]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TOF/AliTOFv4T0.cxx
Fixed bub in BuildGeometry
[u/mrichter/AliRoot.git] / TOF / AliTOFv4T0.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16
17///////////////////////////////////////////////////////////////////////////////
18//
19// This class contains the functions for version 4 of the Time Of Flight //
20// detector. //
21//
22// VERSION WITH 5 MODULES AND TILTED STRIPS
23//
24// FULL COVERAGE VERSION
25//
26// Author:
27// Fabrizio Pierella
28// University of Bologna - Italy
29//
30//
31//Begin_Html
32/*
33<img src="picts/AliTOFv4T0Class.gif">
34*/
35//End_Html
36// //
37///////////////////////////////////////////////////////////////////////////////
38
39#include <iostream.h>
40#include <stdlib.h>
41
42#include "AliTOFv4T0.h"
43#include "TBRIK.h"
44#include "TGeometry.h"
45#include "TNode.h"
46#include <TLorentzVector.h>
47#include "TObject.h"
48#include "AliRun.h"
49#include "AliMC.h"
50#include "AliConst.h"
51
52
53ClassImp(AliTOFv4T0)
54
55//_____________________________________________________________________________
56AliTOFv4T0::AliTOFv4T0()
57{
58 //
59 // Default constructor
60 //
61}
62
63//_____________________________________________________________________________
64AliTOFv4T0::AliTOFv4T0(const char *name, const char *title)
65 : AliTOF(name,title,"tzero")
66{
67 //
68 // Standard constructor
69 //
70 //
71 // Check that FRAME is there otherwise we have no place where to
72 // put TOF
73 AliModule* frame=gAlice->GetModule("FRAME");
74 if(!frame) {
75 Error("Ctor","TOF needs FRAME to be present\n");
76 exit(1);
77 } else
78 if(frame->IsVersion()!=1) {
79 Error("Ctor","FRAME version 1 needed with this version of TOF\n");
80 exit(1);
81 }
82
83}
84
85//____________________________________________________________________________
86
87void AliTOFv4T0::BuildGeometry()
88{
89 //
90 // Build TOF ROOT geometry for the ALICE event display
91 //
92 TNode *node, *top;
93 const int kColorTOF = 27;
94
95 // Find top TNODE
96 top = gAlice->GetGeometry()->GetNode("alice");
97
98 // Position the different copies
99 const Float_t krTof =(fRmax+fRmin)/2;
100 const Float_t khTof = fRmax-fRmin;
101 const Int_t kNTof = fNTof;
102 const Float_t kPi = TMath::Pi();
103 const Float_t kangle = 2*kPi/kNTof;
104 Float_t ang;
105
106 // define offset for nodes
107 Float_t zOffsetC = fZtof - fZlenC*0.5;
108 Float_t zOffsetB = fZtof - fZlenC - fZlenB*0.5;
109 Float_t zOffsetA = 0.;
110 // Define TOF basic volume
111
112 char nodeName0[7], nodeName1[7], nodeName2[7];
113 char nodeName3[7], nodeName4[7], rotMatNum[7];
114
115 new TBRIK("S_TOF_C","TOF box","void",
116 fStripLn*0.5,khTof*0.5,fZlenC*0.5);
117 new TBRIK("S_TOF_B","TOF box","void",
118 fStripLn*0.5,khTof*0.5,fZlenB*0.5);
119 new TBRIK("S_TOF_A","TOF box","void",
120 fStripLn*0.5,khTof*0.5,fZlenA*0.5);
121
122 for (Int_t nodeNum=1;nodeNum<19;nodeNum++){
123
124 if (nodeNum<10) {
125 sprintf(rotMatNum,"rot50%i",nodeNum);
126 sprintf(nodeName0,"FTO00%i",nodeNum);
127 sprintf(nodeName1,"FTO10%i",nodeNum);
128 sprintf(nodeName2,"FTO20%i",nodeNum);
129 sprintf(nodeName3,"FTO30%i",nodeNum);
130 sprintf(nodeName4,"FTO40%i",nodeNum);
131 }
132 if (nodeNum>9) {
133 sprintf(rotMatNum,"rot5%i",nodeNum);
134 sprintf(nodeName0,"FTO0%i",nodeNum);
135 sprintf(nodeName1,"FTO1%i",nodeNum);
136 sprintf(nodeName2,"FTO2%i",nodeNum);
137 sprintf(nodeName3,"FTO3%i",nodeNum);
138 sprintf(nodeName4,"FTO4%i",nodeNum);
139 }
140
141 new TRotMatrix(rotMatNum,rotMatNum,90,-20*nodeNum,90,90-20*nodeNum,0,0);
142 ang = (4.5-nodeNum) * kangle;
143
144 top->cd();
145 node = new TNode(nodeName0,nodeName0,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetC,rotMatNum);
146 node->SetLineColor(kColorTOF);
147 fNodes->Add(node);
148
149 top->cd();
150 node = new TNode(nodeName1,nodeName1,"S_TOF_C",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-zOffsetC,rotMatNum);
151 node->SetLineColor(kColorTOF);
152 fNodes->Add(node);
153
154 top->cd();
155 node = new TNode(nodeName2,nodeName2,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetB,rotMatNum);
156 node->SetLineColor(kColorTOF);
157 fNodes->Add(node);
158
159 top->cd();
160 node = new TNode(nodeName3,nodeName3,"S_TOF_B",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),-zOffsetB,rotMatNum);
161 node->SetLineColor(kColorTOF);
162 fNodes->Add(node);
163
164 top->cd();
165 node = new TNode(nodeName4,nodeName4,"S_TOF_A",krTof*TMath::Cos(ang),krTof*TMath::Sin(ang),zOffsetA,rotMatNum);
166 node->SetLineColor(kColorTOF);
167 fNodes->Add(node);
168 } // end loop on nodeNum
169}
170
171
172
173//_____________________________________________________________________________
174void AliTOFv4T0::CreateGeometry()
175{
176 //
177 // Create geometry for Time Of Flight version 0
178 //
179 //Begin_Html
180 /*
181 <img src="picts/AliTOFv4T0.gif">
182 */
183 //End_Html
184 //
185 // Creates common geometry
186 //
187 AliTOF::CreateGeometry();
188}
189
190//_____________________________________________________________________________
191void AliTOFv4T0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlenC,
192 Float_t zlenB, Float_t zlenA, Float_t ztof0)
193{
194 //
195 // Definition of the Time Of Fligh Resistive Plate Chambers
196 // xFLT, yFLT, zFLT - sizes of TOF modules (large)
197
198 Float_t ycoor, zcoor;
199 Float_t par[3];
200 Int_t *idtmed = fIdtmed->GetArray()-499;
201 Int_t idrotm[100];
202 Int_t nrot = 0;
203 Float_t hTof = fRmax-fRmin;
204
205 Float_t radius = fRmin+2.;//cm
206
207 par[0] = xtof * 0.5;
208 par[1] = ytof * 0.5;
209 par[2] = zlenC * 0.5;
210 gMC->Gsvolu("FTOC", "BOX ", idtmed[506], par, 3);
211 par[2] = zlenB * 0.5;
212 gMC->Gsvolu("FTOB", "BOX ", idtmed[506], par, 3);
213 par[2] = zlenA * 0.5;
214 gMC->Gsvolu("FTOA", "BOX ", idtmed[506], par, 3);
215
216
217 // Positioning of modules
218
219 Float_t zcor1 = ztof0 - zlenC*0.5;
220 Float_t zcor2 = ztof0 - zlenC - zlenB*0.5;
221 Float_t zcor3 = 0.;
222
223 AliMatrix(idrotm[0], 90., 0., 0., 0., 90,-90.);
224 AliMatrix(idrotm[1], 90.,180., 0., 0., 90, 90.);
225 gMC->Gspos("FTOC", 1, "BTO1", 0, zcor1, 0, idrotm[0], "ONLY");
226 gMC->Gspos("FTOC", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
227 gMC->Gspos("FTOC", 1, "BTO2", 0, zcor1, 0, idrotm[0], "ONLY");
228 gMC->Gspos("FTOC", 2, "BTO2", 0, -zcor1, 0, idrotm[1], "ONLY");
229 gMC->Gspos("FTOC", 1, "BTO3", 0, zcor1, 0, idrotm[0], "ONLY");
230 gMC->Gspos("FTOC", 2, "BTO3", 0, -zcor1, 0, idrotm[1], "ONLY");
231
232 gMC->Gspos("FTOB", 1, "BTO1", 0, zcor2, 0, idrotm[0], "ONLY");
233 gMC->Gspos("FTOB", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
234 gMC->Gspos("FTOB", 1, "BTO2", 0, zcor2, 0, idrotm[0], "ONLY");
235 gMC->Gspos("FTOB", 2, "BTO2", 0, -zcor2, 0, idrotm[1], "ONLY");
236 gMC->Gspos("FTOB", 1, "BTO3", 0, zcor2, 0, idrotm[0], "ONLY");
237 gMC->Gspos("FTOB", 2, "BTO3", 0, -zcor2, 0, idrotm[1], "ONLY");
238
239 gMC->Gspos("FTOA", 0, "BTO1", 0, zcor3, 0, idrotm[0], "ONLY");
240 gMC->Gspos("FTOA", 0, "BTO2", 0, zcor3, 0, idrotm[0], "ONLY");
241 gMC->Gspos("FTOA", 0, "BTO3", 0, zcor3, 0, idrotm[0], "ONLY");
242
243 Float_t db = 0.5;//cm
244 Float_t xFLT, xFST, yFLT, zFLTA, zFLTB, zFLTC;
245
246 xFLT = fStripLn;
247 yFLT = ytof;
248 zFLTA = zlenA;
249 zFLTB = zlenB;
250 zFLTC = zlenC;
251
252 xFST = xFLT-fDeadBndX*2;//cm
253
254 // Sizes of MRPC pads
255
256 Float_t yPad = 0.505;//cm
257
258 // Large not sensitive volumes with Insensitive Freon
259 par[0] = xFLT*0.5;
260 par[1] = yFLT*0.5;
261
262 if (fDebug) cout << ClassName() <<
263 ": ************************* TOF geometry **************************"<<endl;
264
265 par[2] = (zFLTA *0.5);
266 gMC->Gsvolu("FLTA", "BOX ", idtmed[512], par, 3); // Insensitive Freon
267 gMC->Gspos ("FLTA", 0, "FTOA", 0., 0., 0., 0, "ONLY");
268
269 par[2] = (zFLTB * 0.5);
270 gMC->Gsvolu("FLTB", "BOX ", idtmed[512], par, 3); // Insensitive Freon
271 gMC->Gspos ("FLTB", 0, "FTOB", 0., 0., 0., 0, "ONLY");
272
273 par[2] = (zFLTC * 0.5);
274 gMC->Gsvolu("FLTC", "BOX ", idtmed[512], par, 3); // Insensitive Freon
275 gMC->Gspos ("FLTC", 0, "FTOC", 0., 0., 0., 0, "ONLY");
276
277 ///// Layers of Aluminum before and after detector /////
278 ///// Aluminum Box for Modules (1.8 mm thickness) /////
279 ///// lateral walls not simulated for the time being
280 //const Float_t khAlWall = 0.18;
281 // fp to be checked
282 const Float_t khAlWall = 0.11;
283 par[0] = xFLT*0.5;
284 par[1] = khAlWall/2.;//cm
285 ycoor = -yFLT/2 + par[1];
286 par[2] = (zFLTA *0.5);
287 gMC->Gsvolu("FALA", "BOX ", idtmed[508], par, 3); // Alluminium
288 gMC->Gspos ("FALA", 1, "FLTA", 0., ycoor, 0., 0, "ONLY");
289 gMC->Gspos ("FALA", 2, "FLTA", 0.,-ycoor, 0., 0, "ONLY");
290 par[2] = (zFLTB *0.5);
291 gMC->Gsvolu("FALB", "BOX ", idtmed[508], par, 3); // Alluminium
292 gMC->Gspos ("FALB", 1, "FLTB", 0., ycoor, 0., 0, "ONLY");
293 gMC->Gspos ("FALB", 2, "FLTB", 0.,-ycoor, 0., 0, "ONLY");
294 par[2] = (zFLTC *0.5);
295 gMC->Gsvolu("FALC", "BOX ", idtmed[508], par, 3); // Alluminium
296 gMC->Gspos ("FALC", 1, "FLTC", 0., ycoor, 0., 0, "ONLY");
297 gMC->Gspos ("FALC", 2, "FLTC", 0.,-ycoor, 0., 0, "ONLY");
298
299 ///////////////// Detector itself //////////////////////
300
301 const Float_t kdeadBound = fDeadBndZ; //cm non-sensitive between the pad edge
302 //and the boundary of the strip
303 const Int_t knx = fNpadX; // number of pads along x
304 const Int_t knz = fNpadZ; // number of pads along z
305 const Float_t kspace = fSpace; //cm distance from the front plate of the box
306
307 Float_t zSenStrip = fZpad*fNpadZ;//cm
308 Float_t stripWidth = zSenStrip + 2*kdeadBound;
309
310 par[0] = xFLT*0.5;
311 par[1] = yPad*0.5;
312 par[2] = stripWidth*0.5;
313
314 // new description for strip volume -double stack strip-
315 // -- all constants are expressed in cm
316 // heigth of different layers
317 const Float_t khhony = 0.8 ; // heigth of HONY Layer
318 const Float_t khpcby = 0.08 ; // heigth of PCB Layer
319 const Float_t khmyly = 0.035 ; // heigth of MYLAR Layer
320 const Float_t khgraphy = 0.02 ; // heigth of GRAPHITE Layer
321 const Float_t khglasseiy = 0.135; // 0.6 Ext. Glass + 1.1 i.e. (Int. Glass/2) (mm)
322 const Float_t khsensmy = 0.11 ; // heigth of Sensitive Freon Mixture
323 const Float_t kwsensmz = 2*3.5 ; // cm
324 const Float_t klsensmx = 48*2.5; // cm
325 const Float_t kwpadz = 3.5; // cm z dimension of the FPAD volume
326 const Float_t klpadx = 2.5; // cm x dimension of the FPAD volume
327
328 // heigth of the FSTR Volume (the strip volume)
329 const Float_t khstripy = 2*khhony+3*khpcby+4*(khmyly+khgraphy+khglasseiy)+2*khsensmy;
330 // width of the FSTR Volume (the strip volume)
331 const Float_t kwstripz = 10.;
332 // length of the FSTR Volume (the strip volume)
333 const Float_t klstripx = 122.;
334
335 Float_t parfp[3]={klstripx*0.5,khstripy*0.5,kwstripz*0.5};
336 // coordinates of the strip center in the strip reference frame; used for positioning
337 // internal strip volumes
338 Float_t posfp[3]={0.,0.,0.};
339
340
341 // FSTR volume definition and filling this volume with non sensitive Gas Mixture
342 gMC->Gsvolu("FSTR","BOX",idtmed[512],parfp,3);
343 //-- HONY Layer definition
344 // parfp[0] = -1;
345 parfp[1] = khhony*0.5;
346 // parfp[2] = -1;
347 gMC->Gsvolu("FHON","BOX",idtmed[503],parfp,3);
348 // positioning 2 HONY Layers on FSTR volume
349
350 posfp[1]=-khstripy*0.5+parfp[1];
351 gMC->Gspos("FHON",1,"FSTR",0., posfp[1],0.,0,"ONLY");
352 gMC->Gspos("FHON",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
353
354 //-- PCB Layer definition
355 parfp[1] = khpcby*0.5;
356 gMC->Gsvolu("FPCB","BOX",idtmed[504],parfp,3);
357 // positioning 2 PCB Layers on FSTR volume
358 posfp[1]=-khstripy*0.5+khhony+parfp[1];
359 gMC->Gspos("FPCB",1,"FSTR",0., posfp[1],0.,0,"ONLY");
360 gMC->Gspos("FPCB",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
361 // positioning the central PCB layer
362 gMC->Gspos("FPCB",3,"FSTR",0.,0.,0.,0,"ONLY");
363
364
365
366 //-- MYLAR Layer definition
367 parfp[1] = khmyly*0.5;
368 gMC->Gsvolu("FMYL","BOX",idtmed[511],parfp,3);
369 // positioning 2 MYLAR Layers on FSTR volume
370 posfp[1] = -khstripy*0.5+khhony+khpcby+parfp[1];
371 gMC->Gspos("FMYL",1,"FSTR",0., posfp[1],0.,0,"ONLY");
372 gMC->Gspos("FMYL",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
373 // adding further 2 MYLAR Layers on FSTR volume
374 posfp[1] = khpcby*0.5+parfp[1];
375 gMC->Gspos("FMYL",3,"FSTR",0., posfp[1],0.,0,"ONLY");
376 gMC->Gspos("FMYL",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
377
378
379 //-- Graphite Layer definition
380 parfp[1] = khgraphy*0.5;
381 gMC->Gsvolu("FGRP","BOX",idtmed[502],parfp,3);
382 // positioning 2 Graphite Layers on FSTR volume
383 posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+parfp[1];
384 gMC->Gspos("FGRP",1,"FSTR",0., posfp[1],0.,0,"ONLY");
385 gMC->Gspos("FGRP",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
386 // adding further 2 Graphite Layers on FSTR volume
387 posfp[1] = khpcby*0.5+khmyly+parfp[1];
388 gMC->Gspos("FGRP",3,"FSTR",0., posfp[1],0.,0,"ONLY");
389 gMC->Gspos("FGRP",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
390
391
392 //-- Glass (EXT. +Semi INT.) Layer definition
393 parfp[1] = khglasseiy*0.5;
394 gMC->Gsvolu("FGLA","BOX",idtmed[514],parfp,3);
395 // positioning 2 Glass Layers on FSTR volume
396 posfp[1] = -khstripy*0.5+khhony+khpcby+khmyly+khgraphy+parfp[1];
397 gMC->Gspos("FGLA",1,"FSTR",0., posfp[1],0.,0,"ONLY");
398 gMC->Gspos("FGLA",2,"FSTR",0.,-posfp[1],0.,0,"ONLY");
399 // adding further 2 Glass Layers on FSTR volume
400 posfp[1] = khpcby*0.5+khmyly+khgraphy+parfp[1];
401 gMC->Gspos("FGLA",3,"FSTR",0., posfp[1],0.,0,"ONLY");
402 gMC->Gspos("FGLA",4,"FSTR",0.,-posfp[1],0.,0,"ONLY");
403
404
405 //-- Sensitive Mixture Layer definition
406 parfp[0] = klsensmx*0.5;
407 parfp[1] = khsensmy*0.5;
408 parfp[2] = kwsensmz*0.5;
409 gMC->Gsvolu("FSEN","BOX",idtmed[513],parfp,3);
410 gMC->Gsvolu("FNSE","BOX",idtmed[512],parfp,3);
411 // positioning 2 gas Layers on FSTR volume
412 // the upper is insensitive freon
413 // while the remaining is sensitive
414 posfp[1] = khpcby*0.5+khmyly+khgraphy+khglasseiy+parfp[1];
415 gMC->Gspos("FNSE",0,"FSTR", 0., posfp[1],0.,0,"ONLY");
416 gMC->Gspos("FSEN",0,"FSTR", 0.,-posfp[1],0.,0,"ONLY");
417
418 // dividing FSEN along z in knz=2 and along x in knx=48
419 gMC->Gsdvn("FSEZ","FSEN",knz,3);
420 gMC->Gsdvn("FSEX","FSEZ",knx,1);
421
422 // FPAD volume definition
423 parfp[0] = klpadx*0.5;
424 parfp[1] = khsensmy*0.5;
425 parfp[2] = kwpadz*0.5;
426 gMC->Gsvolu("FPAD","BOX",idtmed[513],parfp,3);
427 // positioning the FPAD volumes on previous divisions
428 gMC->Gspos("FPAD",0,"FSEX",0.,0.,0.,0,"ONLY");
429
430 //// Positioning the Strips (FSTR) in the FLT volumes /////
431
432 // Plate A (Central)
433
434 Float_t t = zFLTC+zFLTB+zFLTA*0.5+ 2*db;//Half Width of Barrel
435
436 Float_t gap = fGapA+0.5; //cm updated distance between the strip axis
437 Float_t zpos = 0;
438 Float_t ang = 0;
439 Int_t i=1,j=1;
440 nrot = 0;
441 zcoor = 0;
442 ycoor = -14.5 + kspace ; //2 cm over front plate
443
444 AliMatrix (idrotm[0], 90., 0.,90.,90.,0., 90.);
445 gMC->Gspos("FSTR",j,"FLTA",0.,ycoor, 0.,idrotm[0],"ONLY");
446 if(fDebug) {
447 printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i);
448 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
449 }
450 zcoor -= zSenStrip;
451 j++;
452 Int_t upDown = -1; // upDown=-1 -> Upper strip
453 // upDown=+1 -> Lower strip
454 do{
455 ang = atan(zcoor/radius);
456 ang *= kRaddeg;
457 AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
458 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
459 ang /= kRaddeg;
460 ycoor = -14.5+ kspace; //2 cm over front plate
461 ycoor += (1-(upDown+1)/2)*gap;
462 gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
463 gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
464 if(fDebug) {
465 printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i);
466 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
467 }
468 j += 2;
469 upDown*= -1; // Alternate strips
470 zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
471 upDown*gap*TMath::Tan(ang)-
472 (zSenStrip/2)/TMath::Cos(ang);
473 } while (zcoor-(stripWidth/2)*TMath::Cos(ang)>-t+zFLTC+zFLTB+db*2);
474
475 zcoor = zcoor+(zSenStrip/2)/TMath::Cos(ang)+
476 upDown*gap*TMath::Tan(ang)+
477 (zSenStrip/2)/TMath::Cos(ang);
478
479 gap = fGapB;
480 zcoor = zcoor-(zSenStrip/2)/TMath::Cos(ang)-
481 upDown*gap*TMath::Tan(ang)-
482 (zSenStrip/2)/TMath::Cos(ang);
483
484 ang = atan(zcoor/radius);
485 ang *= kRaddeg;
486 AliMatrix (idrotm[nrot], 90., 0.,90.-ang,90.,-ang, 90.);
487 AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang, 90.);
488 ang /= kRaddeg;
489
490 ycoor = -14.5+ kspace; //2 cm over front plate
491 ycoor += (1-(upDown+1)/2)*gap;
492 gMC->Gspos("FSTR",j ,"FLTA",0.,ycoor, zcoor,idrotm[nrot], "ONLY");
493 gMC->Gspos("FSTR",j+1,"FLTA",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
494 if(fDebug) {
495 printf("%s: %f, St. %2i, Pl.3 ",ClassName(),ang*kRaddeg,i);
496 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
497 }
498 ycoor = -hTof/2.+ kspace;//2 cm over front plate
499
500 // Plate B
501
502 nrot = 0;
503 i=1;
504 upDown = 1;
505 Float_t deadRegion = 1.0;//cm
506
507 zpos = zcoor - (zSenStrip/2)/TMath::Cos(ang)-
508 upDown*gap*TMath::Tan(ang)-
509 (zSenStrip/2)/TMath::Cos(ang)-
510 deadRegion/TMath::Cos(ang);
511
512 ang = atan(zpos/radius);
513 ang *= kRaddeg;
514 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
515 ang /= kRaddeg;
516 ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
517 ycoor += (1-(upDown+1)/2)*gap;
518 zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
519 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
520 if(fDebug) {
521 printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
522 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
523 }
524 i++;
525 upDown*=-1;
526
527 do {
528 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)-
529 upDown*gap*TMath::Tan(ang)-
530 (zSenStrip/2)/TMath::Cos(ang);
531 ang = atan(zpos/radius);
532 ang *= kRaddeg;
533 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
534 ang /= kRaddeg;
535 Float_t deltaSpaceinB=-0.5; // [cm] to avoid overlaps with the end of freon frame
536 Float_t deltaGapinB=0.5; // [cm] to avoid overlaps in between initial strips
537 ycoor = -hTof*0.5+ kspace+deltaSpaceinB ; //2 cm over front plate
538 ycoor += (1-(upDown+1)/2)*(gap+deltaGapinB);
539 zcoor = zpos+(zFLTA*0.5+zFLTB*0.5+db); // Moves to the system of the modulus FLTB
540 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
541 if(fDebug) {
542 printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
543 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
544 }
545 upDown*=-1;
546 i++;
547 } while (TMath::Abs(ang*kRaddeg)<22.5);
548 //till we reach a tilting angle of 22.5 degrees
549
550 ycoor = -hTof*0.5+ kspace ; //2 cm over front plate
551 zpos = zpos - zSenStrip/TMath::Cos(ang);
552 // this avoid overlaps in between outer strips in plate B
553 Float_t deltaMovingUp=0.8; // [cm]
554 Float_t deltaMovingDown=-0.5; // [cm]
555
556 do {
557 ang = atan(zpos/radius);
558 ang *= kRaddeg;
559 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
560 ang /= kRaddeg;
561 zcoor = zpos+(zFLTB/2+zFLTA/2+db);
562 gMC->Gspos("FSTR",i, "FLTB", 0., ycoor+deltaMovingDown+deltaMovingUp, zcoor,idrotm[nrot], "ONLY");
563 deltaMovingUp+=0.8; // update delta moving toward the end of the plate
564 zpos = zpos - zSenStrip/TMath::Cos(ang);
565 if(fDebug) {
566 printf("%s: %f, St. %2i, Pl.4 ",ClassName(),ang*kRaddeg,i);
567 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
568 }
569 i++;
570
571 } while (zpos-stripWidth*0.5/TMath::Cos(ang)>-t+zFLTC+db);
572
573 // Plate C
574
575 zpos = zpos + zSenStrip/TMath::Cos(ang);
576
577 zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+
578 gap*TMath::Tan(ang)-
579 (zSenStrip/2)/TMath::Cos(ang);
580
581 nrot = 0;
582 i=0;
583 Float_t deltaGap=-2.5; // [cm] update distance from strip center and plate
584 ycoor= -hTof*0.5+kspace+gap+deltaGap;
585
586 do {
587 i++;
588 ang = atan(zpos/radius);
589 ang *= kRaddeg;
590 AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang, 270.);
591 ang /= kRaddeg;
592 zcoor = zpos+(zFLTC*0.5+zFLTB+zFLTA*0.5+db*2);
593 gMC->Gspos("FSTR",i, "FLTC", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
594 if(fDebug) {
595 printf("%s: %f, St. %2i, Pl.5 ",ClassName(),ang*kRaddeg,i);
596 printf("y = %f, z = %f, zpos = %f \n",ycoor,zcoor,zpos);
597 }
598 zpos = zpos - zSenStrip/TMath::Cos(ang);
599 } while (zpos-stripWidth*TMath::Cos(ang)*0.5>-t);
600
601
602 ////////// Layers after strips /////////////////
603 // Al Layer thickness (2.3mm) factor 0.7
604
605 Float_t overSpace = fOverSpc;//cm
606
607 par[0] = xFLT*0.5;
608 par[1] = 0.115*0.7; // factor 0.7
609 par[2] = (zFLTA *0.5);
610 ycoor = -yFLT/2 + overSpace + par[1];
611 gMC->Gsvolu("FPEA", "BOX ", idtmed[508], par, 3); // Al
612 gMC->Gspos ("FPEA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
613 par[2] = (zFLTB *0.5);
614 gMC->Gsvolu("FPEB", "BOX ", idtmed[508], par, 3); // Al
615 gMC->Gspos ("FPEB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
616 par[2] = (zFLTC *0.5);
617 gMC->Gsvolu("FPEC", "BOX ", idtmed[508], par, 3); // Al
618 gMC->Gspos ("FPEC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
619
620
621 // plexiglass thickness: 1.5 mm ; factor 0.3
622 ycoor += par[1];
623 par[0] = xFLT*0.5;
624 par[1] = 0.075*0.3; // factor 0.3
625 par[2] = (zFLTA *0.5);
626 ycoor += par[1];
627 gMC->Gsvolu("FECA", "BOX ", idtmed[505], par, 3); // Plexigl.
628 gMC->Gspos ("FECA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
629 par[2] = (zFLTB *0.5);
630 gMC->Gsvolu("FECB", "BOX ", idtmed[505], par, 3); // Plexigl.
631 gMC->Gspos ("FECB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
632 par[2] = (zFLTC *0.5);
633 gMC->Gsvolu("FECC", "BOX ", idtmed[505], par, 3); // Plexigl.
634 gMC->Gspos ("FECC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
635
636 // frame of Air
637 ycoor += par[1];
638 par[0] = xFLT*0.5;
639 par[1] = (yFLT/2-ycoor-khAlWall)*0.5; // Aluminum layer considered (0.18 cm)
640 par[2] = (zFLTA *0.5);
641 ycoor += par[1];
642 gMC->Gsvolu("FAIA", "BOX ", idtmed[500], par, 3); // Air
643 gMC->Gspos ("FAIA", 0, "FLTA", 0., ycoor, 0., 0, "ONLY");
644 par[2] = (zFLTB *0.5);
645 gMC->Gsvolu("FAIB", "BOX ", idtmed[500], par, 3); // Air
646 gMC->Gspos ("FAIB", 0, "FLTB", 0., ycoor, 0., 0, "ONLY");
647 par[2] = (zFLTC *0.5);
648 gMC->Gsvolu("FAIC", "BOX ", idtmed[500], par, 3); // Air
649 gMC->Gspos ("FAIC", 0, "FLTC", 0., ycoor, 0., 0, "ONLY");
650
651
652 // start with cards and cooling tubes
653 // finally, cards, cooling tubes and layer for thermal dispersion
654 // 3 volumes
655 // card volume definition
656
657 // see GEOM200 in GEANT manual
658 AliMatrix(idrotm[98], 90., 0., 90., 90., 0., 0.); // 0 deg
659
660 Float_t cardpar[3];
661 cardpar[0]= 61.;
662 cardpar[1]= 5.;
663 cardpar[2]= 0.1;
664 gMC->Gsvolu("FCAR", "BOX ", idtmed[504], cardpar, 3); // PCB Card
665 //alu plate volume definition
666 cardpar[1]= 3.5;
667 cardpar[2]= 0.05;
668 gMC->Gsvolu("FALP", "BOX ", idtmed[508], cardpar, 3); // Alu Plate
669
670
671 // central module positioning (FAIA)
672 Float_t cardpos[3], aplpos2, stepforcardA=6.625;
673 cardpos[0]= 0.;
674 cardpos[1]= -0.5;
675 cardpos[2]= -53.;
676 Float_t aplpos1 = -2.;
677 Int_t icard;
678 for (icard=0; icard<15; ++icard) {
679 cardpos[2]= cardpos[2]+stepforcardA;
680 aplpos2 = cardpos[2]+0.15;
681 gMC->Gspos("FCAR",icard,"FAIA",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY");
682 gMC->Gspos("FALP",icard,"FAIA",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY");
683
684 }
685
686
687 // intermediate module positioning (FAIB)
688 Float_t stepforcardB= 7.05;
689 cardpos[2]= -70.5;
690 for (icard=0; icard<19; ++icard) {
691 cardpos[2]= cardpos[2]+stepforcardB;
692 aplpos2 = cardpos[2]+0.15;
693 gMC->Gspos("FCAR",icard,"FAIB",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY");
694 gMC->Gspos("FALP",icard,"FAIB",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY");
695 }
696
697
698 // outer module positioning (FAIC)
699 Float_t stepforcardC= 8.45238;
700 cardpos[2]= -88.75;
701 for (icard=0; icard<20; ++icard) {
702 cardpos[2]= cardpos[2]+stepforcardC;
703 aplpos2 = cardpos[2]+0.15;
704 gMC->Gspos("FCAR",icard,"FAIC",cardpos[0],cardpos[1],cardpos[2],idrotm[98],"ONLY");
705 gMC->Gspos("FALP",icard,"FAIC",cardpos[0],aplpos1,aplpos2,idrotm[98],"ONLY");
706 }
707
708 // tube volume definition
709 Float_t tubepar[3];
710 tubepar[0]= 0.;
711 tubepar[1]= 0.4;
712 tubepar[2]= 61.;
713 gMC->Gsvolu("FTUB", "TUBE", idtmed[516], tubepar, 3); // cooling tubes (steel)
714 tubepar[0]= 0.;
715 tubepar[1]= 0.35;
716 tubepar[2]= 61.;
717 gMC->Gsvolu("FITU", "TUBE", idtmed[515], tubepar, 3); // cooling water
718 // positioning water tube into the steel one
719 gMC->Gspos("FITU",1,"FTUB",0.,0.,0.,0,"ONLY");
720
721
722 // rotation matrix
723 AliMatrix(idrotm[99], 180., 90., 90., 90., 90., 0.);
724 // central module positioning (FAIA)
725 Float_t tubepos[3], tdis=0.6;
726 tubepos[0]= 0.;
727 tubepos[1]= cardpos[1];
728 tubepos[2]= -53.+tdis;
729 // tub1pos = 5.;
730 Int_t itub;
731 for (itub=0; itub<15; ++itub) {
732 tubepos[2]= tubepos[2]+stepforcardA;
733 gMC->Gspos("FTUB",itub,"FAIA",tubepos[0],tubepos[1],tubepos[2],idrotm[99],
734 "ONLY");
735 }
736
737
738 // intermediate module positioning (FAIB)
739 tubepos[2]= -70.5+tdis;
740 for (itub=0; itub<19; ++itub) {
741 tubepos[2]= tubepos[2]+stepforcardB;
742 gMC->Gspos("FTUB",itub,"FAIB",tubepos[0],tubepos[1],tubepos[2],idrotm[99],
743 "ONLY");
744 }
745
746 // outer module positioning (FAIC)
747 tubepos[2]= -88.75+tdis;
748 for (itub=0; itub<20; ++itub) {
749 tubepos[2]= tubepos[2]+stepforcardC;
750 gMC->Gspos("FTUB",itub,"FAIC",tubepos[0],tubepos[1],tubepos[2],idrotm[99],
751 "ONLY");
752 }
753
754}
755
756//_____________________________________________________________________________
757void AliTOFv4T0::DrawModule() const
758{
759 //
760 // Draw a shaded view of the Time Of Flight version 4
761 //
762 // Set everything unseen
763 gMC->Gsatt("*", "seen", -1);
764 //
765 // Set ALIC mother transparent
766 gMC->Gsatt("ALIC","SEEN",0);
767 //
768 // Set the volumes visible
769 gMC->Gsatt("ALIC","SEEN",0);
770
771 gMC->Gsatt("FTOA","SEEN",1);
772 gMC->Gsatt("FTOB","SEEN",1);
773 gMC->Gsatt("FTOC","SEEN",1);
774 gMC->Gsatt("FLTA","SEEN",1);
775 gMC->Gsatt("FLTB","SEEN",1);
776 gMC->Gsatt("FLTC","SEEN",1);
777 gMC->Gsatt("FPLA","SEEN",1);
778 gMC->Gsatt("FPLB","SEEN",1);
779 gMC->Gsatt("FPLC","SEEN",1);
780 gMC->Gsatt("FSTR","SEEN",1);
781 gMC->Gsatt("FPEA","SEEN",1);
782 gMC->Gsatt("FPEB","SEEN",1);
783 gMC->Gsatt("FPEC","SEEN",1);
784
785 gMC->Gsatt("FLZ1","SEEN",0);
786 gMC->Gsatt("FLZ2","SEEN",0);
787 gMC->Gsatt("FLZ3","SEEN",0);
788 gMC->Gsatt("FLX1","SEEN",0);
789 gMC->Gsatt("FLX2","SEEN",0);
790 gMC->Gsatt("FLX3","SEEN",0);
791 gMC->Gsatt("FPAD","SEEN",0);
792
793 gMC->Gdopt("hide", "on");
794 gMC->Gdopt("shad", "on");
795 gMC->Gsatt("*", "fill", 7);
796 gMC->SetClipBox(".");
797 gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000);
798 gMC->DefaultRange();
799 gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02);
800 gMC->Gdhead(1111, "Time Of Flight");
801 gMC->Gdman(18, 4, "MAN");
802 gMC->Gdopt("hide","off");
803}
804//_____________________________________________________________________________
805void AliTOFv4T0::DrawDetectorModules()
806{
807//
808// Draw a shaded view of the TOF detector version 4
809//
810
811 AliMC* pMC = AliMC::GetMC();
812
813//Set ALIC mother transparent
814 pMC->Gsatt("ALIC","SEEN",0);
815
816//
817//Set volumes visible
818//
819//=====> Level 1
820 // Level 1 for TOF volumes
821 gMC->Gsatt("B077","seen",0);
822
823
824//==========> Level 2
825 // Level 2
826 gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped -
827 gMC->Gsatt("B071","seen",0);
828 gMC->Gsatt("B074","seen",0);
829 gMC->Gsatt("B075","seen",0);
830 gMC->Gsatt("B080","seen",0); // B080 does not has sub-level
831
832
833 // Level 2 of B071
834 gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped -
835 gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped -
836 gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped -
837 gMC->Gsatt("B069","seen",-1); // all B069 sub-levels skipped -
838 gMC->Gsatt("B056","seen",0); // B056 does not has sub-levels -
839 gMC->Gsatt("B059","seen",-1); // all B059 sub-levels skipped -
840 gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped -
841 gMC->Gsatt("BTR1","seen",0); // BTR1 do not have sub-levels -
842 gMC->Gsatt("BTO1","seen",0);
843
844
845 // Level 2 of B074
846 gMC->Gsatt("BTR2","seen",0); // BTR2 does not has sub-levels -
847 gMC->Gsatt("BTO2","seen",0);
848
849 // Level 2 of B075
850 gMC->Gsatt("BTR3","seen",0); // BTR3 do not have sub-levels -
851 gMC->Gsatt("BTO3","seen",0);
852
853// ==================> Level 3
854 // Level 3 of B071 / Level 2 of BTO1
855 gMC->Gsatt("FTOC","seen",-2);
856 gMC->Gsatt("FTOB","seen",-2);
857 gMC->Gsatt("FTOA","seen",-2);
858
859 // Level 3 of B074 / Level 2 of BTO2
860 // -> cfr previous settings
861
862 // Level 3 of B075 / Level 2 of BTO3
863 // -> cfr previous settings
864
865 gMC->Gdopt("hide","on");
866 gMC->Gdopt("shad","on");
867 gMC->Gsatt("*", "fill", 5);
868 gMC->SetClipBox(".");
869 gMC->SetClipBox("*", 0, 1000, 0, 1000, 0, 1000);
870 gMC->DefaultRange();
871 gMC->Gdraw("alic", 45, 40, 0, 10, 10, .015, .015);
872 gMC->Gdhead(1111,"TOF detector V1");
873 gMC->Gdman(18, 4, "MAN");
874 gMC->Gdopt("hide","off");
875}
876
877//_____________________________________________________________________________
878void AliTOFv4T0::DrawDetectorStrips()
879{
880 //
881 // Draw a shaded view of the TOF strips for version 4
882 //
883
884 AliMC* pMC = AliMC::GetMC();
885
886 //Set ALIC mother transparent
887 pMC->Gsatt("ALIC","SEEN",0);
888
889 //
890 //Set volumes visible
891 //=====> Level 1
892 // Level 1 for TOF volumes
893 gMC->Gsatt("B077","seen",0);
894
895 //==========> Level 2
896 // Level 2
897 gMC->Gsatt("B076","seen",-1); // all B076 sub-levels skipped -
898 gMC->Gsatt("B071","seen",0);
899 gMC->Gsatt("B074","seen",0);
900 gMC->Gsatt("B075","seen",0);
901 gMC->Gsatt("B080","seen",0); // B080 does not has sub-level
902
903 // Level 2 of B071
904 gMC->Gsatt("B063","seen",-1); // all B063 sub-levels skipped -
905 gMC->Gsatt("B065","seen",-1); // all B065 sub-levels skipped -
906 gMC->Gsatt("B067","seen",-1); // all B067 sub-levels skipped -
907 gMC->Gsatt("B069","seen",-1); // all B069 sub-levels skipped -
908 gMC->Gsatt("B056","seen",0); // B056 does not has sub-levels -
909 gMC->Gsatt("B059","seen",-1); // all B059 sub-levels skipped -
910 gMC->Gsatt("B072","seen",-1); // all B072 sub-levels skipped -
911 gMC->Gsatt("BTR1","seen",0); // BTR1 do not have sub-levels -
912 gMC->Gsatt("BTO1","seen",0);
913
914 // ==================> Level 3
915 // Level 3 of B071 / Level 2 of BTO1
916 gMC->Gsatt("FTOC","seen",0);
917 gMC->Gsatt("FTOB","seen",0);
918 gMC->Gsatt("FTOA","seen",0);
919
920 // Level 3 of B074 / Level 2 of BTO2
921 // -> cfr previous settings
922
923 // Level 3 of B075 / Level 2 of BTO3
924 // -> cfr previous settings
925
926
927 // ==========================> Level 4
928 // Level 4 of B071 / Level 3 of BTO1 / Level 2 of FTOC
929 gMC->Gsatt("FLTC","seen",0);
930 // Level 4 of B071 / Level 3 of BTO1 / Level 2 of FTOB
931 gMC->Gsatt("FLTB","seen",0);
932 // Level 4 of B071 / Level 3 of BTO1 / Level 2 of FTOA
933 gMC->Gsatt("FLTA","seen",0);
934
935 // Level 4 of B074 / Level 3 of BTO2 / Level 2 of FTOC
936 // -> cfr previous settings
937 // Level 4 of B074 / Level 3 of BTO2 / Level 2 of FTOB
938 // -> cfr previous settings
939
940 // Level 4 of B075 / Level 3 of BTO3 / Level 2 of FTOC
941 // -> cfr previous settings
942
943 //======================================> Level 5
944 // Level 5 of B071 / Level 4 of BTO1 / Level 3 of FTOC / Level 2 of FLTC
945 gMC->Gsatt("FALC","seen",0); // no children for FALC
946 gMC->Gsatt("FSTR","seen",-2);
947 gMC->Gsatt("FPEC","seen",0); // no children for FPEC
948 gMC->Gsatt("FECC","seen",0); // no children for FECC
949 gMC->Gsatt("FWAC","seen",0); // no children for FWAC
950 gMC->Gsatt("FAIC","seen",0); // no children for FAIC
951
952 // Level 5 of B071 / Level 4 of BTO1 / Level 3 of FTOB / Level 2 of FLTB
953 gMC->Gsatt("FALB","seen",0); // no children for FALB
954 //--> gMC->Gsatt("FSTR","seen",-2);
955
956
957 // -> cfr previous settings
958 gMC->Gsatt("FPEB","seen",0); // no children for FPEB
959 gMC->Gsatt("FECB","seen",0); // no children for FECB
960 gMC->Gsatt("FWAB","seen",0); // no children for FWAB
961 gMC->Gsatt("FAIB","seen",0); // no children for FAIB
962
963 // Level 5 of B071 / Level 4 of BTO1 / Level 3 of FTOA / Level 2 of FLTA
964 gMC->Gsatt("FALA","seen",0); // no children for FALB
965 //--> gMC->Gsatt("FSTR","seen",-2);
966 // -> cfr previous settings
967 gMC->Gsatt("FPEA","seen",0); // no children for FPEA
968 gMC->Gsatt("FECA","seen",0); // no children for FECA
969 gMC->Gsatt("FWAA","seen",0); // no children for FWAA
970 gMC->Gsatt("FAIA","seen",0); // no children for FAIA
971
972 // Level 2 of B074
973 gMC->Gsatt("BTR2","seen",0); // BTR2 does not has sub-levels -
974 gMC->Gsatt("BTO2","seen",0);
975
976 // Level 2 of B075
977 gMC->Gsatt("BTR3","seen",0); // BTR3 do not have sub-levels -
978 gMC->Gsatt("BTO3","seen",0);
979
980 // for others Level 5, cfr. previous settings
981
982 gMC->Gdopt("hide","on");
983 gMC->Gdopt("shad","on");
984 gMC->Gsatt("*", "fill", 5);
985 gMC->SetClipBox(".");
986 gMC->SetClipBox("*", 0, 1000, 0, 1000, 0, 1000);
987 gMC->DefaultRange();
988 gMC->Gdraw("alic", 45, 40, 0, 10, 10, .015, .015);
989 gMC->Gdhead(1111,"TOF Strips V1");
990 gMC->Gdman(18, 4, "MAN");
991 gMC->Gdopt("hide","off");
992}
993
994//_____________________________________________________________________________
995void AliTOFv4T0::CreateMaterials()
996{
997 //
998 // Define materials for the Time Of Flight
999 //
1000 AliTOF::CreateMaterials();
1001}
1002
1003//_____________________________________________________________________________
1004void AliTOFv4T0::Init()
1005{
1006 //
1007 // Initialise the detector after the geometry has been defined
1008 //
1009 if(fDebug) {
1010 printf("%s: **************************************"
1011 " TOF "
1012 "**************************************\n",ClassName());
1013 printf("\n%s: Version 4 of TOF initialing, "
1014 "symmetric TOF - Full Coverage version\n",ClassName());
1015 }
1016
1017 AliTOF::Init();
1018
1019 fIdFTOA = gMC->VolId("FTOA");
1020 fIdFTOB = gMC->VolId("FTOB");
1021 fIdFTOC = gMC->VolId("FTOC");
1022 fIdFLTA = gMC->VolId("FLTA");
1023 fIdFLTB = gMC->VolId("FLTB");
1024 fIdFLTC = gMC->VolId("FLTC");
1025
1026 if(fDebug) {
1027 printf("%s: **************************************"
1028 " TOF "
1029 "**************************************\n",ClassName());
1030 }
1031}
1032
1033//_____________________________________________________________________________
1034void AliTOFv4T0::StepManager()
1035{
1036 //
1037 // Procedure called at each step in the Time Of Flight
1038 //
1039 TLorentzVector mom, pos;
1040 Float_t xm[3],pm[3],xpad[3],ppad[3];
1041 Float_t hits[14],phi,phid,z;
1042 Int_t vol[5];
1043 Int_t sector, plate, padx, padz, strip;
1044 Int_t copy, padzid, padxid, stripid, i;
1045 Int_t *idtmed = fIdtmed->GetArray()-499;
1046 Float_t incidenceAngle;
1047
1048 if(gMC->GetMedium()==idtmed[513] &&
1049 gMC->IsTrackEntering() && gMC->TrackCharge()
1050 && gMC->CurrentVolID(copy)==fIdSens)
1051 {
1052 // getting information about hit volumes
1053
1054 padzid=gMC->CurrentVolOffID(2,copy);
1055 padz=copy;
1056
1057 padxid=gMC->CurrentVolOffID(1,copy);
1058 padx=copy;
1059
1060 stripid=gMC->CurrentVolOffID(4,copy);
1061 strip=copy;
1062
1063 gMC->TrackPosition(pos);
1064 gMC->TrackMomentum(mom);
1065
1066// Double_t NormPos=1./pos.Rho();
1067 Double_t normMom=1./mom.Rho();
1068
1069// getting the cohordinates in pad ref system
1070 xm[0] = (Float_t)pos.X();
1071 xm[1] = (Float_t)pos.Y();
1072 xm[2] = (Float_t)pos.Z();
1073
1074 pm[0] = (Float_t)mom.X()*normMom;
1075 pm[1] = (Float_t)mom.Y()*normMom;
1076 pm[2] = (Float_t)mom.Z()*normMom;
1077
1078 gMC->Gmtod(xm,xpad,1);
1079 gMC->Gmtod(pm,ppad,2);
1080
1081 incidenceAngle = TMath::ACos(ppad[1])*kRaddeg;
1082
1083 z = pos[2];
1084
1085 plate = 0;
1086 if (TMath::Abs(z) <= fZlenA*0.5) plate = 3;
1087 if (z < (fZlenA*0.5+fZlenB) &&
1088 z > fZlenA*0.5) plate = 4;
1089 if (z >-(fZlenA*0.5+fZlenB) &&
1090 z < -fZlenA*0.5) plate = 2;
1091 if (z > (fZlenA*0.5+fZlenB)) plate = 5;
1092 if (z <-(fZlenA*0.5+fZlenB)) plate = 1;
1093
1094 phi = pos.Phi();
1095 phid = phi*kRaddeg+180.;
1096 sector = Int_t (phid/20.);
1097 sector++;
1098
1099 for(i=0;i<3;++i) {
1100 hits[i] = pos[i];
1101 hits[i+3] = pm[i];
1102 }
1103
1104 hits[6] = mom.Rho();
1105 hits[7] = pos[3];
1106 hits[8] = xpad[0];
1107 hits[9] = xpad[1];
1108 hits[10]= xpad[2];
1109 hits[11]= incidenceAngle;
1110 hits[12]= gMC->Edep();
1111 hits[13]= gMC->TrackLength();
1112
1113 vol[0]= sector;
1114 vol[1]= plate;
1115 vol[2]= strip;
1116 vol[3]= padx;
1117 vol[4]= padz;
1118
1119 AddT0Hit(gAlice->CurrentTrack(),vol, hits);
1120 }
1121}