq[fGclink->jvolum+i]) return i;
573 else Warning("CurrentVolID","Volume %4s not found\n",(char*)&gname);
574 }
575 return 0;
576}
577
578//_____________________________________________________________________________
579Int_t TGeant3::CurrentVolOffID(Int_t off, Int_t &copy) const
580{
581 //
582 // Return the current volume "off" upward in the geometrical tree
583 // ID and copy number
584 //
585 Int_t i, gname;
586 if( (i=fGcvolu->nlevel-off-1) < 0 ) {
587 Warning("CurrentVolOffID","Offset requested %d but stack depth %d\n",
588 off,fGcvolu->nlevel);
589 } else {
590 gname=fGcvolu->names[i];
591 copy=fGcvolu->number[i];
592 i=fGcvolu->lvolum[i];
593 if(gname == fZiq[fGclink->jvolum+i]) return i;
594 else Warning("CurrentVolOffID","Volume %4s not found\n",(char*)&gname);
595 }
596 return 0;
597}
598
599//_____________________________________________________________________________
600const char* TGeant3::CurrentVolName() const
601{
602 //
603 // Returns the current volume name
604 //
605 Int_t i, gname;
606 char *name;
607 if( (i=fGcvolu->nlevel-1) < 0 ) {
608 Warning("CurrentVolName","Stack depth %d\n",fGcvolu->nlevel);
609 } else {
610 gname=fGcvolu->names[i];
611 name = new char[5];
612 strncpy(name,(char *) &gname, 4);
613 name[4]='\0';
614 i=fGcvolu->lvolum[i];
615 if(gname == fZiq[fGclink->jvolum+i]) return name;
616 else Warning("CurrentVolName","Volume %4s not found\n",name);
617 }
618 return 0;
619}
620
621//_____________________________________________________________________________
622const char* TGeant3::CurrentVolOffName(Int_t off) const
623{
624 //
625 // Return the current volume "off" upward in the geometrical tree
626 // ID, name and copy number
627 // if name=0 no name is returned
628 //
629 Int_t i, gname;
630 char *name;
631 if( (i=fGcvolu->nlevel-off-1) < 0 ) {
632 Warning("CurrentVolOffName",
633 "Offset requested %d but stack depth %d\n",off,fGcvolu->nlevel);
634 } else {
635 gname=fGcvolu->names[i];
636 name = new char[5];
637 strncpy(name,(char *) &gname, 4);
638 name[4]='\0';
639 i=fGcvolu->lvolum[i];
640 if(gname == fZiq[fGclink->jvolum+i]) return name;
641 else Warning("CurrentVolOffName","Volume %4s not found\n",name);
642 }
643 return 0;
644}
645
646//_____________________________________________________________________________
647Int_t TGeant3::IdFromPDG(Int_t pdg) const
648{
649 //
650 // Return Geant3 code from PDG and pseudo ENDF code
651
652 for(Int_t i=0;i<fNPDGCodes;++i)
653 if(pdg==fPDGCode[i]) return i;
654 return -1;
655}
656
657//_____________________________________________________________________________
658Int_t TGeant3::PDGFromId(Int_t id) const
659{
660 if(id>0 && id<fNPDGCodes) return fPDGCode[id];
661 else return -1;
662}
663
664//_____________________________________________________________________________
665void TGeant3::DefineParticles()
666{
667 //
668 // Define standard Geant 3 particles
669 Gpart();
670 //
671 // Load standard numbers for GEANT particles and PDG conversion
672 fPDGCode[fNPDGCodes++]=-99; // 0 = unused location
673 fPDGCode[fNPDGCodes++]=22; // 1 = photon
674 fPDGCode[fNPDGCodes++]=-11; // 2 = positron
675 fPDGCode[fNPDGCodes++]=11; // 3 = electron
676 fPDGCode[fNPDGCodes++]=12; // 4 = neutrino e
677 fPDGCode[fNPDGCodes++]=-13; // 5 = muon +
678 fPDGCode[fNPDGCodes++]=13; // 6 = muon -
679 fPDGCode[fNPDGCodes++]=111; // 7 = pi0
680 fPDGCode[fNPDGCodes++]=211; // 8 = pi+
681 fPDGCode[fNPDGCodes++]=-211; // 9 = pi-
682 fPDGCode[fNPDGCodes++]=130; // 10 = Kaon Long
683 fPDGCode[fNPDGCodes++]=321; // 11 = Kaon +
684 fPDGCode[fNPDGCodes++]=-321; // 12 = Kaon -
685 fPDGCode[fNPDGCodes++]=2112; // 13 = Neutron
686 fPDGCode[fNPDGCodes++]=2212; // 14 = Proton
687 fPDGCode[fNPDGCodes++]=-2212; // 15 = Anti Proton
688 fPDGCode[fNPDGCodes++]=310; // 16 = Kaon Short
689 fPDGCode[fNPDGCodes++]=221; // 17 = Eta
690 fPDGCode[fNPDGCodes++]=3122; // 18 = Lambda
691 fPDGCode[fNPDGCodes++]=3222; // 19 = Sigma +
692 fPDGCode[fNPDGCodes++]=3212; // 20 = Sigma 0
693 fPDGCode[fNPDGCodes++]=3112; // 21 = Sigma -
694 fPDGCode[fNPDGCodes++]=3322; // 22 = Xi0
695 fPDGCode[fNPDGCodes++]=3312; // 23 = Xi-
696 fPDGCode[fNPDGCodes++]=3334; // 24 = Omega-
697 fPDGCode[fNPDGCodes++]=-2112; // 25 = Anti Proton
698 fPDGCode[fNPDGCodes++]=-3122; // 26 = Anti Proton
699 fPDGCode[fNPDGCodes++]=-3222; // 27 = Anti Sigma -
700 fPDGCode[fNPDGCodes++]=-3212; // 28 = Anti Sigma 0
701 fPDGCode[fNPDGCodes++]=-3112; // 29 = Anti Sigma 0
702 fPDGCode[fNPDGCodes++]=-3322; // 30 = Anti Xi 0
703 fPDGCode[fNPDGCodes++]=-3312; // 31 = Anti Xi +
704 fPDGCode[fNPDGCodes++]=-3334; // 32 = Anti Omega +
705
706
707 Int_t mode[6];
708 Int_t kz, ipa;
709 Float_t bratio[6];
710
711 /* --- Define additional particles */
712 Gspart(33, "OMEGA(782)", 3, 0.782, 0., 7.836e-23);
713 fPDGCode[fNPDGCodes++]=223; // 33 = Omega(782)
714
715 Gspart(34, "PHI(1020)", 3, 1.019, 0., 1.486e-22);
716 fPDGCode[fNPDGCodes++]=333; // 34 = PHI (1020)
717
718 Gspart(35, "D +", 4, 1.87, 1., 1.066e-12);
719 fPDGCode[fNPDGCodes++]=411; // 35 = D+
720
721 Gspart(36, "D -", 4, 1.87, -1., 1.066e-12);
722 fPDGCode[fNPDGCodes++]=-411; // 36 = D-
723
724 Gspart(37, "D 0", 3, 1.865, 0., 4.2e-13);
725 fPDGCode[fNPDGCodes++]=421; // 37 = D0
726
727 Gspart(38, "ANTI D 0", 3, 1.865, 0., 4.2e-13);
728 fPDGCode[fNPDGCodes++]=-421; // 38 = D0 bar
729
730 fPDGCode[fNPDGCodes++]=-99; // 39 = unassigned
731
732 fPDGCode[fNPDGCodes++]=-99; // 40 = unassigned
733
734 fPDGCode[fNPDGCodes++]=-99; // 41 = unassigned
735
736 Gspart(42, "RHO +", 4, 0.768, 1., 4.353e-24);
737 fPDGCode[fNPDGCodes++]=213; // 42 = RHO+
738
739 Gspart(43, "RHO -", 4, 0.768, -1., 4.353e-24);
740 fPDGCode[fNPDGCodes++]=-213; // 40 = RHO-
741
742 Gspart(44, "RHO 0", 3, 0.768, 0., 4.353e-24);
743 fPDGCode[fNPDGCodes++]=113; // 37 = D0
744
745 //
746 // Use ENDF-6 mapping for ions = 10000*z+10*a+iso
747 // and add 1 000 000
748 // and numbers above 5 000 000 for special applications
749 //
750
751 const Int_t kion=10000000;
752
753 const Int_t kspe=50000000;
754
755 TDatabasePDG *pdgDB = TDatabasePDG::Instance();
756
757 const Double_t autogev=0.9314943228;
758 const Double_t hslash = 1.0545726663e-27;
759 const Double_t erggev = 1/1.6021773349e-3;
760 const Double_t hshgev = hslash*erggev;
761 const Double_t yearstosec = 3600*24*365.25;
762
763
764 pdgDB->AddParticle("Deuteron","Deuteron",2*autogev+8.071e-3,kTRUE,
765 0,1,"Ion",kion+10020);
766 fPDGCode[fNPDGCodes++]=kion+10020; // 45 = Deuteron
767
768 pdgDB->AddParticle("Triton","Triton",3*autogev+14.931e-3,kFALSE,
769 hshgev/(12.33*yearstosec),1,"Ion",kion+10030);
770 fPDGCode[fNPDGCodes++]=kion+10030; // 46 = Triton
771
772 pdgDB->AddParticle("Alpha","Alpha",4*autogev+2.424e-3,kTRUE,
773 hshgev/(12.33*yearstosec),2,"Ion",kion+20040);
774 fPDGCode[fNPDGCodes++]=kion+20040; // 47 = Alpha
775
776 fPDGCode[fNPDGCodes++]=0; // 48 = geantino mapped to rootino
777
778 pdgDB->AddParticle("HE3","HE3",3*autogev+14.931e-3,kFALSE,
779 0,2,"Ion",kion+20030);
780 fPDGCode[fNPDGCodes++]=kion+20030; // 49 = HE3
781
782 pdgDB->AddParticle("Cherenkov","Cherenkov",0,kFALSE,
783 0,0,"Special",kspe+50);
784 fPDGCode[fNPDGCodes++]=kspe+50; // 50 = Cherenkov
785
786/* --- Define additional decay modes --- */
787/* --- omega(783) --- */
788 for (kz = 0; kz < 6; ++kz) {
789 bratio[kz] = 0.;
790 mode[kz] = 0;
791 }
792 ipa = 33;
793 bratio[0] = 89.;
794 bratio[1] = 8.5;
795 bratio[2] = 2.5;
796 mode[0] = 70809;
797 mode[1] = 107;
798 mode[2] = 908;
799 Gsdk(ipa, bratio, mode);
800/* --- phi(1020) --- */
801 for (kz = 0; kz < 6; ++kz) {
802 bratio[kz] = 0.;
803 mode[kz] = 0;
804 }
805 ipa = 34;
806 bratio[0] = 49.;
807 bratio[1] = 34.4;
808 bratio[2] = 12.9;
809 bratio[3] = 2.4;
810 bratio[4] = 1.3;
811 mode[0] = 1112;
812 mode[1] = 1610;
813 mode[2] = 4407;
814 mode[3] = 90807;
815 mode[4] = 1701;
816 Gsdk(ipa, bratio, mode);
817/* --- D+ --- */
818 for (kz = 0; kz < 6; ++kz) {
819 bratio[kz] = 0.;
820 mode[kz] = 0;
821 }
822 ipa = 35;
823 bratio[0] = 25.;
824 bratio[1] = 25.;
825 bratio[2] = 25.;
826 bratio[3] = 25.;
827 mode[0] = 80809;
828 mode[1] = 120808;
829 mode[2] = 111208;
830 mode[3] = 110809;
831 Gsdk(ipa, bratio, mode);
832/* --- D- --- */
833 for (kz = 0; kz < 6; ++kz) {
834 bratio[kz] = 0.;
835 mode[kz] = 0;
836 }
837 ipa = 36;
838 bratio[0] = 25.;
839 bratio[1] = 25.;
840 bratio[2] = 25.;
841 bratio[3] = 25.;
842 mode[0] = 90908;
843 mode[1] = 110909;
844 mode[2] = 121109;
845 mode[3] = 120908;
846 Gsdk(ipa, bratio, mode);
847/* --- D0 --- */
848 for (kz = 0; kz < 6; ++kz) {
849 bratio[kz] = 0.;
850 mode[kz] = 0;
851 }
852 ipa = 37;
853 bratio[0] = 33.;
854 bratio[1] = 33.;
855 bratio[2] = 33.;
856 mode[0] = 809;
857 mode[1] = 1208;
858 mode[2] = 1112;
859 Gsdk(ipa, bratio, mode);
860/* --- Anti D0 --- */
861 for (kz = 0; kz < 6; ++kz) {
862 bratio[kz] = 0.;
863 mode[kz] = 0;
864 }
865 ipa = 38;
866 bratio[0] = 33.;
867 bratio[1] = 33.;
868 bratio[2] = 33.;
869 mode[0] = 809;
870 mode[1] = 1109;
871 mode[2] = 1112;
872 Gsdk(ipa, bratio, mode);
873/* --- rho+ --- */
874 for (kz = 0; kz < 6; ++kz) {
875 bratio[kz] = 0.;
876 mode[kz] = 0;
877 }
878 ipa = 42;
879 bratio[0] = 100.;
880 mode[0] = 807;
881 Gsdk(ipa, bratio, mode);
882/* --- rho- --- */
883 for (kz = 0; kz < 6; ++kz) {
884 bratio[kz] = 0.;
885 mode[kz] = 0;
886 }
887 ipa = 43;
888 bratio[0] = 100.;
889 mode[0] = 907;
890 Gsdk(ipa, bratio, mode);
891/* --- rho0 --- */
892 for (kz = 0; kz < 6; ++kz) {
893 bratio[kz] = 0.;
894 mode[kz] = 0;
895 }
896 ipa = 44;
897 bratio[0] = 100.;
898 mode[0] = 707;
899 Gsdk(ipa, bratio, mode);
900 /*
901// --- jpsi ---
902 for (kz = 0; kz < 6; ++kz) {
903 bratio[kz] = 0.;
904 mode[kz] = 0;
905 }
906 ipa = 113;
907 bratio[0] = 50.;
908 bratio[1] = 50.;
909 mode[0] = 506;
910 mode[1] = 605;
911 Gsdk(ipa, bratio, mode);
912// --- upsilon ---
913 ipa = 114;
914 Gsdk(ipa, bratio, mode);
915// --- phi ---
916 ipa = 115;
917 Gsdk(ipa, bratio, mode);
918 */
919
920}
921
922//_____________________________________________________________________________
923Int_t TGeant3::VolId(Text_t *name) const
924{
925 //
926 // Return the unique numeric identifier for volume name
927 //
928 Int_t gname, i;
929 strncpy((char *) &gname, name, 4);
930 for(i=1; i<=fGcnum->nvolum; i++)
931 if(gname == fZiq[fGclink->jvolum+i]) return i;
932 printf("VolId: Volume %s not found\n",name);
933 return 0;
934}
935
936//_____________________________________________________________________________
937Int_t TGeant3::NofVolumes() const
938{
939 //
940 // Return total number of volumes in the geometry
941 //
942 return fGcnum->nvolum;
943}
944
945//_____________________________________________________________________________
946const char* TGeant3::VolName(Int_t id) const
947{
948 //
949 // Return the volume name given the volume identifier
950 //
951 static char name[5];
952 if(id<1 || id > fGcnum->nvolum || fGclink->jvolum<=0)
953 strcpy(name,"NULL");
954 else
955 strncpy(name,(char *)&fZiq[fGclink->jvolum+id],4);
956 name[4]='\0';
957 return name;
958}
959
960//_____________________________________________________________________________
961void TGeant3::TrackPosition(TLorentzVector &xyz) const
962{
963 //
964 // Return the current position in the master reference frame of the
965 // track being transported
966 //
967 xyz[0]=fGctrak->vect[0];
968 xyz[1]=fGctrak->vect[1];
969 xyz[2]=fGctrak->vect[2];
970 xyz[3]=fGctrak->tofg;
971}
972
973//_____________________________________________________________________________
974Float_t TGeant3::TrackTime() const
975{
976 //
977 // Return the current time of flight of the track being transported
978 //
979 return fGctrak->tofg;
980}
981
982//_____________________________________________________________________________
983void TGeant3::TrackMomentum(TLorentzVector &xyz) const
984{
985 //
986 // Return the direction and the momentum (GeV/c) of the track
987 // currently being transported
988 //
989 Double_t ptot=fGctrak->vect[6];
990 xyz[0]=fGctrak->vect[3]*ptot;
991 xyz[1]=fGctrak->vect[4]*ptot;
992 xyz[2]=fGctrak->vect[5]*ptot;
993 xyz[3]=fGctrak->getot;
994}
995
996//_____________________________________________________________________________
997Float_t TGeant3::TrackCharge() const
998{
999 //
1000 // Return charge of the track currently transported
1001 //
1002 return fGckine->charge;
1003}
1004
1005//_____________________________________________________________________________
1006Float_t TGeant3::TrackMass() const
1007{
1008 //
1009 // Return the mass of the track currently transported
1010 //
1011 return fGckine->amass;
1012}
1013
1014//_____________________________________________________________________________
1015Int_t TGeant3::TrackPid() const
1016{
1017 //
1018 // Return the id of the particle transported
1019 //
1020 return PDGFromId(fGckine->ipart);
1021}
1022
1023//_____________________________________________________________________________
1024Float_t TGeant3::TrackStep() const
1025{
1026 //
1027 // Return the length in centimeters of the current step
1028 //
1029 return fGctrak->step;
1030}
1031
1032//_____________________________________________________________________________
1033Float_t TGeant3::TrackLength() const
1034{
1035 //
1036 // Return the length of the current track from its origin
1037 //
1038 return fGctrak->sleng;
1039}
1040
1041//_____________________________________________________________________________
1042Bool_t TGeant3::IsTrackInside() const
1043{
1044 //
1045 // True if the track is not at the boundary of the current volume
1046 //
1047 return (fGctrak->inwvol==0);
1048}
1049
1050//_____________________________________________________________________________
1051Bool_t TGeant3::IsTrackEntering() const
1052{
1053 //
1054 // True if this is the first step of the track in the current volume
1055 //
1056 return (fGctrak->inwvol==1);
1057}
1058
1059//_____________________________________________________________________________
1060Bool_t TGeant3::IsTrackExiting() const
1061{
1062 //
1063 // True if this is the last step of the track in the current volume
1064 //
1065 return (fGctrak->inwvol==2);
1066}
1067
1068//_____________________________________________________________________________
1069Bool_t TGeant3::IsTrackOut() const
1070{
1071 //
1072 // True if the track is out of the setup
1073 //
1074 return (fGctrak->inwvol==3);
1075}
1076
1077//_____________________________________________________________________________
1078Bool_t TGeant3::IsTrackStop() const
1079{
1080 //
1081 // True if the track energy has fallen below the threshold
1082 //
1083 return (fGctrak->istop==2);
1084}
1085
1086//_____________________________________________________________________________
1087Int_t TGeant3::NSecondaries() const
1088{
1089 //
1090 // Number of secondary particles generated in the current step
1091 //
1092 return fGcking->ngkine;
1093}
1094
1095//_____________________________________________________________________________
1096Int_t TGeant3::CurrentEvent() const
1097{
1098 //
1099 // Number of the current event
1100 //
1101 return fGcflag->idevt;
1102}
1103
1104//_____________________________________________________________________________
1105void TGeant3::ProdProcess(char* proc) const
1106{
1107 //
1108 // Name of the process that has produced the secondary particles
1109 // in the current step
1110 //
1111 const Int_t ipmec[13] = { 5,6,7,8,9,10,11,12,21,23,25,105,108 };
1112 Int_t mec, km, im;
1113 //
1114 if(fGcking->ngkine>0) {
1115 for (km = 0; km < fGctrak->nmec; ++km) {
1116 for (im = 0; im < 13; ++im) {
1117 if (fGctrak->lmec[km] == ipmec[im]) {
1118 mec = fGctrak->lmec[km];
1119 if (0 < mec && mec < 31) {
1120 strncpy(proc,(char *)&fGctrak->namec[mec - 1],4);
1121 } else if (mec - 100 <= 30 && mec - 100 > 0) {
1122 strncpy(proc,(char *)&fGctpol->namec1[mec - 101],4);
1123 }
1124 proc[4]='\0';
1125 return;
1126 }
1127 }
1128 }
1129 strcpy(proc,"UNKN");
1130 } else strcpy(proc,"NONE");
1131}
1132
1133//_____________________________________________________________________________
1134void TGeant3::GetSecondary(Int_t isec, Int_t& ipart, Float_t* x, Float_t* p)
1135{
1136 //
1137 // Get the parameters of the secondary track number isec produced
1138 // in the current step
1139 //
1140 Int_t i;
1141 if(-1<isec && isec<fGcking->ngkine) {
1142 ipart=Int_t (fGcking->gkin[isec][4] +0.5);
1143 for(i=0;i<3;i++) {
1144 x[i]=fGckin3->gpos[isec][i];
1145 p[i]=fGcking->gkin[isec][i];
1146 }
1147 x[3]=fGcking->tofd[isec];
1148 p[3]=fGcking->gkin[isec][3];
1149 } else {
1150 printf(" * TGeant3::GetSecondary * Secondary %d does not exist\n",isec);
1151 x[0]=x[1]=x[2]=x[3]=p[0]=p[1]=p[2]=p[3]=0;
1152 ipart=0;
1153 }
1154}
1155
1156//_____________________________________________________________________________
1157void TGeant3::InitLego()
1158{
1159 SetSWIT(4,0);
1160 SetDEBU(0,0,0); //do not print a message
1161}
1162
1163//_____________________________________________________________________________
1164Bool_t TGeant3::IsTrackDisappeared() const
1165{
1166 //
1167 // True if the current particle has disappered
1168 // either because it decayed or because it underwent
1169 // an inelastic collision
1170 //
1171 return (fGctrak->istop==1);
1172}
1173
1174//_____________________________________________________________________________
1175Bool_t TGeant3::IsTrackAlive() const
1176{
1177 //
1178 // True if the current particle is alive and will continue to be
1179 // transported
1180 //
1181 return (fGctrak->istop==0);
1182}
1183
1184//_____________________________________________________________________________
1185void TGeant3::StopTrack()
1186{
1187 //
1188 // Stop the transport of the current particle and skip to the next
1189 //
1190 fGctrak->istop=1;
1191}
1192
1193//_____________________________________________________________________________
1194void TGeant3::StopEvent()
1195{
1196 //
1197 // Stop simulation of the current event and skip to the next
1198 //
1199 fGcflag->ieotri=1;
1200}
1201
1202//_____________________________________________________________________________
1203Float_t TGeant3::MaxStep() const
1204{
1205 //
1206 // Return the maximum step length in the current medium
1207 //
1208 return fGctmed->stemax;
1209}
1210
1211//_____________________________________________________________________________
1212void TGeant3::SetColors()
1213{
1214 //
1215 // Set the colors for all the volumes
1216 // this is done sequentially for all volumes
1217 // based on the number of their medium
1218 //
1219 Int_t kv, icol;
1220 Int_t jvolum=fGclink->jvolum;
1221 //Int_t jtmed=fGclink->jtmed;
1222 //Int_t jmate=fGclink->jmate;
1223 Int_t nvolum=fGcnum->nvolum;
1224 char name[5];
1225 //
1226 // Now for all the volumes
1227 for(kv=1;kv<=nvolum;kv++) {
1228 // Get the tracking medium
1229 Int_t itm=Int_t (fZq[fZlq[jvolum-kv]+4]);
1230 // Get the material
1231 //Int_t ima=Int_t (fZq[fZlq[jtmed-itm]+6]);
1232 // Get z
1233 //Float_t z=fZq[fZlq[jmate-ima]+7];
1234 // Find color number
1235 //icol = Int_t(z)%6+2;
1236 //icol = 17+Int_t(z*150./92.);
1237 //icol = kv%6+2;
1238 icol = itm%6+2;
1239 strncpy(name,(char*)&fZiq[jvolum+kv],4);
1240 name[4]='\0';
1241 Gsatt(name,"COLO",icol);
1242 }
1243}
1244
1245//_____________________________________________________________________________
1246void TGeant3::SetMaxStep(Float_t maxstep)
1247{
1248 //
1249 // Set the maximum step allowed till the particle is in the current medium
1250 //
1251 fGctmed->stemax=maxstep;
1252}
1253
1254//_____________________________________________________________________________
1255void TGeant3::SetMaxNStep(Int_t maxnstp)
1256{
1257 //
1258 // Set the maximum number of steps till the particle is in the current medium
1259 //
1260 fGctrak->maxnst=maxnstp;
1261}
1262
1263//_____________________________________________________________________________
1264Int_t TGeant3::GetMaxNStep() const
1265{
1266 //
1267 // Maximum number of steps allowed in current medium
1268 //
1269 return fGctrak->maxnst;
1270}
1271
1272//_____________________________________________________________________________
1273void TGeant3::Material(Int_t& kmat, const char* name, Float_t a, Float_t z,
1274 Float_t dens, Float_t radl, Float_t absl, Float_t* buf,
1275 Int_t nwbuf)
1276{
1277 //
1278 // Defines a Material
1279 //
1280 // kmat number assigned to the material
1281 // name material name
1282 // a atomic mass in au
1283 // z atomic number
1284 // dens density in g/cm3
1285 // absl absorbtion length in cm
1286 // if >=0 it is ignored and the program
1287 // calculates it, if <0. -absl is taken
1288 // radl radiation length in cm
1289 // if >=0 it is ignored and the program
1290 // calculates it, if <0. -radl is taken
1291 // buf pointer to an array of user words
1292 // nbuf number of user words
1293 //
1294 Int_t jmate=fGclink->jmate;
1295 kmat=1;
1296 Int_t ns, i;
1297 if(jmate>0) {
1298 ns=fZiq[jmate-2];
1299 kmat=ns+1;
1300 for(i=1; i<=ns; i++) {
1301 if(fZlq[jmate-i]==0) {
1302 kmat=i;
1303 break;
1304 }
1305 }
1306 }
1307 gsmate(kmat,PASSCHARD(name), a, z, dens, radl, absl, buf,
1308 nwbuf PASSCHARL(name));
1309}
1310
1311//_____________________________________________________________________________
1312void TGeant3::Mixture(Int_t& kmat, const char* name, Float_t* a, Float_t* z,
1313 Float_t dens, Int_t nlmat, Float_t* wmat)
1314{
1315 //
1316 // Defines mixture OR COMPOUND IMAT as composed by
1317 // THE BASIC NLMAT materials defined by arrays A,Z and WMAT
1318 //
1319 // If NLMAT > 0 then wmat contains the proportion by
1320 // weights of each basic material in the mixture.
1321 //
1322 // If nlmat < 0 then WMAT contains the number of atoms
1323 // of a given kind into the molecule of the COMPOUND
1324 // In this case, WMAT in output is changed to relative
1325 // weigths.
1326 //
1327 Int_t jmate=fGclink->jmate;
1328 kmat=1;
1329 Int_t ns, i;
1330 if(jmate>0) {
1331 ns=fZiq[jmate-2];
1332 kmat=ns+1;
1333 for(i=1; i<=ns; i++) {
1334 if(fZlq[jmate-i]==0) {
1335 kmat=i;
1336 break;
1337 }
1338 }
1339 }
1340 gsmixt(kmat,PASSCHARD(name), a, z,dens, nlmat,wmat PASSCHARL(name));
1341}
1342
1343//_____________________________________________________________________________
1344void TGeant3::Medium(Int_t& kmed, const char* name, Int_t nmat, Int_t isvol,
1345 Int_t ifield, Float_t fieldm, Float_t tmaxfd,
1346 Float_t stemax, Float_t deemax, Float_t epsil,
1347 Float_t stmin, Float_t* ubuf, Int_t nbuf)
1348{
1349 //
1350 // kmed tracking medium number assigned
1351 // name tracking medium name
1352 // nmat material number
1353 // isvol sensitive volume flag
1354 // ifield magnetic field
1355 // fieldm max. field value (kilogauss)
1356 // tmaxfd max. angle due to field (deg/step)
1357 // stemax max. step allowed
1358 // deemax max. fraction of energy lost in a step
1359 // epsil tracking precision (cm)
1360 // stmin min. step due to continuos processes (cm)
1361 //
1362 // ifield = 0 if no magnetic field; ifield = -1 if user decision in guswim;
1363 // ifield = 1 if tracking performed with grkuta; ifield = 2 if tracking
1364 // performed with ghelix; ifield = 3 if tracking performed with ghelx3.
1365 //
1366 Int_t jtmed=fGclink->jtmed;
1367 kmed=1;
1368 Int_t ns, i;
1369 if(jtmed>0) {
1370 ns=fZiq[jtmed-2];
1371 kmed=ns+1;
1372 for(i=1; i<=ns; i++) {
1373 if(fZlq[jtmed-i]==0) {
1374 kmed=i;
1375 break;
1376 }
1377 }
1378 }
1379 gstmed(kmed, PASSCHARD(name), nmat, isvol, ifield, fieldm, tmaxfd, stemax,
1380 deemax, epsil, stmin, ubuf, nbuf PASSCHARL(name));
1381}
1382
1383//_____________________________________________________________________________
1384void TGeant3::Matrix(Int_t& krot, Float_t thex, Float_t phix, Float_t they,
1385 Float_t phiy, Float_t thez, Float_t phiz)
1386{
1387 //
1388 // krot rotation matrix number assigned
1389 // theta1 polar angle for axis i
1390 // phi1 azimuthal angle for axis i
1391 // theta2 polar angle for axis ii
1392 // phi2 azimuthal angle for axis ii
1393 // theta3 polar angle for axis iii
1394 // phi3 azimuthal angle for axis iii
1395 //
1396 // it defines the rotation matrix number irot.
1397 //
1398 Int_t jrotm=fGclink->jrotm;
1399 krot=1;
1400 Int_t ns, i;
1401 if(jrotm>0) {
1402 ns=fZiq[jrotm-2];
1403 krot=ns+1;
1404 for(i=1; i<=ns; i++) {
1405 if(fZlq[jrotm-i]==0) {
1406 krot=i;
1407 break;
1408 }
1409 }
1410 }
1411 gsrotm(krot, thex, phix, they, phiy, thez, phiz);
1412}
1413
1414//_____________________________________________________________________________
1415Int_t TGeant3::GetMedium() const
1416{
1417 //
1418 // Return the number of the current medium
1419 //
1420 return fGctmed->numed;
1421}
1422
1423//_____________________________________________________________________________
1424Float_t TGeant3::Edep() const
1425{
1426 //
1427 // Return the energy lost in the current step
1428 //
1429 return fGctrak->destep;
1430}
1431
1432//_____________________________________________________________________________
1433Float_t TGeant3::Etot() const
1434{
1435 //
1436 // Return the total energy of the current track
1437 //
1438 return fGctrak->getot;
1439}
1440
1441//_____________________________________________________________________________
1442void TGeant3::Rndm(Float_t* r, const Int_t n) const
1443{
1444 //
1445 // Return an array of n random numbers uniformly distributed
1446 // between 0 and 1 not included
1447 //
1448 Grndm(r,n);
1449}
1450
1451//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
1452//
1453// Functions from GBASE
1454//
1455//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
1456
1457//____________________________________________________________________________
1458void TGeant3::Gfile(const char *filename, const char *option)
1459{
1460 //
1461 // Routine to open a GEANT/RZ data base.
1462 //
1463 // LUN logical unit number associated to the file
1464 //
1465 // CHFILE RZ file name
1466 //
1467 // CHOPT is a character string which may be
1468 // N To create a new file
1469 // U to open an existing file for update
1470 // " " to open an existing file for read only
1471 // Q The initial allocation (default 1000 records)
1472 // is given in IQUEST(10)
1473 // X Open the file in exchange format
1474 // I Read all data structures from file to memory
1475 // O Write all data structures from memory to file
1476 //
1477 // Note:
1478 // If options "I" or "O" all data structures are read or
1479 // written from/to file and the file is closed.
1480 // See routine GRMDIR to create subdirectories
1481 // See routines GROUT,GRIN to write,read objects
1482 //
1483 grfile(21, PASSCHARD(filename), PASSCHARD(option) PASSCHARL(filename)
1484 PASSCHARL(option));
1485}
1486
1487//____________________________________________________________________________
1488void TGeant3::Gpcxyz()
1489{
1490 //
1491 // Print track and volume parameters at current point
1492 //
1493 gpcxyz();
1494}
1495
1496//_____________________________________________________________________________
1497void TGeant3::Ggclos()
1498{
1499 //
1500 // Closes off the geometry setting.
1501 // Initializes the search list for the contents of each
1502 // volume following the order they have been positioned, and
1503 // inserting the content '0' when a call to GSNEXT (-1) has
1504 // been required by the user.
1505 // Performs the development of the JVOLUM structure for all
1506 // volumes with variable parameters, by calling GGDVLP.
1507 // Interprets the user calls to GSORD, through GGORD.
1508 // Computes and stores in a bank (next to JVOLUM mother bank)
1509 // the number of levels in the geometrical tree and the
1510 // maximum number of contents per level, by calling GGNLEV.
1511 // Sets status bit for CONCAVE volumes, through GGCAVE.
1512 // Completes the JSET structure with the list of volume names
1513 // which identify uniquely a given physical detector, the
1514 // list of bit numbers to pack the corresponding volume copy
1515 // numbers, and the generic path(s) in the JVOLUM tree,
1516 // through the routine GHCLOS.
1517 //
1518 ggclos();
1519}
1520
1521//_____________________________________________________________________________
1522void TGeant3::Glast()
1523{
1524 //
1525 // Finish a Geant run
1526 //
1527 glast();
1528}
1529
1530//_____________________________________________________________________________
1531void TGeant3::Gprint(const char *name)
1532{
1533 //
1534 // Routine to print data structures
1535 // CHNAME name of a data structure
1536 //
1537 char vname[5];
1538 Vname(name,vname);
1539 gprint(PASSCHARD(vname),0 PASSCHARL(vname));
1540}
1541
1542//_____________________________________________________________________________
1543void TGeant3::Grun()
1544{
1545 //
1546 // Steering function to process one run
1547 //
1548 grun();
1549}
1550
1551//_____________________________________________________________________________
1552void TGeant3::Gtrig()
1553{
1554 //
1555 // Steering function to process one event
1556 //
1557 gtrig();
1558}
1559
1560//_____________________________________________________________________________
1561void TGeant3::Gtrigc()
1562{
1563 //
1564 // Clear event partition
1565 //
1566 gtrigc();
1567}
1568
1569//_____________________________________________________________________________
1570void TGeant3::Gtrigi()
1571{
1572 //
1573 // Initialises event partition
1574 //
1575 gtrigi();
1576}
1577
1578//_____________________________________________________________________________
1579void TGeant3::Gwork(Int_t nwork)
1580{
1581 //
1582 // Allocates workspace in ZEBRA memory
1583 //
1584 gwork(nwork);
1585}
1586
1587//_____________________________________________________________________________
1588void TGeant3::Gzinit()
1589{
1590 //
1591 // To initialise GEANT/ZEBRA data structures
1592 //
1593 gzinit();
1594}
1595
1596//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
1597//
1598// Functions from GCONS
1599//
1600//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
1601
1602//_____________________________________________________________________________
1603void TGeant3::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z,
1604 Float_t &dens, Float_t &radl, Float_t &absl,
1605 Float_t* ubuf, Int_t& nbuf)
1606{
1607 //
1608 // Return parameters for material IMAT
1609 //
1610 gfmate(imat, PASSCHARD(name), a, z, dens, radl, absl, ubuf, nbuf
1611 PASSCHARL(name));
1612}
1613
1614//_____________________________________________________________________________
1615void TGeant3::Gfpart(Int_t ipart, char *name, Int_t &itrtyp,
1616 Float_t &amass, Float_t &charge, Float_t &tlife)
1617{
1618 //
1619 // Return parameters for particle of type IPART
1620 //
1621 Float_t *ubuf=0;
1622 Int_t nbuf;
1623 Int_t igpart = IdFromPDG(ipart);
1624 gfpart(igpart, PASSCHARD(name), itrtyp, amass, charge, tlife, ubuf, nbuf
1625 PASSCHARL(name));
1626}
1627
1628//_____________________________________________________________________________
1629void TGeant3::Gftmed(Int_t numed, char *name, Int_t &nmat, Int_t &isvol,
1630 Int_t &ifield, Float_t &fieldm, Float_t &tmaxfd,
1631 Float_t &stemax, Float_t &deemax, Float_t &epsil,
1632 Float_t &stmin, Float_t *ubuf, Int_t *nbuf)
1633{
1634 //
1635 // Return parameters for tracking medium NUMED
1636 //
1637 gftmed(numed, PASSCHARD(name), nmat, isvol, ifield, fieldm, tmaxfd, stemax,
1638 deemax, epsil, stmin, ubuf, nbuf PASSCHARL(name));
1639}
1640
1641//_____________________________________________________________________________
1642void TGeant3::Gmate()
1643{
1644 //
1645 // Define standard GEANT materials
1646 //
1647 gmate();
1648}
1649
1650//_____________________________________________________________________________
1651void TGeant3::Gpart()
1652{
1653 //
1654 // Define standard GEANT particles plus selected decay modes
1655 // and branching ratios.
1656 //
1657 gpart();
1658}
1659
1660//_____________________________________________________________________________
1661void TGeant3::Gsdk(Int_t ipart, Float_t *bratio, Int_t *mode)
1662{
1663// Defines branching ratios and decay modes for standard
1664// GEANT particles.
1665 gsdk(ipart,bratio,mode);
1666}
1667
1668//_____________________________________________________________________________
1669void TGeant3::Gsmate(Int_t imat, const char *name, Float_t a, Float_t z,
1670 Float_t dens, Float_t radl, Float_t absl)
1671{
1672 //
1673 // Defines a Material
1674 //
1675 // kmat number assigned to the material
1676 // name material name
1677 // a atomic mass in au
1678 // z atomic number
1679 // dens density in g/cm3
1680 // absl absorbtion length in cm
1681 // if >=0 it is ignored and the program
1682 // calculates it, if <0. -absl is taken
1683 // radl radiation length in cm
1684 // if >=0 it is ignored and the program
1685 // calculates it, if <0. -radl is taken
1686 // buf pointer to an array of user words
1687 // nbuf number of user words
1688 //
1689 Float_t *ubuf=0;
1690 Int_t nbuf=0;
1691 gsmate(imat,PASSCHARD(name), a, z, dens, radl, absl, ubuf, nbuf
1692 PASSCHARL(name));
1693}
1694
1695//_____________________________________________________________________________
1696void TGeant3::Gsmixt(Int_t imat, const char *name, Float_t *a, Float_t *z,
1697 Float_t dens, Int_t nlmat, Float_t *wmat)
1698{
1699 //
1700 // Defines mixture OR COMPOUND IMAT as composed by
1701 // THE BASIC NLMAT materials defined by arrays A,Z and WMAT
1702 //
1703 // If NLMAT.GT.0 then WMAT contains the PROPORTION BY
1704 // WEIGTHS OF EACH BASIC MATERIAL IN THE MIXTURE.
1705 //
1706 // If NLMAT.LT.0 then WMAT contains the number of atoms
1707 // of a given kind into the molecule of the COMPOUND
1708 // In this case, WMAT in output is changed to relative
1709 // weigths.
1710 //
1711 gsmixt(imat,PASSCHARD(name), a, z,dens, nlmat,wmat PASSCHARL(name));
1712}
1713
1714//_____________________________________________________________________________
1715void TGeant3::Gspart(Int_t ipart, const char *name, Int_t itrtyp,
1716 Float_t amass, Float_t charge, Float_t tlife)
1717{
1718 //
1719 // Store particle parameters
1720 //
1721 // ipart particle code
1722 // name particle name
1723 // itrtyp transport method (see GEANT manual)
1724 // amass mass in GeV/c2
1725 // charge charge in electron units
1726 // tlife lifetime in seconds
1727 //
1728 Float_t *ubuf=0;
1729 Int_t nbuf=0;
1730 gspart(ipart,PASSCHARD(name), itrtyp, amass, charge, tlife, ubuf, nbuf
1731 PASSCHARL(name));
1732}
1733
1734//_____________________________________________________________________________
1735void TGeant3::Gstmed(Int_t numed, const char *name, Int_t nmat, Int_t isvol,
1736 Int_t ifield, Float_t fieldm, Float_t tmaxfd,
1737 Float_t stemax, Float_t deemax, Float_t epsil,
1738 Float_t stmin)
1739{
1740 //
1741 // NTMED Tracking medium number
1742 // NAME Tracking medium name
1743 // NMAT Material number
1744 // ISVOL Sensitive volume flag
1745 // IFIELD Magnetic field
1746 // FIELDM Max. field value (Kilogauss)
1747 // TMAXFD Max. angle due to field (deg/step)
1748 // STEMAX Max. step allowed
1749 // DEEMAX Max. fraction of energy lost in a step
1750 // EPSIL Tracking precision (cm)
1751 // STMIN Min. step due to continuos processes (cm)
1752 //
1753 // IFIELD = 0 if no magnetic field; IFIELD = -1 if user decision in GUSWIM;
1754 // IFIELD = 1 if tracking performed with GRKUTA; IFIELD = 2 if tracking
1755 // performed with GHELIX; IFIELD = 3 if tracking performed with GHELX3.
1756 //
1757 Float_t *ubuf=0;
1758 Int_t nbuf=0;
1759 gstmed(numed,PASSCHARD(name), nmat, isvol, ifield, fieldm, tmaxfd, stemax,
1760 deemax, epsil, stmin, ubuf, nbuf PASSCHARL(name));
1761}
1762
1763//_____________________________________________________________________________
1764void TGeant3::Gsckov(Int_t itmed, Int_t npckov, Float_t *ppckov,
1765 Float_t *absco, Float_t *effic, Float_t *rindex)
1766{
1767 //
1768 // Stores the tables for UV photon tracking in medium ITMED
1769 // Please note that it is the user's responsability to
1770 // provide all the coefficients:
1771 //
1772 //
1773 // ITMED Tracking medium number
1774 // NPCKOV Number of bins of each table
1775 // PPCKOV Value of photon momentum (in GeV)
1776 // ABSCO Absorbtion coefficients
1777 // dielectric: absorbtion length in cm
1778 // metals : absorbtion fraction (0<=x<=1)
1779 // EFFIC Detection efficiency for UV photons
1780 // RINDEX Refraction index (if=0 metal)
1781 //
1782 gsckov(itmed,npckov,ppckov,absco,effic,rindex);
1783}
1784
1785//_____________________________________________________________________________
1786void TGeant3::Gstpar(Int_t itmed, const char *param, Float_t parval)
1787{
1788 //
1789 // To change the value of cut or mechanism "CHPAR"
1790 // to a new value PARVAL for tracking medium ITMED
1791 // The data structure JTMED contains the standard tracking
1792 // parameters (CUTS and flags to control the physics processes) which
1793 // are used by default for all tracking media. It is possible to
1794 // redefine individually with GSTPAR any of these parameters for a
1795 // given tracking medium.
1796 // ITMED tracking medium number
1797 // CHPAR is a character string (variable name)
1798 // PARVAL must be given as a floating point.
1799 //
1800 gstpar(itmed,PASSCHARD(param), parval PASSCHARL(param));
1801}
1802
1803//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
1804//
1805// Functions from GCONS
1806//
1807//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
1808
1809//_____________________________________________________________________________
1810void TGeant3::Gfkine(Int_t itra, Float_t *vert, Float_t *pvert, Int_t &ipart,
1811 Int_t &nvert)
1812{
1813 // Storing/Retrieving Vertex and Track parameters
1814 // ----------------------------------------------
1815 //
1816 // Stores vertex parameters.
1817 // VERT array of (x,y,z) position of the vertex
1818 // NTBEAM beam track number origin of the vertex
1819 // =0 if none exists
1820 // NTTARG target track number origin of the vertex
1821 // UBUF user array of NUBUF floating point numbers
1822 // NUBUF
1823 // NVTX new vertex number (=0 in case of error).
1824 // Prints vertex parameters.
1825 // IVTX for vertex IVTX.
1826 // (For all vertices if IVTX=0)
1827 // Stores long life track parameters.
1828 // PLAB components of momentum
1829 // IPART type of particle (see GSPART)
1830 // NV vertex number origin of track
1831 // UBUF array of NUBUF floating point user parameters
1832 // NUBUF
1833 // NT track number (if=0 error).
1834 // Retrieves long life track parameters.
1835 // ITRA track number for which parameters are requested
1836 // VERT vector origin of the track
1837 // PVERT 4 momentum components at the track origin
1838 // IPART particle type (=0 if track ITRA does not exist)
1839 // NVERT vertex number origin of the track
1840 // UBUF user words stored in GSKINE.
1841 // Prints initial track parameters.
1842 // ITRA for track ITRA
1843 // (For all tracks if ITRA=0)
1844 //
1845 Float_t *ubuf=0;
1846 Int_t nbuf;
1847 gfkine(itra,vert,pvert,ipart,nvert,ubuf,nbuf);
1848}
1849
1850//_____________________________________________________________________________
1851void TGeant3::Gfvert(Int_t nvtx, Float_t *v, Int_t &ntbeam, Int_t &nttarg,
1852 Float_t &tofg)
1853{
1854 //
1855 // Retrieves the parameter of a vertex bank
1856 // Vertex is generated from tracks NTBEAM NTTARG
1857 // NVTX is the new vertex number
1858 //
1859 Float_t *ubuf=0;
1860 Int_t nbuf;
1861 gfvert(nvtx,v,ntbeam,nttarg,tofg,ubuf,nbuf);
1862}
1863
1864//_____________________________________________________________________________
1865Int_t TGeant3::Gskine(Float_t *plab, Int_t ipart, Int_t nv, Float_t *buf,
1866 Int_t nwbuf)
1867{
1868 //
1869 // Store kinematics of track NT into data structure
1870 // Track is coming from vertex NV
1871 //
1872 Int_t nt = 0;
1873 gskine(plab, ipart, nv, buf, nwbuf, nt);
1874 return nt;
1875}
1876
1877//_____________________________________________________________________________
1878Int_t TGeant3::Gsvert(Float_t *v, Int_t ntbeam, Int_t nttarg, Float_t *ubuf,
1879 Int_t nwbuf)
1880{
1881 //
1882 // Creates a new vertex bank
1883 // Vertex is generated from tracks NTBEAM NTTARG
1884 // NVTX is the new vertex number
1885 //
1886 Int_t nwtx = 0;
1887 gsvert(v, ntbeam, nttarg, ubuf, nwbuf, nwtx);
1888 return nwtx;
1889}
1890
1891//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
1892//
1893// Functions from GPHYS
1894//
1895//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
1896
1897//_____________________________________________________________________________
1898void TGeant3::Gphysi()
1899{
1900 //
1901 // Initialise material constants for all the physics
1902 // mechanisms used by GEANT
1903 //
1904 gphysi();
1905}
1906
1907//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
1908//
1909// Functions from GTRAK
1910//
1911//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
1912
1913//_____________________________________________________________________________
1914void TGeant3::Gdebug()
1915{
1916 //
1917 // Debug the current step
1918 //
1919 gdebug();
1920}
1921
1922//_____________________________________________________________________________
1923void TGeant3::Gekbin()
1924{
1925 //
1926 // To find bin number in kinetic energy table
1927 // stored in ELOW(NEKBIN)
1928 //
1929 gekbin();
1930}
1931
1932//_____________________________________________________________________________
1933void TGeant3::Gfinds()
1934{
1935 //
1936 // Returns the set/volume parameters corresponding to
1937 // the current space point in /GCTRAK/
1938 // and fill common /GCSETS/
1939 //
1940 // IHSET user set identifier
1941 // IHDET user detector identifier
1942 // ISET set number in JSET
1943 // IDET detector number in JS=LQ(JSET-ISET)
1944 // IDTYPE detector type (1,2)
1945 // NUMBV detector volume numbers (array of length NVNAME)
1946 // NVNAME number of volume levels
1947 //
1948 gfinds();
1949}
1950
1951//_____________________________________________________________________________
1952void TGeant3::Gsking(Int_t igk)
1953{
1954 //
1955 // Stores in stack JSTAK either the IGKth track of /GCKING/,
1956 // or the NGKINE tracks when IGK is 0.
1957 //
1958 gsking(igk);
1959}
1960
1961//_____________________________________________________________________________
1962void TGeant3::Gskpho(Int_t igk)
1963{
1964 //
1965 // Stores in stack JSTAK either the IGKth Cherenkov photon of
1966 // /GCKIN2/, or the NPHOT tracks when IGK is 0.
1967 //
1968 gskpho(igk);
1969}
1970
1971//_____________________________________________________________________________
1972void TGeant3::Gsstak(Int_t iflag)
1973{
1974 //
1975 // Stores in auxiliary stack JSTAK the particle currently
1976 // described in common /GCKINE/.
1977 //
1978 // On request, creates also an entry in structure JKINE :
1979 // IFLAG =
1980 // 0 : No entry in JKINE structure required (user)
1981 // 1 : New entry in JVERTX / JKINE structures required (user)
1982 // <0 : New entry in JKINE structure at vertex -IFLAG (user)
1983 // 2 : Entry in JKINE structure exists already (from GTREVE)
1984 //
1985 gsstak(iflag);
1986}
1987
1988//_____________________________________________________________________________
1989void TGeant3::Gsxyz()
1990{
1991 //
1992 // Store space point VECT in banks JXYZ
1993 //
1994 gsxyz();
1995}
1996
1997//_____________________________________________________________________________
1998void TGeant3::Gtrack()
1999{
2000 //
2001 // Controls tracking of current particle
2002 //
2003 gtrack();
2004}
2005
2006//_____________________________________________________________________________
2007void TGeant3::Gtreve()
2008{
2009 //
2010 // Controls tracking of all particles belonging to the current event
2011 //
2012 gtreve();
2013}
2014
2015//_____________________________________________________________________________
2016void TGeant3::Gtreve_root()
2017{
2018 //
2019 // Controls tracking of all particles belonging to the current event
2020 //
2021 gtreve_root();
2022}
2023
2024//_____________________________________________________________________________
2025void TGeant3::Grndm(Float_t *rvec, const Int_t len) const
2026{
2027 //
2028 // To generate a vector RVECV of LEN random numbers
2029 // Copy of the CERN Library routine RANECU
2030 grndm(rvec,len);
2031}
2032
2033//_____________________________________________________________________________
2034void TGeant3::Grndmq(Int_t &is1, Int_t &is2, const Int_t iseq,
2035 const Text_t *chopt)
2036{
2037 //
2038 // To set/retrieve the seed of the random number generator
2039 //
2040 grndmq(is1,is2,iseq,PASSCHARD(chopt) PASSCHARL(chopt));
2041}
2042
2043//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
2044//
2045// Functions from GDRAW
2046//
2047//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
2048
2049//_____________________________________________________________________________
2050void TGeant3::Gdxyz(Int_t it)
2051{
2052 //
2053 // Draw the points stored with Gsxyz relative to track it
2054 //
2055 gdxyz(it);
2056}
2057
2058//_____________________________________________________________________________
2059void TGeant3::Gdcxyz()
2060{
2061 //
2062 // Draw the position of the current track
2063 //
2064 gdcxyz();
2065}
2066
2067//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
2068//
2069// Functions from GGEOM
2070//
2071//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
2072
2073//_____________________________________________________________________________
2074void TGeant3::Gdtom(Float_t *xd, Float_t *xm, Int_t iflag)
2075{
2076 //
2077 // Computes coordinates XM (Master Reference System
2078 // knowing the coordinates XD (Detector Ref System)
2079 // The local reference system can be initialized by
2080 // - the tracking routines and GDTOM used in GUSTEP
2081 // - a call to GSCMED(NLEVEL,NAMES,NUMBER)
2082 // (inverse routine is GMTOD)
2083 //
2084 // If IFLAG=1 convert coordinates
2085 // IFLAG=2 convert direction cosinus
2086 //
2087 gdtom(xd, xm, iflag);
2088}
2089
2090//_____________________________________________________________________________
2091void TGeant3::Glmoth(const char* iudet, Int_t iunum, Int_t &nlev, Int_t *lvols,
2092 Int_t *lindx)
2093{
2094 //
2095 // Loads the top part of the Volume tree in LVOLS (IVO's),
2096 // LINDX (IN indices) for a given volume defined through
2097 // its name IUDET and number IUNUM.
2098 //
2099 // The routine stores only upto the last level where JVOLUM
2100 // data structure is developed. If there is no development
2101 // above the current level, it returns NLEV zero.
2102 Int_t *idum=0;
2103 glmoth(PASSCHARD(iudet), iunum, nlev, lvols, lindx, idum PASSCHARL(iudet));
2104}
2105
2106//_____________________________________________________________________________
2107void TGeant3::Gmedia(Float_t *x, Int_t &numed)
2108{
2109 //
2110 // Finds in which volume/medium the point X is, and updates the
2111 // common /GCVOLU/ and the structure JGPAR accordingly.
2112 //
2113 // NUMED returns the tracking medium number, or 0 if point is
2114 // outside the experimental setup.
2115 //
2116 gmedia(x,numed);
2117}
2118
2119//_____________________________________________________________________________
2120void TGeant3::Gmtod(Float_t *xm, Float_t *xd, Int_t iflag)
2121{
2122 //
2123 // Computes coordinates XD (in DRS)
2124 // from known coordinates XM in MRS
2125 // The local reference system can be initialized by
2126 // - the tracking routines and GMTOD used in GUSTEP
2127 // - a call to GMEDIA(XM,NUMED)
2128 // - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
2129 // (inverse routine is GDTOM)
2130 //
2131 // If IFLAG=1 convert coordinates
2132 // IFLAG=2 convert direction cosinus
2133 //
2134 gmtod(xm, xd, iflag);
2135}
2136
2137//_____________________________________________________________________________
2138void TGeant3::Gsdvn(const char *name, const char *mother, Int_t ndiv,
2139 Int_t iaxis)
2140{
2141 //
2142 // Create a new volume by dividing an existing one
2143 //
2144 // NAME Volume name
2145 // MOTHER Mother volume name
2146 // NDIV Number of divisions
2147 // IAXIS Axis value
2148 //
2149 // X,Y,Z of CAXIS will be translated to 1,2,3 for IAXIS.
2150 // It divides a previously defined volume.
2151 //
2152 char vname[5];
2153 Vname(name,vname);
2154 char vmother[5];
2155 Vname(mother,vmother);
2156 gsdvn(PASSCHARD(vname), PASSCHARD(vmother), ndiv, iaxis PASSCHARL(vname)
2157 PASSCHARL(vmother));
2158}
2159
2160//_____________________________________________________________________________
2161void TGeant3::Gsdvn2(const char *name, const char *mother, Int_t ndiv,
2162 Int_t iaxis, Float_t c0i, Int_t numed)
2163{
2164 //
2165 // Create a new volume by dividing an existing one
2166 //
2167 // Divides mother into ndiv divisions called name
2168 // along axis iaxis starting at coordinate value c0.
2169 // the new volume created will be medium number numed.
2170 //
2171 char vname[5];
2172 Vname(name,vname);
2173 char vmother[5];
2174 Vname(mother,vmother);
2175 gsdvn2(PASSCHARD(vname), PASSCHARD(vmother), ndiv, iaxis, c0i, numed
2176 PASSCHARL(vname) PASSCHARL(vmother));
2177}
2178
2179//_____________________________________________________________________________
2180void TGeant3::Gsdvs(const char *name, const char *mother, Float_t step,
2181 Int_t iaxis, Int_t numed)
2182{
2183 //
2184 // Create a new volume by dividing an existing one
2185 //
2186 char vname[5];
2187 Vname(name,vname);
2188 char vmother[5];
2189 Vname(mother,vmother);
2190 gsdvs(PASSCHARD(vname), PASSCHARD(vmother), step, iaxis, numed
2191 PASSCHARL(vname) PASSCHARL(vmother));
2192}
2193
2194//_____________________________________________________________________________
2195void TGeant3::Gsdvs2(const char *name, const char *mother, Float_t step,
2196 Int_t iaxis, Float_t c0, Int_t numed)
2197{
2198 //
2199 // Create a new volume by dividing an existing one
2200 //
2201 char vname[5];
2202 Vname(name,vname);
2203 char vmother[5];
2204 Vname(mother,vmother);
2205 gsdvs2(PASSCHARD(vname), PASSCHARD(vmother), step, iaxis, c0, numed
2206 PASSCHARL(vname) PASSCHARL(vmother));
2207}
2208
2209//_____________________________________________________________________________
2210void TGeant3::Gsdvt(const char *name, const char *mother, Float_t step,
2211 Int_t iaxis, Int_t numed, Int_t ndvmx)
2212{
2213 //
2214 // Create a new volume by dividing an existing one
2215 //
2216 // Divides MOTHER into divisions called NAME along
2217 // axis IAXIS in steps of STEP. If not exactly divisible
2218 // will make as many as possible and will centre them
2219 // with respect to the mother. Divisions will have medium
2220 // number NUMED. If NUMED is 0, NUMED of MOTHER is taken.
2221 // NDVMX is the expected maximum number of divisions
2222 // (If 0, no protection tests are performed)
2223 //
2224 char vname[5];
2225 Vname(name,vname);
2226 char vmother[5];
2227 Vname(mother,vmother);
2228 gsdvt(PASSCHARD(vname), PASSCHARD(vmother), step, iaxis, numed, ndvmx
2229 PASSCHARL(vname) PASSCHARL(vmother));
2230}
2231
2232//_____________________________________________________________________________
2233void TGeant3::Gsdvt2(const char *name, const char *mother, Float_t step,
2234 Int_t iaxis, Float_t c0, Int_t numed, Int_t ndvmx)
2235{
2236 //
2237 // Create a new volume by dividing an existing one
2238 //
2239 // Divides MOTHER into divisions called NAME along
2240 // axis IAXIS starting at coordinate value C0 with step
2241 // size STEP.
2242 // The new volume created will have medium number NUMED.
2243 // If NUMED is 0, NUMED of mother is taken.
2244 // NDVMX is the expected maximum number of divisions
2245 // (If 0, no protection tests are performed)
2246 //
2247 char vname[5];
2248 Vname(name,vname);
2249 char vmother[5];
2250 Vname(mother,vmother);
2251 gsdvt2(PASSCHARD(vname), PASSCHARD(vmother), step, iaxis, c0,
2252 numed, ndvmx PASSCHARL(vname) PASSCHARL(vmother));
2253}
2254
2255//_____________________________________________________________________________
2256void TGeant3::Gsord(const char *name, Int_t iax)
2257{
2258 //
2259 // Flags volume CHNAME whose contents will have to be ordered
2260 // along axis IAX, by setting the search flag to -IAX
2261 // IAX = 1 X axis
2262 // IAX = 2 Y axis
2263 // IAX = 3 Z axis
2264 // IAX = 4 Rxy (static ordering only -> GTMEDI)
2265 // IAX = 14 Rxy (also dynamic ordering -> GTNEXT)
2266 // IAX = 5 Rxyz (static ordering only -> GTMEDI)
2267 // IAX = 15 Rxyz (also dynamic ordering -> GTNEXT)
2268 // IAX = 6 PHI (PHI=0 => X axis)
2269 // IAX = 7 THETA (THETA=0 => Z axis)
2270 //
2271 char vname[5];
2272 Vname(name,vname);
2273 gsord(PASSCHARD(vname), iax PASSCHARL(vname));
2274}
2275
2276//_____________________________________________________________________________
2277void TGeant3::Gspos(const char *name, Int_t nr, const char *mother, Float_t x,
2278 Float_t y, Float_t z, Int_t irot, const char *konly)
2279{
2280 //
2281 // Position a volume into an existing one
2282 //
2283 // NAME Volume name
2284 // NUMBER Copy number of the volume
2285 // MOTHER Mother volume name
2286 // X X coord. of the volume in mother ref. sys.
2287 // Y Y coord. of the volume in mother ref. sys.
2288 // Z Z coord. of the volume in mother ref. sys.
2289 // IROT Rotation matrix number w.r.t. mother ref. sys.
2290 // ONLY ONLY/MANY flag
2291 //
2292 // It positions a previously defined volume in the mother.
2293 //
2294 char vname[5];
2295 Vname(name,vname);
2296 char vmother[5];
2297 Vname(mother,vmother);
2298 gspos(PASSCHARD(vname), nr, PASSCHARD(vmother), x, y, z, irot,
2299 PASSCHARD(konly) PASSCHARL(vname) PASSCHARL(vmother)
2300 PASSCHARL(konly));
2301}
2302
2303//_____________________________________________________________________________
2304void TGeant3::Gsposp(const char *name, Int_t nr, const char *mother,
2305 Float_t x, Float_t y, Float_t z, Int_t irot,
2306 const char *konly, Float_t *upar, Int_t np )
2307{
2308 //
2309 // Place a copy of generic volume NAME with user number
2310 // NR inside MOTHER, with its parameters UPAR(1..NP)
2311 //
2312 char vname[5];
2313 Vname(name,vname);
2314 char vmother[5];
2315 Vname(mother,vmother);
2316 gsposp(PASSCHARD(vname), nr, PASSCHARD(vmother), x, y, z, irot,
2317 PASSCHARD(konly), upar, np PASSCHARL(vname) PASSCHARL(vmother)
2318 PASSCHARL(konly));
2319}
2320
2321//_____________________________________________________________________________
2322void TGeant3::Gsrotm(Int_t nmat, Float_t theta1, Float_t phi1, Float_t theta2,
2323 Float_t phi2, Float_t theta3, Float_t phi3)
2324{
2325 //
2326 // nmat Rotation matrix number
2327 // THETA1 Polar angle for axis I
2328 // PHI1 Azimuthal angle for axis I
2329 // THETA2 Polar angle for axis II
2330 // PHI2 Azimuthal angle for axis II
2331 // THETA3 Polar angle for axis III
2332 // PHI3 Azimuthal angle for axis III
2333 //
2334 // It defines the rotation matrix number IROT.
2335 //
2336 gsrotm(nmat, theta1, phi1, theta2, phi2, theta3, phi3);
2337}
2338
2339//_____________________________________________________________________________
2340void TGeant3::Gprotm(Int_t nmat)
2341{
2342 //
2343 // To print rotation matrices structure JROTM
2344 // nmat Rotation matrix number
2345 //
2346 gprotm(nmat);
2347}
2348
2349//_____________________________________________________________________________
2350Int_t TGeant3::Gsvolu(const char *name, const char *shape, Int_t nmed,
2351 Float_t *upar, Int_t npar)
2352{
2353 //
2354 // NAME Volume name
2355 // SHAPE Volume type
2356 // NUMED Tracking medium number
2357 // NPAR Number of shape parameters
2358 // UPAR Vector containing shape parameters
2359 //
2360 // It creates a new volume in the JVOLUM data structure.
2361 //
2362 Int_t ivolu = 0;
2363 char vname[5];
2364 Vname(name,vname);
2365 char vshape[5];
2366 Vname(shape,vshape);
2367 gsvolu(PASSCHARD(vname), PASSCHARD(vshape), nmed, upar, npar, ivolu
2368 PASSCHARL(vname) PASSCHARL(vshape));
2369 return ivolu;
2370}
2371
2372//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
2373//
2374// T H E D R A W I N G P A C K A G E
2375// ======================================
2376// Drawing functions. These functions allow the visualization in several ways
2377// of the volumes defined in the geometrical data structure. It is possible
2378// to draw the logical tree of volumes belonging to the detector (DTREE),
2379// to show their geometrical specification (DSPEC,DFSPC), to draw them
2380// and their cut views (DRAW, DCUT). Moreover, it is possible to execute
2381// these commands when the hidden line removal option is activated; in
2382// this case, the volumes can be also either translated in the space
2383// (SHIFT), or clipped by boolean operation (CVOL). In addition, it is
2384// possible to fill the surfaces of the volumes
2385// with solid colours when the shading option (SHAD) is activated.
2386// Several tools (ZOOM, LENS) have been developed to zoom detailed parts
2387// of the detectors or to scan physical events as well.
2388// Finally, the command MOVE will allow the rotation, translation and zooming
2389// on real time parts of the detectors or tracks and hits of a simulated event.
2390// Ray-tracing commands. In case the command (DOPT RAYT ON) is executed,
2391// the drawing is performed by the Geant ray-tracing;
2392// automatically, the color is assigned according to the tracking medium of each
2393// volume and the volumes with a density lower/equal than the air are considered
2394// transparent; if the option (USER) is set (ON) (again via the command (DOPT)),
2395// the user can set color and visibility for the desired volumes via the command
2396// (SATT), as usual, relatively to the attributes (COLO) and (SEEN).
2397// The resolution can be set via the command (SATT * FILL VALUE), where (VALUE)
2398// is the ratio between the number of pixels drawn and 20 (user coordinates).
2399// Parallel view and perspective view are possible (DOPT PROJ PARA/PERS); in the
2400// first case, we assume that the first mother volume of the tree is a box with
2401// dimensions 10000 X 10000 X 10000 cm and the view point (infinetely far) is
2402// 5000 cm far from the origin along the Z axis of the user coordinates; in the
2403// second case, the distance between the observer and the origin of the world
2404// reference system is set in cm by the command (PERSP NAME VALUE); grand-angle
2405// or telescopic effects can be achieved changing the scale factors in the command
2406// (DRAW). When the final picture does not occupy the full window,
2407// mapping the space before tracing can speed up the drawing, but can also
2408// produce less precise results; values from 1 to 4 are allowed in the command
2409// (DOPT MAPP VALUE), the mapping being more precise for increasing (VALUE); for
2410// (VALUE = 0) no mapping is performed (therefore max precision and lowest speed).
2411// The command (VALCUT) allows the cutting of the detector by three planes
2412// ortogonal to the x,y,z axis. The attribute (LSTY) can be set by the command
2413// SATT for any desired volume and can assume values from 0 to 7; it determines
2414// the different light processing to be performed for different materials:
2415// 0 = dark-matt, 1 = bright-matt, 2 = plastic, 3 = ceramic, 4 = rough-metals,
2416// 5 = shiny-metals, 6 = glass, 7 = mirror. The detector is assumed to be in the
2417// dark, the ambient light luminosity is 0.2 for each basic hue (the saturation
2418// is 0.9) and the observer is assumed to have a light source (therefore he will
2419// produce parallel light in the case of parallel view and point-like-source
2420// light in the case of perspective view).
2421//
2422//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
2423
2424//_____________________________________________________________________________
2425void TGeant3::Gsatt(const char *name, const char *att, Int_t val)
2426{
2427 //
2428 // NAME Volume name
2429 // IOPT Name of the attribute to be set
2430 // IVAL Value to which the attribute is to be set
2431 //
2432 // name= "*" stands for all the volumes.
2433 // iopt can be chosen among the following :
2434 //
2435 // WORK 0=volume name is inactive for the tracking
2436 // 1=volume name is active for the tracking (default)
2437 //
2438 // SEEN 0=volume name is invisible
2439 // 1=volume name is visible (default)
2440 // -1=volume invisible with all its descendants in the tree
2441 // -2=volume visible but not its descendants in the tree
2442 //
2443 // LSTY line style 1,2,3,... (default=1)
2444 // LSTY=7 will produce a very precise approximation for
2445 // revolution bodies.
2446 //
2447 // LWID line width -7,...,1,2,3,..7 (default=1)
2448 // LWID<0 will act as abs(LWID) was set for the volume
2449 // and for all the levels below it. When SHAD is 'ON', LWID
2450 // represent the linewidth of the scan lines filling the surfaces
2451 // (whereas the FILL value represent their number). Therefore
2452 // tuning this parameter will help to obtain the desired
2453 // quality/performance ratio.
2454 //
2455 // COLO colour code -166,...,1,2,..166 (default=1)
2456 // n=1=black
2457 // n=2=red; n=17+m, m=0,25, increasing luminosity according to 'm';
2458 // n=3=green; n=67+m, m=0,25, increasing luminosity according to 'm';
2459 // n=4=blue; n=117+m, m=0,25, increasing luminosity according to 'm';
2460 // n=5=yellow; n=42+m, m=0,25, increasing luminosity according to 'm';
2461 // n=6=violet; n=142+m, m=0,25, increasing luminosity according to 'm';
2462 // n=7=lightblue; n=92+m, m=0,25, increasing luminosity according to 'm';
2463 // colour=n*10+m, m=1,2,...9, will produce the same colour
2464 // as 'n', but with increasing luminosity according to 'm';
2465 // COLO<0 will act as if abs(COLO) was set for the volume
2466 // and for all the levels below it.
2467 // When for a volume the attribute FILL is > 1 (and the
2468 // option SHAD is on), the ABS of its colour code must be < 8
2469 // because an automatic shading of its faces will be
2470 // performed.
2471 //
2472 // FILL (1992) fill area -7,...,0,1,...7 (default=0)
2473 // when option SHAD is "on" the FILL attribute of any
2474 // volume can be set different from 0 (normal drawing);
2475 // if it is set to 1, the faces of such volume will be filled
2476 // with solid colours; if ABS(FILL) is > 1, then a light
2477 // source is placed along the observer line, and the faces of
2478 // such volumes will be painted by colours whose luminosity
2479 // will depend on the amount of light reflected;
2480 // if ABS(FILL) = 1, then it is possible to use all the 166
2481 // colours of the colour table, becouse the automatic shading
2482 // is not performed;
2483 // for increasing values of FILL the drawing will be performed
2484 // with higher and higher resolution improving the quality (the
2485 // number of scan lines used to fill the faces increases with FILL);
2486 // it is possible to set different values of FILL
2487 // for different volumes, in order to optimize at the same time
2488 // the performance and the quality of the picture;
2489 // FILL<0 will act as if abs(FILL) was set for the volume
2490 // and for all the levels below it.
2491 // This kind of drawing can be saved in 'picture files'
2492 // or in view banks.
2493 // 0=drawing without fill area
2494 // 1=faces filled with solid colours and resolution = 6
2495 // 2=lowest resolution (very fast)
2496 // 3=default resolution
2497 // 4=.................
2498 // 5=.................
2499 // 6=.................
2500 // 7=max resolution
2501 // Finally, if a coloured background is desired, the FILL
2502 // attribute for the first volume of the tree must be set
2503 // equal to -abs(colo), colo being >0 and <166.
2504 //
2505 // SET set number associated to volume name
2506 // DET detector number associated to volume name
2507 // DTYP detector type (1,2)
2508 //
2509 InitHIGZ();
2510 char vname[5];
2511 Vname(name,vname);
2512 char vatt[5];
2513 Vname(att,vatt);
2514 gsatt(PASSCHARD(vname), PASSCHARD(vatt), val PASSCHARL(vname)
2515 PASSCHARL(vatt));
2516}
2517
2518//_____________________________________________________________________________
2519void TGeant3::Gfpara(const char *name, Int_t number, Int_t intext, Int_t& npar,
2520 Int_t& natt, Float_t* par, Float_t* att)
2521{
2522 //
2523 // Find the parameters of a volume
2524 //
2525 gfpara(PASSCHARD(name), number, intext, npar, natt, par, att
2526 PASSCHARL(name));
2527}
2528
2529//_____________________________________________________________________________
2530void TGeant3::Gckpar(Int_t ish, Int_t npar, Float_t* par)
2531{
2532 //
2533 // Check the parameters of a shape
2534 //
2535 gckpar(ish,npar,par);
2536}
2537
2538//_____________________________________________________________________________
2539void TGeant3::Gckmat(Int_t itmed, char* natmed)
2540{
2541 //
2542 // Check the parameters of a tracking medium
2543 //
2544 gckmat(itmed, PASSCHARD(natmed) PASSCHARL(natmed));
2545}
2546
2547//_____________________________________________________________________________
2548void TGeant3::Gdelete(Int_t iview)
2549{
2550 //
2551 // IVIEW View number
2552 //
2553 // It deletes a view bank from memory.
2554 //
2555 gdelet(iview);
2556}
2557
2558//_____________________________________________________________________________
2559void TGeant3::Gdopen(Int_t iview)
2560{
2561 //
2562 // IVIEW View number
2563 //
2564 // When a drawing is very complex and requires a long time to be
2565 // executed, it can be useful to store it in a view bank: after a
2566 // call to DOPEN and the execution of the drawing (nothing will
2567 // appear on the screen), and after a necessary call to DCLOSE,
2568 // the contents of the bank can be displayed in a very fast way
2569 // through a call to DSHOW; therefore, the detector can be easily
2570 // zoomed many times in different ways. Please note that the pictures
2571 // with solid colours can now be stored in a view bank or in 'PICTURE FILES'
2572 //
2573 InitHIGZ();
2574 higz->Clear();
2575 gdopen(iview);
2576}
2577
2578//_____________________________________________________________________________
2579void TGeant3::Gdclose()
2580{
2581 //
2582 // It closes the currently open view bank; it must be called after the
2583 // end of the drawing to be stored.
2584 //
2585 gdclos();
2586}
2587
2588//_____________________________________________________________________________
2589void TGeant3::Gdshow(Int_t iview)
2590{
2591 //
2592 // IVIEW View number
2593 //
2594 // It shows on the screen the contents of a view bank. It
2595 // can be called after a view bank has been closed.
2596 //
2597 gdshow(iview);
2598}
2599
2600//_____________________________________________________________________________
2601void TGeant3::Gdopt(const char *name,const char *value)
2602{
2603 //
2604 // NAME Option name
2605 // VALUE Option value
2606 //
2607 // To set/modify the drawing options.
2608 // IOPT IVAL Action
2609 //
2610 // THRZ ON Draw tracks in R vs Z
2611 // OFF (D) Draw tracks in X,Y,Z
2612 // 180
2613 // 360
2614 // PROJ PARA (D) Parallel projection
2615 // PERS Perspective
2616 // TRAK LINE (D) Trajectory drawn with lines
2617 // POIN " " with markers
2618 // HIDE ON Hidden line removal using the CG package
2619 // OFF (D) No hidden line removal
2620 // SHAD ON Fill area and shading of surfaces.
2621 // OFF (D) Normal hidden line removal.
2622 // RAYT ON Ray-tracing on.
2623 // OFF (D) Ray-tracing off.
2624 // EDGE OFF Does not draw contours when shad is on.
2625 // ON (D) Normal shading.
2626 // MAPP 1,2,3,4 Mapping before ray-tracing.
2627 // 0 (D) No mapping.
2628 // USER ON User graphics options in the raytracing.
2629 // OFF (D) Automatic graphics options.
2630 //
2631 InitHIGZ();
2632 char vname[5];
2633 Vname(name,vname);
2634 char vvalue[5];
2635 Vname(value,vvalue);
2636 gdopt(PASSCHARD(vname), PASSCHARD(vvalue) PASSCHARL(vname)
2637 PASSCHARL(vvalue));
2638}
2639
2640//_____________________________________________________________________________
2641void TGeant3::Gdraw(const char *name,Float_t theta, Float_t phi, Float_t psi,
2642 Float_t u0,Float_t v0,Float_t ul,Float_t vl)
2643{
2644 //
2645 // NAME Volume name
2646 // +
2647 // THETA Viewing angle theta (for 3D projection)
2648 // PHI Viewing angle phi (for 3D projection)
2649 // PSI Viewing angle psi (for 2D rotation)
2650 // U0 U-coord. (horizontal) of volume origin
2651 // V0 V-coord. (vertical) of volume origin
2652 // SU Scale factor for U-coord.
2653 // SV Scale factor for V-coord.
2654 //
2655 // This function will draw the volumes,
2656 // selected with their graphical attributes, set by the Gsatt
2657 // facility. The drawing may be performed with hidden line removal
2658 // and with shading effects according to the value of the options HIDE
2659 // and SHAD; if the option SHAD is ON, the contour's edges can be
2660 // drawn or not. If the option HIDE is ON, the detector can be
2661 // exploded (BOMB), clipped with different shapes (CVOL), and some
2662 // of its parts can be shifted from their original
2663 // position (SHIFT). When HIDE is ON, if
2664 // the drawing requires more than the available memory, the program
2665 // will evaluate and display the number of missing words
2666 // (so that the user can increase the
2667 // size of its ZEBRA store). Finally, at the end of each drawing (with HIDE on),
2668 // the program will print messages about the memory used and
2669 // statistics on the volumes' visibility.
2670 // The following commands will produce the drawing of a green
2671 // volume, specified by NAME, without using the hidden line removal
2672 // technique, using the hidden line removal technique,
2673 // with different linewidth and colour (red), with
2674 // solid colour, with shading of surfaces, and without edges.
2675 // Finally, some examples are given for the ray-tracing. (A possible
2676 // string for the NAME of the volume can be found using the command DTREE).
2677 //
2678 InitHIGZ();
2679 higz->Clear();
2680 char vname[5];
2681 Vname(name,vname);
2682 if (fGcvdma->raytra != 1) {
2683 gdraw(PASSCHARD(vname), theta,phi,psi,u0,v0,ul,vl PASSCHARL(vname));
2684 } else {
2685 gdrayt(PASSCHARD(vname), theta,phi,psi,u0,v0,ul,vl PASSCHARL(vname));
2686 }
2687}
2688
2689//_____________________________________________________________________________
2690void TGeant3::Gdrawc(const char *name,Int_t axis, Float_t cut,Float_t u0,
2691 Float_t v0,Float_t ul,Float_t vl)
2692{
2693 //
2694 // NAME Volume name
2695 // CAXIS Axis value
2696 // CUTVAL Cut plane distance from the origin along the axis
2697 // +
2698 // U0 U-coord. (horizontal) of volume origin
2699 // V0 V-coord. (vertical) of volume origin
2700 // SU Scale factor for U-coord.
2701 // SV Scale factor for V-coord.
2702 //
2703 // The cut plane is normal to caxis (X,Y,Z), corresponding to iaxis (1,2,3),
2704 // and placed at the distance cutval from the origin.
2705 // The resulting picture is seen from the the same axis.
2706 // When HIDE Mode is ON, it is possible to get the same effect with
2707 // the CVOL/BOX function.
2708 //
2709 InitHIGZ();
2710 higz->Clear();
2711 char vname[5];
2712 Vname(name,vname);
2713 gdrawc(PASSCHARD(vname), axis,cut,u0,v0,ul,vl PASSCHARL(vname));
2714}
2715
2716//_____________________________________________________________________________
2717void TGeant3::Gdrawx(const char *name,Float_t cutthe, Float_t cutphi,
2718 Float_t cutval, Float_t theta, Float_t phi, Float_t u0,
2719 Float_t v0,Float_t ul,Float_t vl)
2720{
2721 //
2722 // NAME Volume name
2723 // CUTTHE Theta angle of the line normal to cut plane
2724 // CUTPHI Phi angle of the line normal to cut plane
2725 // CUTVAL Cut plane distance from the origin along the axis
2726 // +
2727 // THETA Viewing angle theta (for 3D projection)
2728 // PHI Viewing angle phi (for 3D projection)
2729 // U0 U-coord. (horizontal) of volume origin
2730 // V0 V-coord. (vertical) of volume origin
2731 // SU Scale factor for U-coord.
2732 // SV Scale factor for V-coord.
2733 //
2734 // The cut plane is normal to the line given by the cut angles
2735 // cutthe and cutphi and placed at the distance cutval from the origin.
2736 // The resulting picture is seen from the viewing angles theta,phi.
2737 //
2738 InitHIGZ();
2739 higz->Clear();
2740 char vname[5];
2741 Vname(name,vname);
2742 gdrawx(PASSCHARD(vname), cutthe,cutphi,cutval,theta,phi,u0,v0,ul,vl
2743 PASSCHARL(vname));
2744}
2745
2746//_____________________________________________________________________________
2747void TGeant3::Gdhead(Int_t isel, const char *name, Float_t chrsiz)
2748{
2749 //
2750 // Parameters
2751 // +
2752 // ISEL Option flag D=111110
2753 // NAME Title
2754 // CHRSIZ Character size (cm) of title NAME D=0.6
2755 //
2756 // ISEL =
2757 // 0 to have only the header lines
2758 // xxxxx1 to add the text name centered on top of header
2759 // xxxx1x to add global detector name (first volume) on left
2760 // xxx1xx to add date on right
2761 // xx1xxx to select thick characters for text on top of header
2762 // x1xxxx to add the text 'EVENT NR x' on top of header
2763 // 1xxxxx to add the text 'RUN NR x' on top of header
2764 // NOTE that ISEL=x1xxx1 or ISEL=1xxxx1 are illegal choices,
2765 // i.e. they generate overwritten text.
2766 //
2767 gdhead(isel,PASSCHARD(name),chrsiz PASSCHARL(name));
2768}
2769
2770//_____________________________________________________________________________
2771void TGeant3::Gdman(Float_t u, Float_t v, const char *type)
2772{
2773 //
2774 // Draw a 2D-man at position (U0,V0)
2775 // Parameters
2776 // U U-coord. (horizontal) of the centre of man' R
2777 // V V-coord. (vertical) of the centre of man' R
2778 // TYPE D='MAN' possible values: 'MAN,WM1,WM2,WM3'
2779 //
2780 // CALL GDMAN(u,v),CALL GDWMN1(u,v),CALL GDWMN2(u,v),CALL GDWMN2(u,v)
2781 // It superimposes the picure of a man or of a woman, chosen among
2782 // three different ones, with the same scale factors as the detector
2783 // in the current drawing.
2784 //
2785 TString opt = type;
2786 if (opt.Contains("WM1")) {
2787 gdwmn1(u,v);
2788 } else if (opt.Contains("WM3")) {
2789 gdwmn3(u,v);
2790 } else if (opt.Contains("WM2")) {
2791 gdwmn2(u,v);
2792 } else {
2793 gdman(u,v);
2794 }
2795}
2796
2797//_____________________________________________________________________________
2798void TGeant3::Gdspec(const char *name)
2799{
2800 //
2801 // NAME Volume name
2802 //
2803 // Shows 3 views of the volume (two cut-views and a 3D view), together with
2804 // its geometrical specifications. The 3D drawing will
2805 // be performed according the current values of the options HIDE and
2806 // SHAD and according the current SetClipBox clipping parameters for that
2807 // volume.
2808 //
2809 InitHIGZ();
2810 higz->Clear();
2811 char vname[5];
2812 Vname(name,vname);
2813 gdspec(PASSCHARD(vname) PASSCHARL(vname));
2814}
2815
2816//_____________________________________________________________________________
2817void TGeant3::DrawOneSpec(const char *name)
2818{
2819 //
2820 // Function called when one double-clicks on a volume name
2821 // in a TPavelabel drawn by Gdtree.
2822 //
2823 THIGZ *higzSave = higz;
2824 higzSave->SetName("higzSave");
2825 THIGZ *higzSpec = (THIGZ*)gROOT->FindObject("higzSpec");
2826 //printf("DrawOneSpec, higz=%x, higzSpec=%x\n",higz,higzSpec);
2827 if (higzSpec) higz = higzSpec;
2828 else higzSpec = new THIGZ(defSize);
2829 higzSpec->SetName("higzSpec");
2830 higzSpec->cd();
2831 higzSpec->Clear();
2832 char vname[5];
2833 Vname(name,vname);
2834 gdspec(PASSCHARD(vname) PASSCHARL(vname));
2835 higzSpec->Update();
2836 higzSave->cd();
2837 higzSave->SetName("higz");
2838 higz = higzSave;
2839}
2840
2841//_____________________________________________________________________________
2842void TGeant3::Gdtree(const char *name,Int_t levmax, Int_t isel)
2843{
2844 //
2845 // NAME Volume name
2846 // LEVMAX Depth level
2847 // ISELT Options
2848 //
2849 // This function draws the logical tree,
2850 // Each volume in the tree is represented by a TPaveTree object.
2851 // Double-clicking on a TPaveTree draws the specs of the corresponding volume.
2852 // Use TPaveTree pop-up menu to select:
2853 // - drawing specs
2854 // - drawing tree
2855 // - drawing tree of parent
2856 //
2857 InitHIGZ();
2858 higz->Clear();
2859 char vname[5];
2860 Vname(name,vname);
2861 gdtree(PASSCHARD(vname), levmax, isel PASSCHARL(vname));
2862 higz->fPname = "";
2863}
2864
2865//_____________________________________________________________________________
2866void TGeant3::GdtreeParent(const char *name,Int_t levmax, Int_t isel)
2867{
2868 //
2869 // NAME Volume name
2870 // LEVMAX Depth level
2871 // ISELT Options
2872 //
2873 // This function draws the logical tree of the parent of name.
2874 //
2875 InitHIGZ();
2876 higz->Clear();
2877 // Scan list of volumes in JVOLUM
2878 char vname[5];
2879 Int_t gname, i, jvo, in, nin, jin, num;
2880 strncpy((char *) &gname, name, 4);
2881 for(i=1; i<=fGcnum->nvolum; i++) {
2882 jvo = fZlq[fGclink->jvolum-i];
2883 nin = Int_t(fZq[jvo+3]);
2884 if (nin == -1) nin = 1;
2885 for (in=1;in<=nin;in++) {
2886 jin = fZlq[jvo-in];
2887 num = Int_t(fZq[jin+2]);
2888 if(gname == fZiq[fGclink->jvolum+num]) {
2889 strncpy(vname,(char*)&fZiq[fGclink->jvolum+i],4);
2890 vname[4] = 0;
2891 gdtree(PASSCHARD(vname), levmax, isel PASSCHARL(vname));
2892 higz->fPname = "";
2893 return;
2894 }
2895 }
2896 }
2897}
2898
2899//_____________________________________________________________________________
2900void TGeant3::SetABAN(Int_t par)
2901{
2902 //
2903 // par = 1 particles will be stopped according to their residual
2904 // range if they are not in a sensitive material and are
2905 // far enough from the boundary
2906 // 0 particles are transported normally
2907 //
2908 fGcphys->dphys1 = par;
2909}
2910
2911
2912//_____________________________________________________________________________
2913void TGeant3::SetANNI(Int_t par)
2914{
2915 //
2916 // To control positron annihilation.
2917 // par =0 no annihilation
2918 // =1 annihilation. Decays processed.
2919 // =2 annihilation. No decay products stored.
2920 //
2921 fGcphys->ianni = par;
2922}
2923
2924
2925//_____________________________________________________________________________
2926void TGeant3::SetAUTO(Int_t par)
2927{
2928 //
2929 // To control automatic calculation of tracking medium parameters:
2930 // par =0 no automatic calculation;
2931 // =1 automati calculation.
2932 //
2933 fGctrak->igauto = par;
2934}
2935
2936
2937//_____________________________________________________________________________
2938void TGeant3::SetBOMB(Float_t boom)
2939{
2940 //
2941 // BOOM : Exploding factor for volumes position
2942 //
2943 // To 'explode' the detector. If BOOM is positive (values smaller
2944 // than 1. are suggested, but any value is possible)
2945 // all the volumes are shifted by a distance
2946 // proportional to BOOM along the direction between their centre
2947 // and the origin of the MARS; the volumes which are symmetric
2948 // with respect to this origin are simply not shown.
2949 // BOOM equal to 0 resets the normal mode.
2950 // A negative (greater than -1.) value of
2951 // BOOM will cause an 'implosion'; for even lower values of BOOM
2952 // the volumes' positions will be reflected respect to the origin.
2953 // This command can be useful to improve the 3D effect for very
2954 // complex detectors. The following commands will make explode the
2955 // detector:
2956 //
2957 InitHIGZ();
2958 setbomb(boom);
2959}
2960
2961//_____________________________________________________________________________
2962void TGeant3::SetBREM(Int_t par)
2963{
2964 //
2965 // To control bremstrahlung.
2966 // par =0 no bremstrahlung
2967 // =1 bremstrahlung. Photon processed.
2968 // =2 bremstrahlung. No photon stored.
2969 //
2970 fGcphys->ibrem = par;
2971}
2972
2973
2974//_____________________________________________________________________________
2975void TGeant3::SetCKOV(Int_t par)
2976{
2977 //
2978 // To control Cerenkov production
2979 // par =0 no Cerenkov;
2980 // =1 Cerenkov;
2981 // =2 Cerenkov with primary stopped at each step.
2982 //
2983 fGctlit->itckov = par;
2984}
2985
2986
2987//_____________________________________________________________________________
2988void TGeant3::SetClipBox(const char *name,Float_t xmin,Float_t xmax,
2989 Float_t ymin,Float_t ymax,Float_t zmin,Float_t zmax)
2990{
2991 //
2992 // The hidden line removal technique is necessary to visualize properly
2993 // very complex detectors. At the same time, it can be useful to visualize
2994 // the inner elements of a detector in detail. This function allows
2995 // subtractions (via boolean operation) of BOX shape from any part of
2996 // the detector, therefore showing its inner contents.
2997 // If "*" is given as the name of the
2998 // volume to be clipped, all volumes are clipped by the given box.
2999 // A volume can be clipped at most twice.
3000 // if a volume is explicitely clipped twice,
3001 // the "*" will not act on it anymore. Giving "." as the name
3002 // of the volume to be clipped will reset the clipping.
3003 // Parameters
3004 // NAME Name of volume to be clipped
3005 // +
3006 // XMIN Lower limit of the Shape X coordinate
3007 // XMAX Upper limit of the Shape X coordinate
3008 // YMIN Lower limit of the Shape Y coordinate
3009 // YMAX Upper limit of the Shape Y coordinate
3010 // ZMIN Lower limit of the Shape Z coordinate
3011 // ZMAX Upper limit of the Shape Z coordinate
3012 //
3013 // This function performs a boolean subtraction between the volume
3014 // NAME and a box placed in the MARS according the values of the given
3015 // coordinates.
3016
3017 InitHIGZ();
3018 char vname[5];
3019 Vname(name,vname);
3020 setclip(PASSCHARD(vname),xmin,xmax,ymin,ymax,zmin,zmax PASSCHARL(vname));
3021}
3022
3023//_____________________________________________________________________________
3024void TGeant3::SetCOMP(Int_t par)
3025{
3026 //
3027 // To control Compton scattering
3028 // par =0 no Compton
3029 // =1 Compton. Electron processed.
3030 // =2 Compton. No electron stored.
3031 //
3032 //
3033 fGcphys->icomp = par;
3034}
3035
3036//_____________________________________________________________________________
3037void TGeant3::SetCUTS(Float_t cutgam,Float_t cutele,Float_t cutneu,
3038 Float_t cuthad,Float_t cutmuo ,Float_t bcute ,
3039 Float_t bcutm ,Float_t dcute ,Float_t dcutm ,
3040 Float_t ppcutm, Float_t tofmax)
3041{
3042 //
3043 // CUTGAM Cut for gammas D=0.001
3044 // CUTELE Cut for electrons D=0.001
3045 // CUTHAD Cut for charged hadrons D=0.01
3046 // CUTNEU Cut for neutral hadrons D=0.01
3047 // CUTMUO Cut for muons D=0.01
3048 // BCUTE Cut for electron brems. D=-1.
3049 // BCUTM Cut for muon brems. D=-1.
3050 // DCUTE Cut for electron delta-rays D=-1.
3051 // DCUTM Cut for muon delta-rays D=-1.
3052 // PPCUTM Cut for e+e- pairs by muons D=0.01
3053 // TOFMAX Time of flight cut D=1.E+10
3054 //
3055 // If the default values (-1.) for BCUTE ,BCUTM ,DCUTE ,DCUTM
3056 // are not modified, they will be set to CUTGAM,CUTGAM,CUTELE,CUTELE
3057 // respectively.
3058 // If one of the parameters from CUTGAM to PPCUTM included
3059 // is modified, cross-sections and energy loss tables must be
3060 // recomputed via the function Gphysi.
3061 //
3062 fGccuts->cutgam = cutgam;
3063 fGccuts->cutele = cutele;
3064 fGccuts->cutneu = cutneu;
3065 fGccuts->cuthad = cuthad;
3066 fGccuts->cutmuo = cutmuo;
3067 fGccuts->bcute = bcute;
3068 fGccuts->bcutm = bcutm;
3069 fGccuts->dcute = dcute;
3070 fGccuts->dcutm = dcutm;
3071 fGccuts->ppcutm = ppcutm;
3072 fGccuts->tofmax = tofmax;
3073}
3074
3075//_____________________________________________________________________________
3076void TGeant3::SetDCAY(Int_t par)
3077{
3078 //
3079 // To control Decay mechanism.
3080 // par =0 no decays.
3081 // =1 Decays. secondaries processed.
3082 // =2 Decays. No secondaries stored.
3083 //
3084 fGcphys->idcay = par;
3085}
3086
3087
3088//_____________________________________________________________________________
3089void TGeant3::SetDEBU(Int_t emin, Int_t emax, Int_t emod)
3090{
3091 //
3092 // Set the debug flag and frequency
3093 // Selected debug output will be printed from
3094 // event emin to even emax each emod event
3095 //
3096 fGcflag->idemin = emin;
3097 fGcflag->idemax = emax;
3098 fGcflag->itest = emod;
3099}
3100
3101
3102//_____________________________________________________________________________
3103void TGeant3::SetDRAY(Int_t par)
3104{
3105 //
3106 // To control delta rays mechanism.
3107 // par =0 no delta rays.
3108 // =1 Delta rays. secondaries processed.
3109 // =2 Delta rays. No secondaries stored.
3110 //
3111 fGcphys->idray = par;
3112}
3113
3114//_____________________________________________________________________________
3115void TGeant3::SetHADR(Int_t par)
3116{
3117 //
3118 // To control hadronic interactions.
3119 // par =0 no hadronic interactions.
3120 // =1 Hadronic interactions. secondaries processed.
3121 // =2 Hadronic interactions. No secondaries stored.
3122 //
3123 fGcphys->ihadr = par;
3124}
3125
3126//_____________________________________________________________________________
3127void TGeant3::SetKINE(Int_t kine, Float_t xk1, Float_t xk2, Float_t xk3,
3128 Float_t xk4, Float_t xk5, Float_t xk6, Float_t xk7,
3129 Float_t xk8, Float_t xk9, Float_t xk10)
3130{
3131 //
3132 // Set the variables in /GCFLAG/ IKINE, PKINE(10)
3133 // Their meaning is user defined
3134 //
3135 fGckine->ikine = kine;
3136 fGckine->pkine[0] = xk1;
3137 fGckine->pkine[1] = xk2;
3138 fGckine->pkine[2] = xk3;
3139 fGckine->pkine[3] = xk4;
3140 fGckine->pkine[4] = xk5;
3141 fGckine->pkine[5] = xk6;
3142 fGckine->pkine[6] = xk7;
3143 fGckine->pkine[7] = xk8;
3144 fGckine->pkine[8] = xk9;
3145 fGckine->pkine[9] = xk10;
3146}
3147
3148//_____________________________________________________________________________
3149void TGeant3::SetLOSS(Int_t par)
3150{
3151 //
3152 // To control energy loss.
3153 // par =0 no energy loss;
3154 // =1 restricted energy loss fluctuations;
3155 // =2 complete energy loss fluctuations;
3156 // =3 same as 1;
3157 // =4 no energy loss fluctuations.
3158 // If the value ILOSS is changed, then cross-sections and energy loss
3159 // tables must be recomputed via the command 'PHYSI'.
3160 //
3161 fGcphys->iloss = par;
3162}
3163
3164
3165//_____________________________________________________________________________
3166void TGeant3::SetMULS(Int_t par)
3167{
3168 //
3169 // To control multiple scattering.
3170 // par =0 no multiple scattering.
3171 // =1 Moliere or Coulomb scattering.
3172 // =2 Moliere or Coulomb scattering.
3173 // =3 Gaussian scattering.
3174 //
3175 fGcphys->imuls = par;
3176}
3177
3178
3179//_____________________________________________________________________________
3180void TGeant3::SetMUNU(Int_t par)
3181{
3182 //
3183 // To control muon nuclear interactions.
3184 // par =0 no muon-nuclear interactions.
3185 // =1 Nuclear interactions. Secondaries processed.
3186 // =2 Nuclear interactions. Secondaries not processed.
3187 //
3188 fGcphys->imunu = par;
3189}
3190
3191//_____________________________________________________________________________
3192void TGeant3::SetOPTI(Int_t par)
3193{
3194 //
3195 // This flag controls the tracking optimisation performed via the
3196 // GSORD routine:
3197 // 1 no optimisation at all; GSORD calls disabled;
3198 // 0 no optimisation; only user calls to GSORD kept;
3199 // 1 all non-GSORDered volumes are ordered along the best axis;
3200 // 2 all volumes are ordered along the best axis.
3201 //
3202 fGcopti->ioptim = par;
3203}
3204
3205//_____________________________________________________________________________
3206void TGeant3::SetPAIR(Int_t par)
3207{
3208 //
3209 // To control pair production mechanism.
3210 // par =0 no pair production.
3211 // =1 Pair production. secondaries processed.
3212 // =2 Pair production. No secondaries stored.
3213 //
3214 fGcphys->ipair = par;
3215}
3216
3217
3218//_____________________________________________________________________________
3219void TGeant3::SetPFIS(Int_t par)
3220{
3221 //
3222 // To control photo fission mechanism.
3223 // par =0 no photo fission.
3224 // =1 Photo fission. secondaries processed.
3225 // =2 Photo fission. No secondaries stored.
3226 //
3227 fGcphys->ipfis = par;
3228}
3229
3230//_____________________________________________________________________________
3231void TGeant3::SetPHOT(Int_t par)
3232{
3233 //
3234 // To control Photo effect.
3235 // par =0 no photo electric effect.
3236 // =1 Photo effect. Electron processed.
3237 // =2 Photo effect. No electron stored.
3238 //
3239 fGcphys->iphot = par;
3240}
3241
3242//_____________________________________________________________________________
3243void TGeant3::SetRAYL(Int_t par)
3244{
3245 //
3246 // To control Rayleigh scattering.
3247 // par =0 no Rayleigh scattering.
3248 // =1 Rayleigh.
3249 //
3250 fGcphys->irayl = par;
3251}
3252
3253//_____________________________________________________________________________
3254void TGeant3::SetSWIT(Int_t sw, Int_t val)
3255{
3256 //
3257 // sw Switch number
3258 // val New switch value
3259 //
3260 // Change one element of array ISWIT(10) in /GCFLAG/
3261 //
3262 if (sw <= 0 || sw > 10) return;
3263 fGcflag->iswit[sw-1] = val;
3264}
3265
3266
3267//_____________________________________________________________________________
3268void TGeant3::SetTRIG(Int_t nevents)
3269{
3270 //
3271 // Set number of events to be run
3272 //
3273 fGcflag->nevent = nevents;
3274}
3275
3276//_____________________________________________________________________________
3277void TGeant3::SetUserDecay(Int_t pdg)
3278{
3279 //
3280 // Force the decays of particles to be done with Pythia
3281 // and not with the Geant routines.
3282 // just kill pointers doing mzdrop
3283 //
3284 Int_t ipart = IdFromPDG(pdg);
3285 if(ipart<0) {
3286 printf("Particle %d not in geant\n",pdg);
3287 return;
3288 }
3289 Int_t jpart=fGclink->jpart;
3290 Int_t jpa=fZlq[jpart-ipart];
3291 //
3292 if(jpart && jpa) {
3293 Int_t jpa1=fZlq[jpa-1];
3294 if(jpa1)
3295 mzdrop(fGcbank->ixcons,jpa1,PASSCHARD(" ") PASSCHARL(" "));
3296 Int_t jpa2=fZlq[jpa-2];
3297 if(jpa2)
3298 mzdrop(fGcbank->ixcons,jpa2,PASSCHARD(" ") PASSCHARL(" "));
3299 }
3300}
3301
3302//______________________________________________________________________________
3303void TGeant3::Vname(const char *name, char *vname)
3304{
3305 //
3306 // convert name to upper case. Make vname at least 4 chars
3307 //
3308 Int_t l = strlen(name);
3309 Int_t i;
3310 l = l < 4 ? l : 4;
3311 for (i=0;i<l;i++) vname[i] = toupper(name[i]);
3312 for (i=l;i<4;i++) vname[i] = ' ';
3313 vname[4] = 0;
3314}
3315
3316//_____________________________________________________________________________
3317void TGeant3::WriteEuclid(const char* filnam, const char* topvol,
3318 Int_t number, Int_t nlevel)
3319{
3320 //
3321 //
3322 // ******************************************************************
3323 // * *
3324 // * Write out the geometry of the detector in EUCLID file format *
3325 // * *
3326 // * filnam : will be with the extension .euc *
3327 // * topvol : volume name of the starting node *
3328 // * number : copy number of topvol (relevant for gsposp) *
3329 // * nlevel : number of levels in the tree structure *
3330 // * to be written out, starting from topvol *
3331 // * *
3332 // * Author : M. Maire *
3333 // * *
3334 // ******************************************************************
3335 //
3336 // File filnam.tme is written out with the definitions of tracking
3337 // medias and materials.
3338 // As to restore original numbers for materials and medias, program
3339 // searches in the file euc_medi.dat and comparing main parameters of
3340 // the mat. defined inside geant and the one in file recognizes them
3341 // and is able to take number from file. If for any material or medium,
3342 // this procedure fails, ordering starts from 1.
3343 // Arrays IOTMED and IOMATE are used for this procedure
3344 //
3345 const char shape[][5]={"BOX ","TRD1","TRD2","TRAP","TUBE","TUBS","CONE",
3346 "CONS","SPHE","PARA","PGON","PCON","ELTU","HYPE",
3347 "GTRA","CTUB"};
3348 Int_t i, end, itm, irm, jrm, k, nmed;
3349 Int_t imxtmed=0;
3350 Int_t imxmate=0;
3351 FILE *lun;
3352 char *filext, *filetme;
3353 char natmed[21], namate[21];
3354 char natmedc[21], namatec[21];
3355 char key[5], name[5], mother[5], konly[5];
3356 char card[133];
3357 Int_t iadvol, iadtmd, iadrot, nwtot, iret;
3358 Int_t mlevel, numbr, natt, numed, nin, ndata;
3359 Int_t iname, ivo, ish, jvo, nvstak, ivstak;
3360 Int_t jdiv, ivin, in, jin, jvin, irot;
3361 Int_t jtm, imat, jma, flag=0, imatc;
3362 Float_t az, dens, radl, absl, a, step, x, y, z;
3363 Int_t npar, ndvmx, left;
3364 Float_t zc, densc, radlc, abslc, c0, tmaxfd;
3365 Int_t nparc, numb;
3366 Int_t iomate[100], iotmed[100];
3367 Float_t par[50], att[20], ubuf[50];
3368 Float_t *qws;
3369 Int_t *iws;
3370 Int_t level, ndiv, iaxe;
3371 Int_t itmedc, nmatc, isvolc, ifieldc, nwbufc, isvol, nmat, ifield, nwbuf;
3372 Float_t fieldmc, tmaxfdc, stemaxc, deemaxc, epsilc, stminc, fieldm;
3373 Float_t tmaxf, stemax, deemax, epsil, stmin;
3374 const char *f10000="!\n%s\n!\n";
3375 //Open the input file
3376 end=strlen(filnam);
3377 for(i=0;i<end;i++) if(filnam[i]=='.') {
3378 end=i;
3379 break;
3380 }
3381 filext=new char[end+4];
3382 filetme=new char[end+4];
3383 strncpy(filext,filnam,end);
3384 strncpy(filetme,filnam,end);
3385 //
3386 // *** The output filnam name will be with extension '.euc'
3387 strcpy(&filext[end],".euc");
3388 strcpy(&filetme[end],".tme");
3389 lun=fopen(filext,"w");
3390 //
3391 // *** Initialisation of the working space
3392 iadvol=fGcnum->nvolum;
3393 iadtmd=iadvol+fGcnum->nvolum;
3394 iadrot=iadtmd+fGcnum->ntmed;
3395 if(fGclink->jrotm) {
3396 fGcnum->nrotm=fZiq[fGclink->jrotm-2];
3397 } else {
3398 fGcnum->nrotm=0;
3399 }
3400 nwtot=iadrot+fGcnum->nrotm;
3401 qws = new float[nwtot+1];
3402 for (i=0;i<nwtot+1;i++) qws[i]=0;
3403 iws = (Int_t*) qws;
3404 mlevel=nlevel;
3405 if(nlevel==0) mlevel=20;
3406 //
3407 // *** find the top volume and put it in the stak
3408 numbr = number>0 ? number : 1;
3409 Gfpara(topvol,numbr,1,npar,natt,par,att);
3410 if(npar <= 0) {
3411 printf(" *** GWEUCL *** top volume : %s number : %3d can not be a valid root\n",
3412 topvol, numbr);
3413 return;
3414 }
3415 //
3416 // *** authorized shape ?
3417 strncpy((char *)&iname, topvol, 4);
3418 ivo=0;
3419 for(i=1; i<=fGcnum->nvolum; i++) if(fZiq[fGclink->jvolum+i]==iname) {
3420 ivo=i;
3421 break;
3422 }
3423 jvo = fZlq[fGclink->jvolum-ivo];
3424 ish = Int_t (fZq[jvo+2]);
3425 if(ish > 12) {
3426 printf(" *** GWEUCL *** top volume : %s number : %3d can not be a valid root\n",
3427 topvol, numbr);
3428 }
3429 //
3430 level = 1;
3431 nvstak = 1;
3432 iws[nvstak] = ivo;
3433 iws[iadvol+ivo] = level;
3434 ivstak = 0;
3435 //
3436 //*** flag all volumes and fill the stak
3437 //
3438 L10:
3439 //
3440 // pick the next volume in stak
3441 ivstak += 1;
3442 ivo = TMath::Abs(iws[ivstak]);
3443 jvo = fZlq[fGclink->jvolum - ivo];
3444 //
3445 // flag the tracking medium
3446 numed = Int_t (fZq[jvo + 4]);
3447 iws[iadtmd + numed] = 1;
3448 //
3449 // get the daughters ...
3450 level = iws[iadvol+ivo];
3451 if (level < mlevel) {
3452 level += 1;
3453 nin = Int_t (fZq[jvo + 3]);
3454 //
3455 // from division ...
3456 if (nin < 0) {
3457 jdiv = fZlq[jvo - 1];
3458 ivin = Int_t (fZq[jdiv + 2]);
3459 nvstak += 1;
3460 iws[nvstak] = -ivin;
3461 iws[iadvol+ivin] = level;
3462 //
3463 // from position ...
3464 } else if (nin > 0) {
3465 for(in=1; in<=nin; in++) {
3466 jin = fZlq[jvo - in];
3467 ivin = Int_t (fZq[jin + 2 ]);
3468 jvin = fZlq[fGclink->jvolum - ivin];
3469 ish = Int_t (fZq[jvin + 2]);
3470 // authorized shape ?
3471 if (ish <= 12) {
3472 // not yet flagged ?
3473 if (iws[iadvol+ivin]==0) {
3474 nvstak += 1;
3475 iws[nvstak] = ivin;
3476 iws[iadvol+ivin] = level;
3477 }
3478 // flag the rotation matrix
3479 irot = Int_t ( fZq[jin + 4 ]);
3480 if (irot > 0) iws[iadrot+irot] = 1;
3481 }
3482 }
3483 }
3484 }
3485 //
3486 // next volume in stak ?
3487 if (ivstak < nvstak) goto L10;
3488 //
3489 // *** restore original material and media numbers
3490 // file euc_medi.dat is needed to compare materials and medias
3491 //
3492 FILE* luncor=fopen("euc_medi.dat","r");
3493 //
3494 if(luncor) {
3495 for(itm=1; itm<=fGcnum->ntmed; itm++) {
3496 if (iws[iadtmd+itm] > 0) {
3497 jtm = fZlq[fGclink->jtmed-itm];
3498 strncpy(natmed,(char *)&fZiq[jtm+1],20);
3499 imat = Int_t (fZq[jtm+6]);
3500 jma = fZlq[fGclink->jmate-imat];
3501 if (jma <= 0) {
3502 printf(" *** GWEUCL *** material not defined for tracking medium %5i %s\n",itm,natmed);
3503 flag=1;
3504 } else {
3505 strncpy(namate,(char *)&fZiq[jma+1],20);
3506 }
3507 //*
3508 //** find the material original number
3509 rewind(luncor);
3510 L23:
3511 iret=fscanf(luncor,"%4s,%130s",key,card);
3512 if(iret<=0) goto L26;
3513 flag=0;
3514 if(!strcmp(key,"MATE")) {
3515 sscanf(card,"%d %s %f %f %f %f %f %d",&imatc,namatec,&az,&zc,&densc,&radlc,&abslc,&nparc);
3516 Gfmate(imat,namate,a,z,dens,radl,absl,par,npar);
3517 if(!strcmp(namatec,namate)) {
3518 if(az==a && zc==z && densc==dens && radlc==radl
3519 && abslc==absl && nparc==nparc) {
3520 iomate[imat]=imatc;
3521 flag=1;
3522 printf("*** GWEUCL *** material : %3d '%s' restored as %3d\n",imat,namate,imatc);
3523 } else {
3524 printf("*** GWEUCL *** different definitions for material: %s\n",namate);
3525 }
3526 }
3527 }
3528 if(strcmp(key,"END") && !flag) goto L23;
3529 if (!flag) {
3530 printf("*** GWEUCL *** cannot restore original number for material: %s\n",namate);
3531 }
3532 //*
3533 //*
3534 //*** restore original tracking medium number
3535 rewind(luncor);
3536 L24:
3537 iret=fscanf(luncor,"%4s,%130s",key,card);
3538 if(iret<=0) goto L26;
3539 flag=0;
3540 if (!strcmp(key,"TMED")) {
3541 sscanf(card,"%d %s %d %d %d %f %f %f %f %f %f %d\n",
3542 &itmedc,natmedc,&nmatc,&isvolc,&ifieldc,&fieldmc,
3543 &tmaxfdc,&stemaxc,&deemaxc,&epsilc,&stminc,&nwbufc);
3544 Gftmed(itm,natmed,nmat,isvol,ifield,fieldm,tmaxf,stemax,deemax,
3545 epsil,stmin,ubuf,&nwbuf);
3546 if(!strcmp(natmedc,natmed)) {
3547 if (iomate[nmat]==nmatc && nwbuf==nwbufc) {
3548 iotmed[itm]=itmedc;
3549 flag=1;
3550 printf("*** GWEUCL *** medium : %3d '%20s' restored as %3d\n",
3551 itm,natmed,itmedc);
3552 } else {
3553 printf("*** GWEUCL *** different definitions for tracking medium: %s\n",natmed);
3554 }
3555 }
3556 }
3557 if(strcmp(key,"END") && !flag) goto L24;
3558 if(!flag) {
3559 printf("cannot restore original number for medium : %s\n",natmed);
3560 goto L27;
3561 }
3562 }
3563 }
3564 goto L29;
3565 //*
3566 }
3567 L26: printf("*** GWEUCL *** cannot read the data file\n");
3568 L27: flag=2;
3569 L29: if(luncor) fclose (luncor);
3570 //
3571 //
3572 // *** write down the tracking medium definition
3573 //
3574 strcpy(card,"! Tracking medium");
3575 fprintf(lun,f10000,card);
3576 //
3577 for(itm=1;itm<=fGcnum->ntmed;itm++) {
3578 if (iws[iadtmd+itm]>0) {
3579 jtm = fZlq[fGclink->jtmed-itm];
3580 strncpy(natmed,(char *)&fZiq[jtm+1],20);
3581 natmed[20]='\0';
3582 imat = Int_t (fZq[jtm+6]);
3583 jma = fZlq[fGclink->jmate-imat];
3584 //* order media from one, if comparing with database failed
3585 if (flag==2) {
3586 iotmed[itm]=++imxtmed;
3587 iomate[imat]=++imxmate;
3588 }
3589 //*
3590 if(jma<=0) {
3591 strcpy(namate," ");
3592 printf(" *** GWEUCL *** material not defined for tracking medium %5d %s\n",
3593 itm,natmed);
3594 } else {
3595 strncpy(namate,(char *)&fZiq[jma+1],20);
3596 namate[20]='\0';
3597 }
3598 fprintf(lun,"TMED %3d '%20s' %3d '%20s'\n",iotmed[itm],natmed,iomate[imat],namate);
3599 }
3600 }
3601 //*
3602 //* *** write down the rotation matrix
3603 //*
3604 strcpy(card,"! Reperes");
3605 fprintf(lun,f10000,card);
3606 //
3607 for(irm=1;irm<=fGcnum->nrotm;irm++) {
3608 if (iws[iadrot+irm]>0) {
3609 jrm = fZlq[fGclink->jrotm-irm];
3610 fprintf(lun,"ROTM %3d",irm);
3611 for(k=11;k<=16;k++) fprintf(lun," %8.3f",fZq[jrm+k]);
3612 fprintf(lun,"\n");
3613 }
3614 }
3615 //*
3616 //* *** write down the volume definition
3617 //*
3618 strcpy(card,"! Volumes");
3619 fprintf(lun,f10000,card);
3620 //*
3621 for(ivstak=1;ivstak<=nvstak;ivstak++) {
3622 ivo = iws[ivstak];
3623 if (ivo>0) {
3624 strncpy(name,(char *)&fZiq[fGclink->jvolum+ivo],4);
3625 name[4]='\0';
3626 jvo = fZlq[fGclink->jvolum-ivo];
3627 ish = Int_t (fZq[jvo+2]);
3628 nmed = Int_t (fZq[jvo+4]);
3629 npar = Int_t (fZq[jvo+5]);
3630 if (npar>0) {
3631 if (ivstak>1) for(i=0;i<npar;i++) par[i]=fZq[jvo+7+i];
3632 Gckpar (ish,npar,par);
3633 fprintf(lun,"VOLU '%4s' '%4s' %3d %3d\n",name,shape[ish-1],iotmed[nmed],npar);
3634 for(i=0;i<(npar-1)/6+1;i++) {
3635 fprintf(lun," ");
3636 left=npar-i*6;
3637 for(k=0;k<(left<6?left:6);k++) fprintf(lun," %11.5f",par[i*6+k]);
3638 fprintf(lun,"\n");
3639 }
3640 } else {
3641 fprintf(lun,"VOLU '%4s' '%4s' %3d %3d\n",name,shape[ish-1],iotmed[nmed],npar);
3642 }
3643 }
3644 }
3645 //*
3646 //* *** write down the division of volumes
3647 //*
3648 fprintf(lun,f10000,"! Divisions");
3649 for(ivstak=1;ivstak<=nvstak;ivstak++) {
3650 ivo = TMath::Abs(iws[ivstak]);
3651 jvo = fZlq[fGclink->jvolum-ivo];
3652 ish = Int_t (fZq[jvo+2]);
3653 nin = Int_t (fZq[jvo+3]);
3654 //* this volume is divided ...
3655 if (nin<0) {
3656 jdiv = fZlq[jvo-1];
3657 iaxe = Int_t ( fZq[jdiv+1]);
3658 ivin = Int_t ( fZq[jdiv+2]);
3659 ndiv = Int_t ( fZq[jdiv+3]);
3660 c0 = fZq[jdiv+4];
3661 step = fZq[jdiv+5];
3662 jvin = fZlq[fGclink->jvolum-ivin];
3663 nmed = Int_t ( fZq[jvin+4]);
3664 strncpy(mother,(char *)&fZiq[fGclink->jvolum+ivo ],4);
3665 mother[4]='\0';
3666 strncpy(name,(char *)&fZiq[fGclink->jvolum+ivin],4);
3667 name[4]='\0';
3668 if ((step<=0.)||(ish>=11)) {
3669 //* volume with negative parameter or gsposp or pgon ...
3670 fprintf(lun,"DIVN '%4s' '%4s' %3d %3d\n",name,mother,ndiv,iaxe);
3671 } else if ((ndiv<=0)||(ish==10)) {
3672 //* volume with negative parameter or gsposp or para ...
3673 ndvmx = TMath::Abs(ndiv);
3674 fprintf(lun,"DIVT '%4s' '%4s' %11.5f %3d %3d %3d\n",
3675 name,mother,step,iaxe,iotmed[nmed],ndvmx);
3676 } else {
3677 //* normal volume : all kind of division are equivalent
3678 fprintf(lun,"DVT2 '%4s' '%4s' %11.5f %3d %11.5f %3d %3d\n",
3679 name,mother,step,iaxe,c0,iotmed[nmed],ndiv);
3680 }
3681 }
3682 }
3683 //*
3684 //* *** write down the the positionnement of volumes
3685 //*
3686 fprintf(lun,f10000,"! Positionnements\n");
3687 //
3688 for(ivstak = 1;ivstak<=nvstak;ivstak++) {
3689 ivo = TMath::Abs(iws[ivstak]);
3690 strncpy(mother,(char*)&fZiq[fGclink->jvolum+ivo ],4);
3691 mother[4]='\0';
3692 jvo = fZlq[fGclink->jvolum-ivo];
3693 nin = Int_t( fZq[jvo+3]);
3694 //* this volume has daughters ...
3695 if (nin>0) {
3696 for (in=1;in<=nin;in++) {
3697 jin = fZlq[jvo-in];
3698 ivin = Int_t (fZq[jin +2]);
3699 numb = Int_t (fZq[jin +3]);
3700 irot = Int_t (fZq[jin +4]);
3701 x = fZq[jin +5];
3702 y = fZq[jin +6];
3703 z = fZq[jin +7];
3704 strcpy(konly,"ONLY");
3705 if (fZq[jin+8]!=1.) strcpy(konly,"MANY");
3706 strncpy(name,(char*)&fZiq[fGclink->jvolum+ivin],4);
3707 name[4]='\0';
3708 jvin = fZlq[fGclink->jvolum-ivin];
3709 ish = Int_t (fZq[jvin+2]);
3710 //* gspos or gsposp ?
3711 ndata = fZiq[jin-1];
3712 if (ndata==8) {
3713 fprintf(lun,"POSI '%4s' %4d '%4s' %11.5f %11.5f %11.5f %3d '%4s'\n",
3714 name,numb,mother,x,y,z,irot,konly);
3715 } else {
3716 npar = Int_t (fZq[jin+9]);
3717 for(i=0;i<npar;i++) par[i]=fZq[jin+10+i];
3718 Gckpar (ish,npar,par);
3719 fprintf(lun,"POSP '%4s' %4d '%4s' %11.5f %11.5f %11.5f %3d '%4s' %3d\n",
3720 name,numb,mother,x,y,z,irot,konly,npar);
3721 fprintf(lun," ");
3722 for(i=0;i<npar;i++) fprintf(lun," %11.5f",par[i]);
3723 fprintf(lun,"\n");
3724 }
3725 }
3726 }
3727 }
3728 //*
3729 fprintf(lun,"END\n");
3730 fclose(lun);
3731 //*
3732 //****** write down the materials and medias *****
3733 //*
3734 lun=fopen(filetme,"w");
3735 //*
3736 for(itm=1;itm<=fGcnum->ntmed;itm++) {
3737 if (iws[iadtmd+itm]>0) {
3738 jtm = fZlq[fGclink->jtmed-itm];
3739 strncpy(natmed,(char*)&fZiq[jtm+1],4);
3740 imat = Int_t (fZq[jtm+6]);
3741 jma = Int_t (fZlq[fGclink->jmate-imat]);
3742 //* material
3743 Gfmate (imat,namate,a,z,dens,radl,absl,par,npar);
3744 fprintf(lun,"MATE %4d '%20s'%11.5E %11.5E %11.5E %11.5E %11.5E %3d\n",
3745 iomate[imat],namate,a,z,dens,radl,absl,npar);
3746 //*
3747 if (npar>0) {
3748 fprintf(lun," ");
3749 for(i=0;i<npar;i++) fprintf(lun," %11.5f",par[i]);
3750 fprintf(lun,"\n");
3751 }
3752 //* medium
3753 Gftmed(itm,natmed,nmat,isvol,ifield,fieldm,tmaxfd,stemax,deemax,epsil,stmin,par,&npar);
3754 fprintf(lun,"TMED %4d '%20s' %3d %1d %3d %11.5f %11.5f %11.5f %11.5f %11.5f %11.5f %3d\n",
3755 iotmed[itm],natmed,iomate[nmat],isvol,ifield,
3756 fieldm,tmaxfd,stemax,deemax,epsil,stmin,npar);
3757 //*
3758 if (npar>0) {
3759 fprintf(lun," ");
3760 for(i=0;i<npar;i++) fprintf(lun," %11.5f",par[i]);
3761 fprintf(lun,"\n");
3762 }
3763
3764 }
3765 }
3766 fprintf(lun,"END\n");
3767 printf(" *** GWEUCL *** file: %s is now written out\n",filext);
3768 printf(" *** GWEUCL *** file: %s is now written out\n",filetme);
3769 // Clean up
3770 delete [] filext;
3771 delete [] filetme;
3772 delete [] qws;
3773 iws=0;
3774 return;
3775}
3776
3777//_____________________________________________________________________________
3778void TGeant3::Streamer(TBuffer &R__b)
3779{
3780 //
3781 // Stream an object of class TGeant3.
3782 //
3783 if (R__b.IsReading()) {
3784 Version_t R__v = R__b.ReadVersion(); if (R__v) { }
3785 AliMC::Streamer(R__b);
3786 R__b >> fNextVol;
3787 R__b >> fNPDGCodes;
3788 R__b.ReadStaticArray(fPDGCode);
3789 } else {
3790 R__b.WriteVersion(TGeant3::IsA());
3791 AliMC::Streamer(R__b);
3792 R__b << fNextVol;
3793 R__b << fNPDGCodes;
3794 R__b.WriteArray(fPDGCode, fNPDGCodes);
3795 }
3796}
3797
3798