]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TPC/Rec/AliTPCseed.cxx
1. Updated comments for batch submission
[u/mrichter/AliRoot.git] / TPC / Rec / AliTPCseed.cxx
... / ...
CommitLineData
1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16
17
18
19//-----------------------------------------------------------------
20//
21// Implementation of the TPC seed class
22// This class is used by the AliTPCtracker class
23// Origin: Marian Ivanov, CERN, Marian.Ivanov@cern.ch
24//-----------------------------------------------------------------
25#include <TVectorF.h>
26#include "TClonesArray.h"
27#include "TGraphErrors.h"
28#include "AliTPCseed.h"
29#include "AliTPCReconstructor.h"
30#include "AliTPCClusterParam.h"
31#include "AliTPCCalPad.h"
32#include "AliTPCCalROC.h"
33#include "AliTPCcalibDB.h"
34#include "AliTPCParam.h"
35#include "AliMathBase.h"
36#include "AliTPCTransform.h"
37#include "AliSplineFit.h"
38#include "AliCDBManager.h"
39#include "AliTPCcalibDButil.h"
40
41
42ClassImp(AliTPCseed)
43
44
45
46AliTPCseed::AliTPCseed():
47 AliTPCtrack(),
48 fEsd(0x0),
49 fClusterOwner(kFALSE),
50 fRow(0),
51 fSector(-1),
52 fRelativeSector(-1),
53 fCurrentSigmaY2(1e10),
54 fCurrentSigmaZ2(1e10),
55 fCMeanSigmaY2p30(-1.), //! current mean sigma Y2 - mean30%
56 fCMeanSigmaZ2p30(-1.), //! current mean sigma Z2 - mean30%
57 fCMeanSigmaY2p30R(-1.), //! current mean sigma Y2 - mean2%
58 fCMeanSigmaZ2p30R(-1.), //! current mean sigma Z2 - mean2%
59 //
60 fErrorY2(1e10),
61 fErrorZ2(1e10),
62 fCurrentCluster(0x0),
63 fCurrentClusterIndex1(-1),
64 fInDead(kFALSE),
65 fIsSeeding(kFALSE),
66 fNoCluster(0),
67 fSort(0),
68 fBSigned(kFALSE),
69 fSeedType(0),
70 fSeed1(-1),
71 fSeed2(-1),
72 fMAngular(0),
73 fCircular(0),
74 fPoolID(-1)
75{
76 //
77 for (Int_t i=0;i<160;i++) SetClusterIndex2(i,-3);
78 for (Int_t i=0;i<160;i++) fClusterPointer[i]=0;
79 for (Int_t i=0;i<3;i++) fKinkIndexes[i]=0;
80 for (Int_t i=0;i<AliPID::kSPECIES;i++) fTPCr[i]=0.2;
81 for (Int_t i=0;i<4;i++) {
82 fDEDX[i] = 0.;
83 fSDEDX[i] = 1e10;
84 fNCDEDX[i] = 0;
85 fNCDEDXInclThres[i] = 0;
86 }
87 fDEDX[4] = 0;
88 for (Int_t i=0;i<12;i++) fOverlapLabels[i] = -1;
89}
90
91AliTPCseed::AliTPCseed(const AliTPCseed &s, Bool_t clusterOwner):
92 AliTPCtrack(s),
93 fEsd(0x0),
94 fClusterOwner(clusterOwner),
95 fRow(0),
96 fSector(-1),
97 fRelativeSector(-1),
98 fCurrentSigmaY2(-1),
99 fCurrentSigmaZ2(-1),
100 fCMeanSigmaY2p30(-1.), //! current mean sigma Y2 - mean30%
101 fCMeanSigmaZ2p30(-1.), //! current mean sigma Z2 - mean30%
102 fCMeanSigmaY2p30R(-1.), //! current mean sigma Y2 - mean2%
103 fCMeanSigmaZ2p30R(-1.), //! current mean sigma Z2 - mean2%
104 fErrorY2(1e10),
105 fErrorZ2(1e10),
106 fCurrentCluster(0x0),
107 fCurrentClusterIndex1(-1),
108 fInDead(kFALSE),
109 fIsSeeding(kFALSE),
110 fNoCluster(0),
111 fSort(0),
112 fBSigned(kFALSE),
113 fSeedType(0),
114 fSeed1(-1),
115 fSeed2(-1),
116 fMAngular(0),
117 fCircular(0),
118 fPoolID(-1)
119{
120 //---------------------
121 // dummy copy constructor
122 //-------------------------
123 for (Int_t i=0;i<160;i++) {
124 fClusterPointer[i]=0;
125 if (fClusterOwner){
126 if (s.fClusterPointer[i])
127 fClusterPointer[i] = new AliTPCclusterMI(*(s.fClusterPointer[i]));
128 }else{
129 fClusterPointer[i] = s.fClusterPointer[i];
130 }
131 fTrackPoints[i] = s.fTrackPoints[i];
132 }
133 for (Int_t i=0;i<160;i++) fIndex[i] = s.fIndex[i];
134 for (Int_t i=0;i<AliPID::kSPECIES;i++) fTPCr[i]=s.fTPCr[i];
135 for (Int_t i=0;i<4;i++) {
136 fDEDX[i] = s.fDEDX[i];
137 fSDEDX[i] = s.fSDEDX[i];
138 fNCDEDX[i] = s.fNCDEDX[i];
139 fNCDEDXInclThres[i] = s.fNCDEDXInclThres[i];
140 }
141 fDEDX[4] = s.fDEDX[4];
142 for (Int_t i=0;i<12;i++) fOverlapLabels[i] = s.fOverlapLabels[i];
143
144}
145
146
147AliTPCseed::AliTPCseed(const AliTPCtrack &t):
148 AliTPCtrack(t),
149 fEsd(0x0),
150 fClusterOwner(kFALSE),
151 fRow(0),
152 fSector(-1),
153 fRelativeSector(-1),
154 fCurrentSigmaY2(-1),
155 fCurrentSigmaZ2(-1),
156 fCMeanSigmaY2p30(-1.), //! current mean sigma Y2 - mean30%
157 fCMeanSigmaZ2p30(-1.), //! current mean sigma Z2 - mean30%
158 fCMeanSigmaY2p30R(-1.), //! current mean sigma Y2 - mean2%
159 fCMeanSigmaZ2p30R(-1.), //! current mean sigma Z2 - mean2%
160 fErrorY2(1e10),
161 fErrorZ2(1e10),
162 fCurrentCluster(0x0),
163 fCurrentClusterIndex1(-1),
164 fInDead(kFALSE),
165 fIsSeeding(kFALSE),
166 fNoCluster(0),
167 fSort(0),
168 fBSigned(kFALSE),
169 fSeedType(0),
170 fSeed1(-1),
171 fSeed2(-1),
172 fMAngular(0),
173 fCircular(0),
174 fPoolID(-1)
175{
176 //
177 // Constructor from AliTPCtrack
178 //
179 fFirstPoint =0;
180 for (Int_t i=0;i<5;i++) fTPCr[i]=0.2;
181 for (Int_t i=0;i<160;i++) {
182 fClusterPointer[i] = 0;
183 Int_t index = t.GetClusterIndex(i);
184 if (index>=-1){
185 SetClusterIndex2(i,index);
186 }
187 else{
188 SetClusterIndex2(i,-3);
189 }
190 }
191 for (Int_t i=0;i<4;i++) {
192 fDEDX[i] = 0.;
193 fSDEDX[i] = 1e10;
194 fNCDEDX[i] = 0;
195 fNCDEDXInclThres[i] = 0;
196 }
197 fDEDX[4] = 0;
198 for (Int_t i=0;i<12;i++) fOverlapLabels[i] = -1;
199}
200
201AliTPCseed::AliTPCseed(Double_t xr, Double_t alpha, const Double_t xx[5],
202 const Double_t cc[15], Int_t index):
203 AliTPCtrack(xr, alpha, xx, cc, index),
204 fEsd(0x0),
205 fClusterOwner(kFALSE),
206 fRow(0),
207 fSector(-1),
208 fRelativeSector(-1),
209 fCurrentSigmaY2(-1),
210 fCurrentSigmaZ2(-1),
211 fCMeanSigmaY2p30(-1.), //! current mean sigma Y2 - mean30%
212 fCMeanSigmaZ2p30(-1.), //! current mean sigma Z2 - mean30%
213 fCMeanSigmaY2p30R(-1.), //! current mean sigma Y2 - mean2%
214 fCMeanSigmaZ2p30R(-1.), //! current mean sigma Z2 - mean2%
215 fErrorY2(1e10),
216 fErrorZ2(1e10),
217 fCurrentCluster(0x0),
218 fCurrentClusterIndex1(-1),
219 fInDead(kFALSE),
220 fIsSeeding(kFALSE),
221 fNoCluster(0),
222 fSort(0),
223 fBSigned(kFALSE),
224 fSeedType(0),
225 fSeed1(-1),
226 fSeed2(-1),
227 fMAngular(0),
228 fCircular(0),
229 fPoolID(-1)
230{
231 //
232 // Constructor
233 //
234 fFirstPoint =0;
235 for (Int_t i=0;i<160;i++) SetClusterIndex2(i,-3);
236 for (Int_t i=0;i<160;i++) fClusterPointer[i]=0;
237 for (Int_t i=0;i<5;i++) fTPCr[i]=0.2;
238 for (Int_t i=0;i<4;i++) {
239 fDEDX[i] = 0.;
240 fSDEDX[i] = 1e10;
241 fNCDEDX[i] = 0;
242 fNCDEDXInclThres[i] = 0;
243 }
244 fDEDX[4] = 0;
245 for (Int_t i=0;i<12;i++) fOverlapLabels[i] = -1;
246}
247
248AliTPCseed::~AliTPCseed(){
249 //
250 // destructor
251 fNoCluster =0;
252 if (fClusterOwner){
253 for (Int_t icluster=0; icluster<160; icluster++){
254 delete fClusterPointer[icluster];
255 }
256 }
257
258}
259//_________________________________________________
260AliTPCseed & AliTPCseed::operator=(const AliTPCseed &param)
261{
262 //
263 // assignment operator
264 // don't touch pool ID
265 //
266 if(this!=&param){
267 AliTPCtrack::operator=(param);
268 fEsd =param.fEsd;
269 fClusterOwner = param.fClusterOwner;
270 if (!fClusterOwner) for(Int_t i = 0;i<160;++i)fClusterPointer[i] = param.fClusterPointer[i];
271 else for(Int_t i = 0;i<160;++i) {
272 delete fClusterPointer[i];
273 fClusterPointer[i] = new AliTPCclusterMI(*(param.fClusterPointer[i]));
274 }
275 // leave out fPoint, they are also not copied in the copy ctor...
276 // but deleted in the dtor... strange...
277 fRow = param.fRow;
278 fSector = param.fSector;
279 fRelativeSector = param.fRelativeSector;
280 fCurrentSigmaY2 = param.fCurrentSigmaY2;
281 fCurrentSigmaZ2 = param.fCurrentSigmaZ2;
282 fErrorY2 = param.fErrorY2;
283 fErrorZ2 = param.fErrorZ2;
284 fCurrentCluster = param.fCurrentCluster; // this is not allocated by AliTPCSeed
285 fCurrentClusterIndex1 = param.fCurrentClusterIndex1;
286 fInDead = param.fInDead;
287 fIsSeeding = param.fIsSeeding;
288 fNoCluster = param.fNoCluster;
289 fSort = param.fSort;
290 fBSigned = param.fBSigned;
291 for(Int_t i = 0;i<4;++i){
292 fDEDX[i] = param.fDEDX[i];
293 fSDEDX[i] = param.fSDEDX[i];
294 fNCDEDX[i] = param.fNCDEDX[i];
295 fNCDEDXInclThres[i] = param.fNCDEDXInclThres[i];
296 }
297 fDEDX[4] = param.fDEDX[4];
298 for(Int_t i = 0;i<AliPID::kSPECIES;++i)fTPCr[i] = param.fTPCr[i];
299
300 fSeedType = param.fSeedType;
301 fSeed1 = param.fSeed1;
302 fSeed2 = param.fSeed2;
303 for(Int_t i = 0;i<12;++i)fOverlapLabels[i] = param.fOverlapLabels[i];
304 fMAngular = param.fMAngular;
305 fCircular = param.fCircular;
306 for(int i = 0;i<160;++i)fTrackPoints[i] = param.fTrackPoints[i];
307 }
308 return (*this);
309}
310//____________________________________________________
311AliTPCTrackerPoint * AliTPCseed::GetTrackPoint(Int_t i)
312{
313 //
314 //
315 return &fTrackPoints[i];
316}
317
318
319
320Double_t AliTPCseed::GetDensityFirst(Int_t n)
321{
322 //
323 //
324 // return cluster for n rows bellow first point
325 Int_t nfoundable = 1;
326 Int_t nfound = 1;
327 for (Int_t i=fLastPoint-1;i>0&&nfoundable<n; i--){
328 Int_t index = GetClusterIndex2(i);
329 if (index!=-1) nfoundable++;
330 if (index>0) nfound++;
331 }
332 if (nfoundable<n) return 0;
333 return Double_t(nfound)/Double_t(nfoundable);
334
335}
336
337
338void AliTPCseed::GetClusterStatistic(Int_t first, Int_t last, Int_t &found, Int_t &foundable, Int_t &shared, Bool_t plus2)
339{
340 // get cluster stat. on given region
341 //
342 found = 0;
343 foundable = 0;
344 shared =0;
345 for (Int_t i=first;i<last; i++){
346 Int_t index = GetClusterIndex2(i);
347 if (index!=-1) foundable++;
348 if (index&0x8000) continue;
349 if (fClusterPointer[i]) {
350 found++;
351 }
352 else
353 continue;
354
355 if (fClusterPointer[i]->IsUsed(10)) {
356 shared++;
357 continue;
358 }
359 if (!plus2) continue; //take also neighborhoud
360 //
361 if ( (i>0) && fClusterPointer[i-1]){
362 if (fClusterPointer[i-1]->IsUsed(10)) {
363 shared++;
364 continue;
365 }
366 }
367 if ( fClusterPointer[i+1]){
368 if (fClusterPointer[i+1]->IsUsed(10)) {
369 shared++;
370 continue;
371 }
372 }
373
374 }
375 //if (shared>found){
376 //Error("AliTPCseed::GetClusterStatistic","problem\n");
377 //}
378}
379
380
381
382
383
384void AliTPCseed::Reset(Bool_t all)
385{
386 //
387 //
388 SetNumberOfClusters(0);
389 fNFoundable = 0;
390 SetChi2(0);
391 ResetCovariance(10.);
392 /*
393 if (fTrackPoints){
394 for (Int_t i=0;i<8;i++){
395 delete [] fTrackPoints[i];
396 }
397 delete fTrackPoints;
398 fTrackPoints =0;
399 }
400 */
401
402 if (all){
403 for (Int_t i=200;i--;) SetClusterIndex2(i,-3);
404 if (!fClusterOwner) for (Int_t i=160;i--;) fClusterPointer[i]=0;
405 else for (Int_t i=160;i--;) {delete fClusterPointer[i]; fClusterPointer[i]=0;}
406 }
407
408}
409
410
411void AliTPCseed::Modify(Double_t factor)
412{
413
414 //------------------------------------------------------------------
415 //This function makes a track forget its history :)
416 //------------------------------------------------------------------
417 if (factor<=0) {
418 ResetCovariance(10.);
419 return;
420 }
421 ResetCovariance(factor);
422
423 SetNumberOfClusters(0);
424 fNFoundable =0;
425 SetChi2(0);
426 fRemoval = 0;
427 fCurrentSigmaY2 = 0.000005;
428 fCurrentSigmaZ2 = 0.000005;
429 fNoCluster = 0;
430 //fFirstPoint = 160;
431 //fLastPoint = 0;
432}
433
434
435
436
437Int_t AliTPCseed::GetProlongation(Double_t xk, Double_t &y, Double_t & z) const
438{
439 //-----------------------------------------------------------------
440 // This function find proloncation of a track to a reference plane x=xk.
441 // doesn't change internal state of the track
442 //-----------------------------------------------------------------
443
444 Double_t x1=GetX(), x2=x1+(xk-x1), dx=x2-x1;
445
446 if (TMath::Abs(GetSnp()+GetC()*dx) >= AliTPCReconstructor::GetMaxSnpTrack()) {
447 return 0;
448 }
449
450 // Double_t y1=fP0, z1=fP1;
451 Double_t c1=GetSnp(), r1=sqrt((1.-c1)*(1.+c1));
452 Double_t c2=c1 + GetC()*dx, r2=sqrt((1.-c2)*(1.+c2));
453
454 y = GetY();
455 z = GetZ();
456 //y += dx*(c1+c2)/(r1+r2);
457 //z += dx*(c1+c2)/(c1*r2 + c2*r1)*fP3;
458
459 Double_t dy = dx*(c1+c2)/(r1+r2);
460 Double_t dz = 0;
461 //
462 Double_t delta = GetC()*dx*(c1+c2)/(c1*r2 + c2*r1);
463 /*
464 if (TMath::Abs(delta)>0.0001){
465 dz = fP3*TMath::ASin(delta)/fP4;
466 }else{
467 dz = dx*fP3*(c1+c2)/(c1*r2 + c2*r1);
468 }
469 */
470 // dz = fP3*AliTPCFastMath::FastAsin(delta)/fP4;
471 dz = GetTgl()*TMath::ASin(delta)/GetC();
472 //
473 y+=dy;
474 z+=dz;
475
476
477 return 1;
478}
479
480
481//_____________________________________________________________________________
482Double_t AliTPCseed::GetPredictedChi2(const AliCluster *c) const
483{
484 //-----------------------------------------------------------------
485 // This function calculates a predicted chi2 increment.
486 //-----------------------------------------------------------------
487 Double_t p[2]={c->GetY(), c->GetZ()};
488 Double_t cov[3]={fErrorY2, 0., fErrorZ2};
489
490 Float_t dx = ((AliTPCclusterMI*)c)->GetX()-GetX();
491 if (TMath::Abs(dx)>0){
492 Float_t ty = TMath::Tan(TMath::ASin(GetSnp()));
493 Float_t dy = dx*ty;
494 Float_t dz = dx*TMath::Sqrt(1.+ty*ty)*GetTgl();
495 p[0] = c->GetY()-dy;
496 p[1] = c->GetZ()-dz;
497 }
498 return AliExternalTrackParam::GetPredictedChi2(p,cov);
499}
500
501//_________________________________________________________________________________________
502
503
504Int_t AliTPCseed::Compare(const TObject *o) const {
505 //-----------------------------------------------------------------
506 // This function compares tracks according to the sector - for given sector according z
507 //-----------------------------------------------------------------
508 AliTPCseed *t=(AliTPCseed*)o;
509
510 if (fSort == 0){
511 if (t->fRelativeSector>fRelativeSector) return -1;
512 if (t->fRelativeSector<fRelativeSector) return 1;
513 Double_t z2 = t->GetZ();
514 Double_t z1 = GetZ();
515 if (z2>z1) return 1;
516 if (z2<z1) return -1;
517 return 0;
518 }
519 else {
520 Float_t f2 =1;
521 f2 = 1-20*TMath::Sqrt(t->GetSigma1Pt2())/(t->OneOverPt()+0.0066);
522 if (t->fBConstrain) f2=1.2;
523
524 Float_t f1 =1;
525 f1 = 1-20*TMath::Sqrt(GetSigma1Pt2())/(OneOverPt()+0.0066);
526
527 if (fBConstrain) f1=1.2;
528
529 if (t->GetNumberOfClusters()*f2 <GetNumberOfClusters()*f1) return -1;
530 else return +1;
531 }
532}
533
534
535
536
537//_____________________________________________________________________________
538Bool_t AliTPCseed::Update(const AliCluster *c, Double_t chisq, Int_t index)
539{
540 //-----------------------------------------------------------------
541 // This function associates a cluster with this track.
542 //-----------------------------------------------------------------
543 Int_t n=GetNumberOfClusters();
544 Int_t idx=GetClusterIndex(n); // save the current cluster index
545
546 AliTPCclusterMI cl(*(AliTPCclusterMI*)c); cl.SetSigmaY2(fErrorY2); cl.SetSigmaZ2(fErrorZ2);
547
548 AliTPCClusterParam * parcl = AliTPCcalibDB::Instance()->GetClusterParam();
549
550 Float_t ty = TMath::Tan(TMath::ASin(GetSnp()));
551
552 if( parcl ){
553 Int_t padSize = 0; // short pads
554 if (cl.GetDetector() >= 36) {
555 padSize = 1; // medium pads
556 if (cl.GetRow() > 63) padSize = 2; // long pads
557 }
558 Float_t waveCorr = parcl->GetWaveCorrection( padSize, cl.GetZ(), cl.GetMax(),cl.GetPad(), ty );
559 cl.SetY( cl.GetY() - waveCorr );
560 }
561
562 Float_t dx = ((AliTPCclusterMI*)c)->GetX()-GetX();
563 if (TMath::Abs(dx)>0){
564 Float_t dy = dx*ty;
565 Float_t dz = dx*TMath::Sqrt(1.+ty*ty)*GetTgl();
566 cl.SetY(cl.GetY()-dy);
567 cl.SetZ(cl.GetZ()-dz);
568 }
569
570
571 if (!AliTPCtrack::Update(&cl,chisq,index)) return kFALSE;
572
573 if (fCMeanSigmaY2p30<0){
574 fCMeanSigmaY2p30= c->GetSigmaY2(); //! current mean sigma Y2 - mean30%
575 fCMeanSigmaZ2p30= c->GetSigmaZ2(); //! current mean sigma Z2 - mean30%
576 fCMeanSigmaY2p30R = 1; //! current mean sigma Y2 - mean5%
577 fCMeanSigmaZ2p30R = 1; //! current mean sigma Z2 - mean5%
578 }
579 //
580 fCMeanSigmaY2p30= 0.70*fCMeanSigmaY2p30 +0.30*c->GetSigmaY2();
581 fCMeanSigmaZ2p30= 0.70*fCMeanSigmaZ2p30 +0.30*c->GetSigmaZ2();
582 if (fCurrentSigmaY2>0){
583 fCMeanSigmaY2p30R = 0.7*fCMeanSigmaY2p30R +0.3*c->GetSigmaY2()/fCurrentSigmaY2;
584 fCMeanSigmaZ2p30R = 0.7*fCMeanSigmaZ2p30R +0.3*c->GetSigmaZ2()/fCurrentSigmaZ2;
585 }
586
587
588 SetClusterIndex(n,idx); // restore the current cluster index
589 return kTRUE;
590}
591
592
593
594//_____________________________________________________________________________
595Float_t AliTPCseed::CookdEdx(Double_t low, Double_t up,Int_t i1, Int_t i2, Bool_t /* onlyused */) {
596 //-----------------------------------------------------------------
597 // This funtion calculates dE/dX within the "low" and "up" cuts.
598 //-----------------------------------------------------------------
599 // CookdEdxAnalytical(Double_t low, Double_t up, Int_t type, Int_t i1, Int_t i2, Int_t returnVal)
600 AliTPCParam *param = AliTPCcalibDB::Instance()->GetParameters();
601
602 Int_t row0 = param->GetNRowLow();
603 Int_t row1 = row0+param->GetNRowUp1();
604 Int_t row2 = row1+param->GetNRowUp2();
605 const AliTPCRecoParam * recoParam = AliTPCcalibDB::Instance()->GetTransform()->GetCurrentRecoParam();
606 Int_t useTot = 0;
607 if (recoParam) useTot = (recoParam->GetUseTotCharge())? 0:1;
608 //
609 //
610 TVectorF i1i2;
611 TVectorF iro;
612 TVectorF oro1;
613 TVectorF oro2;
614 TVectorF foro;
615
616 CookdEdxAnalytical(low,up,useTot ,i1 ,i2, 0, 2, 0, &i1i2);
617 CookdEdxAnalytical(low,up,useTot ,0 ,row0, 0, 2, 0, &iro);
618 CookdEdxAnalytical(low,up,useTot ,row0,row1, 0, 2, 0, &oro1);
619 CookdEdxAnalytical(low,up,useTot ,row1,row2, 0, 2, 0, &oro2);
620 CookdEdxAnalytical(low,up,useTot ,row0,row2, 0, 2, 0, &foro); // full OROC truncated mean
621
622 fDEDX[0] = i1i2(0);
623 fDEDX[1] = iro(0);
624 fDEDX[2] = oro1(0);
625 fDEDX[3] = oro2(0);
626 fDEDX[4] = foro(0); // full OROC truncated mean
627 //
628 fSDEDX[0] = i1i2(1);
629 fSDEDX[1] = iro(1);
630 fSDEDX[2] = oro1(1);
631 fSDEDX[3] = oro2(1);
632 //
633 fNCDEDX[0] = TMath::Nint(i1i2(2));
634 fNCDEDX[1] = TMath::Nint( iro(2));
635 fNCDEDX[2] = TMath::Nint(oro1(2));
636 fNCDEDX[3] = TMath::Nint(oro2(2));
637 //
638 fNCDEDXInclThres[0] = TMath::Nint(i1i2(2)+i1i2(9));
639 fNCDEDXInclThres[1] = TMath::Nint( iro(2)+ iro(9));
640 fNCDEDXInclThres[2] = TMath::Nint(oro1(2)+oro1(9));
641 fNCDEDXInclThres[3] = TMath::Nint(oro2(2)+oro2(9));
642 //
643 SetdEdx(fDEDX[0]);
644 return fDEDX[0];
645
646// return CookdEdxNorm(low,up,0,i1,i2,1,0,2);
647
648
649// Float_t amp[200];
650// Float_t angular[200];
651// Float_t weight[200];
652// Int_t index[200];
653// //Int_t nc = 0;
654// Float_t meanlog = 100.;
655
656// Float_t mean[4] = {0,0,0,0};
657// Float_t sigma[4] = {1000,1000,1000,1000};
658// Int_t nc[4] = {0,0,0,0};
659// Float_t norm[4] = {1000,1000,1000,1000};
660// //
661// //
662// fNShared =0;
663
664// Float_t gainGG = 1;
665// if (AliTPCcalibDB::Instance()->GetParameters()){
666// gainGG= AliTPCcalibDB::Instance()->GetParameters()->GetGasGain()/20000.; //relative gas gain
667// }
668
669
670// for (Int_t of =0; of<4; of++){
671// for (Int_t i=of+i1;i<i2;i+=4)
672// {
673// Int_t clindex = fIndex[i];
674// if (clindex<0||clindex&0x8000) continue;
675
676// //AliTPCTrackPoint * point = (AliTPCTrackPoint *) arr.At(i);
677// AliTPCTrackerPoint * point = GetTrackPoint(i);
678// //AliTPCTrackerPoint * pointm = GetTrackPoint(i-1);
679// //AliTPCTrackerPoint * pointp = 0;
680// //if (i<159) pointp = GetTrackPoint(i+1);
681
682// if (point==0) continue;
683// AliTPCclusterMI * cl = fClusterPointer[i];
684// if (cl==0) continue;
685// if (onlyused && (!cl->IsUsed(10))) continue;
686// if (cl->IsUsed(11)) {
687// fNShared++;
688// continue;
689// }
690// Int_t type = cl->GetType();
691// //if (point->fIsShared){
692// // fNShared++;
693// // continue;
694// //}
695// //if (pointm)
696// // if (pointm->fIsShared) continue;
697// //if (pointp)
698// // if (pointp->fIsShared) continue;
699
700// if (type<0) continue;
701// //if (type>10) continue;
702// //if (point->GetErrY()==0) continue;
703// //if (point->GetErrZ()==0) continue;
704
705// //Float_t ddy = (point->GetY()-cl->GetY())/point->GetErrY();
706// //Float_t ddz = (point->GetZ()-cl->GetZ())/point->GetErrZ();
707// //if ((ddy*ddy+ddz*ddz)>10) continue;
708
709
710// // if (point->GetCPoint().GetMax()<5) continue;
711// if (cl->GetMax()<5) continue;
712// Float_t angley = point->GetAngleY();
713// Float_t anglez = point->GetAngleZ();
714
715// Float_t rsigmay2 = point->GetSigmaY();
716// Float_t rsigmaz2 = point->GetSigmaZ();
717// /*
718// Float_t ns = 1.;
719// if (pointm){
720// rsigmay += pointm->GetTPoint().GetSigmaY();
721// rsigmaz += pointm->GetTPoint().GetSigmaZ();
722// ns+=1.;
723// }
724// if (pointp){
725// rsigmay += pointp->GetTPoint().GetSigmaY();
726// rsigmaz += pointp->GetTPoint().GetSigmaZ();
727// ns+=1.;
728// }
729// rsigmay/=ns;
730// rsigmaz/=ns;
731// */
732
733// Float_t rsigma = TMath::Sqrt(rsigmay2*rsigmaz2);
734
735// Float_t ampc = 0; // normalization to the number of electrons
736// if (i>64){
737// // ampc = 1.*point->GetCPoint().GetMax();
738// ampc = 1.*cl->GetMax();
739// //ampc = 1.*point->GetCPoint().GetQ();
740// // AliTPCClusterPoint & p = point->GetCPoint();
741// // Float_t dy = TMath::Abs(Int_t( TMath::Abs(p.GetY()/0.6)) - TMath::Abs(p.GetY()/0.6)+0.5);
742// // Float_t iz = (250.0-TMath::Abs(p.GetZ())+0.11)/0.566;
743// //Float_t dz =
744// // TMath::Abs( Int_t(iz) - iz + 0.5);
745// //ampc *= 1.15*(1-0.3*dy);
746// //ampc *= 1.15*(1-0.3*dz);
747// // Float_t zfactor = (AliTPCReconstructor::GetCtgRange()-0.0004*TMath::Abs(point->GetCPoint().GetZ()));
748// //ampc *=zfactor;
749// }
750// else{
751// //ampc = 1.0*point->GetCPoint().GetMax();
752// ampc = 1.0*cl->GetMax();
753// //ampc = 1.0*point->GetCPoint().GetQ();
754// //AliTPCClusterPoint & p = point->GetCPoint();
755// // Float_t dy = TMath::Abs(Int_t( TMath::Abs(p.GetY()/0.4)) - TMath::Abs(p.GetY()/0.4)+0.5);
756// //Float_t iz = (250.0-TMath::Abs(p.GetZ())+0.11)/0.566;
757// //Float_t dz =
758// // TMath::Abs( Int_t(iz) - iz + 0.5);
759
760// //ampc *= 1.15*(1-0.3*dy);
761// //ampc *= 1.15*(1-0.3*dz);
762// // Float_t zfactor = (1.02-0.000*TMath::Abs(point->GetCPoint().GetZ()));
763// //ampc *=zfactor;
764
765// }
766// ampc *= 2.0; // put mean value to channel 50
767// //ampc *= 0.58; // put mean value to channel 50
768// Float_t w = 1.;
769// // if (type>0) w = 1./(type/2.-0.5);
770// // Float_t z = TMath::Abs(cl->GetZ());
771// if (i<64) {
772// ampc /= 0.6;
773// //ampc /= (1+0.0008*z);
774// } else
775// if (i>128){
776// ampc /=1.5;
777// //ampc /= (1+0.0008*z);
778// }else{
779// //ampc /= (1+0.0008*z);
780// }
781
782// if (type<0) { //amp at the border - lower weight
783// // w*= 2.;
784
785// continue;
786// }
787// if (rsigma>1.5) ampc/=1.3; // if big backround
788// amp[nc[of]] = ampc;
789// amp[nc[of]] /=gainGG;
790// angular[nc[of]] = TMath::Sqrt(1.+angley*angley+anglez*anglez);
791// weight[nc[of]] = w;
792// nc[of]++;
793// }
794
795// TMath::Sort(nc[of],amp,index,kFALSE);
796// Float_t sumamp=0;
797// Float_t sumamp2=0;
798// Float_t sumw=0;
799// //meanlog = amp[index[Int_t(nc[of]*0.33)]];
800// meanlog = 50;
801// for (Int_t i=int(nc[of]*low+0.5);i<int(nc[of]*up+0.5);i++){
802// Float_t ampl = amp[index[i]]/angular[index[i]];
803// ampl = meanlog*TMath::Log(1.+ampl/meanlog);
804// //
805// sumw += weight[index[i]];
806// sumamp += weight[index[i]]*ampl;
807// sumamp2 += weight[index[i]]*ampl*ampl;
808// norm[of] += angular[index[i]]*weight[index[i]];
809// }
810// if (sumw<1){
811// SetdEdx(0);
812// }
813// else {
814// norm[of] /= sumw;
815// mean[of] = sumamp/sumw;
816// sigma[of] = sumamp2/sumw-mean[of]*mean[of];
817// if (sigma[of]>0.1)
818// sigma[of] = TMath::Sqrt(sigma[of]);
819// else
820// sigma[of] = 1000;
821
822// mean[of] = (TMath::Exp(mean[of]/meanlog)-1)*meanlog;
823// //mean *=(1-0.02*(sigma/(mean*0.17)-1.));
824// //mean *=(1-0.1*(norm-1.));
825// }
826// }
827
828// Float_t dedx =0;
829// fSdEdx =0;
830// fMAngular =0;
831// // mean[0]*= (1-0.05*(sigma[0]/(0.01+mean[1]*0.18)-1));
832// // mean[1]*= (1-0.05*(sigma[1]/(0.01+mean[0]*0.18)-1));
833
834
835// // dedx = (mean[0]* TMath::Sqrt((1.+nc[0]))+ mean[1]* TMath::Sqrt((1.+nc[1])) )/
836// // ( TMath::Sqrt((1.+nc[0]))+TMath::Sqrt((1.+nc[1])));
837
838// Int_t norm2 = 0;
839// Int_t norm3 = 0;
840// for (Int_t i =0;i<4;i++){
841// if (nc[i]>2&&nc[i]<1000){
842// dedx += mean[i] *nc[i];
843// fSdEdx += sigma[i]*(nc[i]-2);
844// fMAngular += norm[i] *nc[i];
845// norm2 += nc[i];
846// norm3 += nc[i]-2;
847// }
848// fDEDX[i] = mean[i];
849// fSDEDX[i] = sigma[i];
850// fNCDEDX[i]= nc[i];
851// }
852
853// if (norm3>0){
854// dedx /=norm2;
855// fSdEdx /=norm3;
856// fMAngular/=norm2;
857// }
858// else{
859// SetdEdx(0);
860// return 0;
861// }
862// // Float_t dedx1 =dedx;
863// /*
864// dedx =0;
865// for (Int_t i =0;i<4;i++){
866// if (nc[i]>2&&nc[i]<1000){
867// mean[i] = mean[i]*(1-0.12*(sigma[i]/(fSdEdx)-1.));
868// dedx += mean[i] *nc[i];
869// }
870// fDEDX[i] = mean[i];
871// }
872// dedx /= norm2;
873// */
874
875
876// SetdEdx(dedx);
877// return dedx;
878}
879
880void AliTPCseed::CookPID()
881{
882 //
883 // cook PID information according dEdx
884 //
885 Double_t fRange = 10.;
886 Double_t fRes = 0.1;
887 Double_t fMIP = 47.;
888 //
889 Int_t ns=AliPID::kSPECIES;
890 Double_t sumr =0;
891 for (Int_t j=0; j<ns; j++) {
892 Double_t mass=AliPID::ParticleMass(j);
893 Double_t mom=GetP();
894 Double_t dedx=fdEdx/fMIP;
895 Double_t bethe=AliMathBase::BetheBlochAleph(mom/mass);
896 Double_t sigma=fRes*bethe;
897 if (sigma>0.001){
898 if (TMath::Abs(dedx-bethe) > fRange*sigma) {
899 fTPCr[j]=TMath::Exp(-0.5*fRange*fRange)/sigma;
900 sumr+=fTPCr[j];
901 continue;
902 }
903 fTPCr[j]=TMath::Exp(-0.5*(dedx-bethe)*(dedx-bethe)/(sigma*sigma))/sigma;
904 sumr+=fTPCr[j];
905 }
906 else{
907 fTPCr[j]=1.;
908 sumr+=fTPCr[j];
909 }
910 }
911 for (Int_t j=0; j<ns; j++) {
912 fTPCr[j]/=sumr; //normalize
913 }
914}
915
916Double_t AliTPCseed::GetYat(Double_t xk) const {
917//-----------------------------------------------------------------
918// This function calculates the Y-coordinate of a track at the plane x=xk.
919//-----------------------------------------------------------------
920 if (TMath::Abs(GetSnp())>AliTPCReconstructor::GetMaxSnpTrack()) return 0.; //patch 01 jan 06
921 Double_t c1=GetSnp(), r1=TMath::Sqrt((1.-c1)*(1.+c1));
922 Double_t c2=c1+GetC()*(xk-GetX());
923 if (TMath::Abs(c2)>AliTPCReconstructor::GetMaxSnpTrack()) return 0;
924 Double_t r2=TMath::Sqrt((1.-c2)*(1.+c2));
925 return GetY() + (xk-GetX())*(c1+c2)/(r1+r2);
926}
927
928
929
930Float_t AliTPCseed::CookdEdxNorm(Double_t low, Double_t up, Int_t type, Int_t i1, Int_t i2, Bool_t shapeNorm,Int_t posNorm, Int_t padNorm, Int_t returnVal){
931
932 //
933 // calculates dedx using the cluster
934 // low - up specify trunc mean range - default form 0-0.7
935 // type - 1 - max charge or 0- total charge in cluster
936 // //2- max no corr 3- total+ correction
937 // i1-i2 - the pad-row range used for calculation
938 // shapeNorm - kTRUE -taken from OCDB
939 //
940 // posNorm - usage of pos normalization
941 // padNorm - pad type normalization
942 // returnVal - 0 return mean
943 // - 1 return RMS
944 // - 2 return number of clusters
945 //
946 // normalization parametrization taken from AliTPCClusterParam
947 //
948 AliTPCClusterParam * parcl = AliTPCcalibDB::Instance()->GetClusterParam();
949 AliTPCParam * param = AliTPCcalibDB::Instance()->GetParameters();
950 if (!parcl) return 0;
951 if (!param) return 0;
952 Int_t row0 = param->GetNRowLow();
953 Int_t row1 = row0+param->GetNRowUp1();
954
955 Float_t amp[160];
956 Int_t indexes[160];
957 Int_t ncl=0;
958 //
959 //
960 Float_t gainGG = 1; // gas gain factor -always enabled
961 Float_t gainPad = 1; // gain map - used always
962 Float_t corrShape = 1; // correction due angular effect, diffusion and electron attachment
963 Float_t corrPos = 1; // local position correction - if posNorm enabled
964 Float_t corrPadType = 1; // pad type correction - if padNorm enabled
965 Float_t corrNorm = 1; // normalization factor - set Q to channel 50
966 //
967 //
968 //
969 if (AliTPCcalibDB::Instance()->GetParameters()){
970 gainGG= AliTPCcalibDB::Instance()->GetParameters()->GetGasGain()/20000; //relative gas gain
971 }
972
973 const Float_t ktany = TMath::Tan(TMath::DegToRad()*10);
974 const Float_t kedgey =3.;
975 //
976 //
977 for (Int_t irow=i1; irow<i2; irow++){
978 AliTPCclusterMI* cluster = GetClusterPointer(irow);
979 if (!cluster) continue;
980 if (TMath::Abs(cluster->GetY())>cluster->GetX()*ktany-kedgey) continue; // edge cluster
981 Float_t charge= (type%2)? cluster->GetMax():cluster->GetQ();
982 Int_t ipad= 0;
983 if (irow>=row0) ipad=1;
984 if (irow>=row1) ipad=2;
985 //
986 //
987 //
988 AliTPCCalPad * gainMap = AliTPCcalibDB::Instance()->GetDedxGainFactor();
989 if (gainMap) {
990 //
991 // Get gainPad - pad by pad calibration
992 //
993 Float_t factor = 1;
994 AliTPCCalROC * roc = gainMap->GetCalROC(cluster->GetDetector());
995 if (irow < row0) { // IROC
996 factor = roc->GetValue(irow, TMath::Nint(cluster->GetPad()));
997 } else { // OROC
998 factor = roc->GetValue(irow - row0, TMath::Nint(cluster->GetPad()));
999 }
1000 if (factor>0.5) gainPad=factor;
1001 }
1002 //
1003 //do position and angular normalization
1004 //
1005 if (shapeNorm){
1006 if (type<=1){
1007 //
1008 AliTPCTrackerPoint * point = GetTrackPoint(irow);
1009 Float_t ty = TMath::Abs(point->GetAngleY());
1010 Float_t tz = TMath::Abs(point->GetAngleZ()*TMath::Sqrt(1+ty*ty));
1011
1012 Float_t dr = (250.-TMath::Abs(cluster->GetZ()))/250.;
1013 corrShape = parcl->Qnorm(ipad,type,dr,ty,tz);
1014 }
1015 }
1016
1017 if (posNorm>0){
1018 //
1019 // Do position normalization - relative distance to
1020 // center of pad- time bin
1021 // Work in progress
1022 // corrPos = parcl->QnormPos(ipad,type, cluster->GetPad(),
1023 // cluster->GetTimeBin(), cluster->GetZ(),
1024 // cluster->GetSigmaY2(),cluster->GetSigmaZ2(),
1025 // cluster->GetMax(),cluster->GetQ());
1026 // scaled response function
1027 Float_t yres0 = parcl->GetRMS0(0,ipad,0,0)/param->GetPadPitchWidth(cluster->GetDetector());
1028 Float_t zres0 = parcl->GetRMS0(1,ipad,0,0)/param->GetZWidth();
1029 //
1030
1031 AliTPCTrackerPoint * point = GetTrackPoint(irow);
1032 Float_t ty = TMath::Abs(point->GetAngleY());
1033 Float_t tz = TMath::Abs(point->GetAngleZ()*TMath::Sqrt(1+ty*ty));
1034
1035 if (type==1) corrPos =
1036 parcl->QmaxCorrection(cluster->GetDetector(), cluster->GetRow(),cluster->GetPad(),
1037 cluster->GetTimeBin(),ty,tz,yres0,zres0,0.4);
1038 if (type==0) corrPos =
1039 parcl->QtotCorrection(cluster->GetDetector(), cluster->GetRow(),cluster->GetPad(),
1040 cluster->GetTimeBin(),ty,tz,yres0,zres0,cluster->GetQ(),2.5,0.4);
1041 if (posNorm==3){
1042 Float_t dr = (250.-TMath::Abs(cluster->GetZ()))/250.;
1043 Double_t signtgl = (cluster->GetZ()*point->GetAngleZ()>0)? 1:-1;
1044 Double_t p2 = TMath::Abs(TMath::Sin(TMath::ATan(ty)));
1045 Float_t corrHis = parcl->QnormHis(ipad,type,dr,p2,TMath::Abs(point->GetAngleZ())*signtgl);
1046 if (corrHis>0) corrPos*=corrHis;
1047 }
1048
1049 }
1050
1051 if (padNorm==1){
1052 //taken from OCDB
1053 if (type==0 && parcl->QpadTnorm()) corrPadType = (*parcl->QpadTnorm())[ipad];
1054 if (type==1 && parcl->QpadMnorm()) corrPadType = (*parcl->QpadMnorm())[ipad];
1055
1056 }
1057 if (padNorm==2){
1058 corrPadType =param->GetPadPitchLength(cluster->GetDetector(),cluster->GetRow());
1059 //use hardwired - temp fix
1060 if (type==0) corrNorm=3.;
1061 if (type==1) corrNorm=1.;
1062 }
1063 //
1064 amp[ncl]=charge;
1065 amp[ncl]/=gainGG;
1066 amp[ncl]/=gainPad;
1067 amp[ncl]/=corrShape;
1068 amp[ncl]/=corrPadType;
1069 amp[ncl]/=corrPos;
1070 amp[ncl]/=corrNorm;
1071 //
1072 ncl++;
1073 }
1074
1075 if (type>3) return ncl;
1076 TMath::Sort(ncl,amp, indexes, kFALSE);
1077
1078 if (ncl<10) return 0;
1079
1080 Float_t suma=0;
1081 Float_t suma2=0;
1082 Float_t sumn=0;
1083 Int_t icl0=TMath::Nint(ncl*low);
1084 Int_t icl1=TMath::Nint(ncl*up);
1085 for (Int_t icl=icl0; icl<icl1;icl++){
1086 suma+=amp[indexes[icl]];
1087 suma2+=amp[indexes[icl]]*amp[indexes[icl]];
1088 sumn++;
1089 }
1090 Float_t mean =suma/sumn;
1091 Float_t rms =TMath::Sqrt(TMath::Abs(suma2/sumn-mean*mean));
1092 //
1093 // do time-dependent correction for pressure and temperature variations
1094 UInt_t runNumber = 1;
1095 Float_t corrTimeGain = 1;
1096 AliTPCTransform * trans = AliTPCcalibDB::Instance()->GetTransform();
1097 const AliTPCRecoParam * recoParam = AliTPCcalibDB::Instance()->GetTransform()->GetCurrentRecoParam();
1098 if (trans && recoParam->GetUseGainCorrectionTime()>0) {
1099 runNumber = trans->GetCurrentRunNumber();
1100 //AliTPCcalibDB::Instance()->SetRun(runNumber);
1101 TObjArray * timeGainSplines = AliTPCcalibDB::Instance()->GetTimeGainSplinesRun(runNumber);
1102 if (timeGainSplines) {
1103 UInt_t time = trans->GetCurrentTimeStamp();
1104 AliSplineFit * fitMIP = (AliSplineFit *) timeGainSplines->At(0);
1105 AliSplineFit * fitFPcosmic = (AliSplineFit *) timeGainSplines->At(1);
1106 if (fitMIP) {
1107 corrTimeGain = AliTPCcalibDButil::EvalGraphConst(fitMIP, time);/*fitMIP->Eval(time);*/
1108 } else {
1109 if (fitFPcosmic) corrTimeGain = AliTPCcalibDButil::EvalGraphConst(fitFPcosmic, time);/*fitFPcosmic->Eval(time);*/
1110 }
1111 }
1112 }
1113 mean /= corrTimeGain;
1114 rms /= corrTimeGain;
1115 //
1116 if (returnVal==1) return rms;
1117 if (returnVal==2) return ncl;
1118 return mean;
1119}
1120
1121Float_t AliTPCseed::CookdEdxAnalytical(Double_t low, Double_t up, Int_t type, Int_t i1, Int_t i2, Int_t returnVal, Int_t rowThres, Int_t mode, TVectorT<float> *returnVec){
1122
1123 //
1124 // calculates dedx using the cluster
1125 // low - up specify trunc mean range - default form 0-0.7
1126 // type - 1 - max charge or 0- total charge in cluster
1127 // //2- max no corr 3- total+ correction
1128 // i1-i2 - the pad-row range used for calculation
1129 //
1130 // posNorm - usage of pos normalization
1131 // returnVal - 0 return mean
1132 // - 1 return RMS
1133 // - 2 return number of clusters
1134 // - 3 ratio
1135 // - 4 mean upper half
1136 // - 5 mean - lower half
1137 // - 6 third moment
1138 // mode - 0 - linear
1139 // - 1 - logatithmic
1140 // rowThres - number of rows before and after given pad row to check for clusters below threshold
1141 //
1142 // normalization parametrization taken from AliTPCClusterParam
1143 //
1144 if (returnVec) returnVec->ResizeTo(10);
1145
1146 AliTPCClusterParam * parcl = AliTPCcalibDB::Instance()->GetClusterParam();
1147 AliTPCParam * param = AliTPCcalibDB::Instance()->GetParameters();
1148 if (!parcl) return 0;
1149 if (!param) return 0;
1150 Int_t row0 = param->GetNRowLow();
1151 Int_t row1 = row0+param->GetNRowUp1();
1152
1153 Float_t amp[160];
1154 Int_t indexes[160];
1155 Int_t ncl=0;
1156 Int_t nclBelowThr = 0; // counts number of clusters below threshold
1157 //
1158 //
1159 Float_t gainGG = 1; // gas gain factor -always enabled
1160 Float_t gainPad = 1; // gain map - used always
1161 Float_t corrPos = 1; // local position correction - if posNorm enabled
1162 //
1163 //
1164 //
1165 if (AliTPCcalibDB::Instance()->GetParameters()){
1166 gainGG= AliTPCcalibDB::Instance()->GetParameters()->GetGasGain()/20000; //relative gas gain
1167 }
1168 //
1169 // extract time-dependent correction for pressure and temperature variations
1170 //
1171 UInt_t runNumber = 1;
1172 Float_t corrTimeGain = 1;
1173 TObjArray * timeGainSplines = 0x0;
1174 TGraphErrors * grPadEqual = 0x0;
1175 TGraphErrors* grChamberGain[3]={0x0,0x0,0x0};
1176 //
1177 AliTPCTransform * trans = AliTPCcalibDB::Instance()->GetTransform();
1178 const AliTPCRecoParam * recoParam = AliTPCcalibDB::Instance()->GetTransform()->GetCurrentRecoParam();
1179 //
1180 if (recoParam->GetNeighborRowsDedx() == 0) rowThres = 0;
1181 //
1182 if (trans) {
1183 runNumber = trans->GetCurrentRunNumber();
1184 //AliTPCcalibDB::Instance()->SetRun(runNumber);
1185 timeGainSplines = AliTPCcalibDB::Instance()->GetTimeGainSplinesRun(runNumber);
1186 if (timeGainSplines && recoParam->GetUseGainCorrectionTime()>0) {
1187 UInt_t time = trans->GetCurrentTimeStamp();
1188 AliSplineFit * fitMIP = (AliSplineFit *) timeGainSplines->At(0);
1189 AliSplineFit * fitFPcosmic = (AliSplineFit *) timeGainSplines->At(1);
1190 if (fitMIP) {
1191 corrTimeGain = AliTPCcalibDButil::EvalGraphConst(fitMIP, time); /*fitMIP->Eval(time);*/
1192 } else {
1193 if (fitFPcosmic) corrTimeGain = AliTPCcalibDButil::EvalGraphConst(fitFPcosmic, time); /*fitFPcosmic->Eval(time); */
1194 }
1195 //
1196 if (type==1) grPadEqual = (TGraphErrors * ) timeGainSplines->FindObject("TGRAPHERRORS_MEANQMAX_PADREGIONGAIN_BEAM_ALL");
1197 if (type==0) grPadEqual = (TGraphErrors * ) timeGainSplines->FindObject("TGRAPHERRORS_MEANQTOT_PADREGIONGAIN_BEAM_ALL");
1198 const char* names[3]={"SHORT","MEDIUM","LONG"};
1199 for (Int_t iPadRegion=0; iPadRegion<3; ++iPadRegion)
1200 grChamberGain[iPadRegion]=(TGraphErrors*)timeGainSplines->FindObject(Form("TGRAPHERRORS_MEAN_CHAMBERGAIN_%s_BEAM_ALL",names[iPadRegion]));
1201 }
1202 }
1203
1204 const Float_t kClusterShapeCut = 1.5; // IMPPRTANT TO DO: move value to AliTPCRecoParam
1205 const Float_t ktany = TMath::Tan(TMath::DegToRad()*10);
1206 const Float_t kedgey =3.;
1207 //
1208 //
1209 for (Int_t irow=i1; irow<i2; irow++){
1210 AliTPCclusterMI* cluster = GetClusterPointer(irow);
1211 if (!cluster && irow > 1 && irow < 157) {
1212 Bool_t isClBefore = kFALSE;
1213 Bool_t isClAfter = kFALSE;
1214 for(Int_t ithres = 1; ithres <= rowThres; ithres++) {
1215 AliTPCclusterMI * clusterBefore = GetClusterPointer(irow - ithres);
1216 if (clusterBefore) isClBefore = kTRUE;
1217 AliTPCclusterMI * clusterAfter = GetClusterPointer(irow + ithres);
1218 if (clusterAfter) isClAfter = kTRUE;
1219 }
1220 if (isClBefore && isClAfter) nclBelowThr++;
1221 }
1222 if (!cluster) continue;
1223 //
1224 //
1225 if (TMath::Abs(cluster->GetY())>cluster->GetX()*ktany-kedgey) continue; // edge cluster
1226 //
1227 AliTPCTrackerPoint * point = GetTrackPoint(irow);
1228 if (point==0) continue;
1229 Float_t rsigmay = TMath::Sqrt(point->GetSigmaY());
1230 if (rsigmay > kClusterShapeCut) continue;
1231 //
1232 if (cluster->IsUsed(11)) continue; // remove shared clusters for PbPb
1233 //
1234 Float_t charge= (type%2)? cluster->GetMax():cluster->GetQ();
1235 Int_t ipad= 0;
1236 if (irow>=row0) ipad=1;
1237 if (irow>=row1) ipad=2;
1238 //
1239 //
1240 //
1241 AliTPCCalPad * gainMap = AliTPCcalibDB::Instance()->GetDedxGainFactor();
1242 if (gainMap) {
1243 //
1244 // Get gainPad - pad by pad calibration
1245 //
1246 Float_t factor = 1;
1247 AliTPCCalROC * roc = gainMap->GetCalROC(cluster->GetDetector());
1248 if (irow < row0) { // IROC
1249 factor = roc->GetValue(irow, TMath::Nint(cluster->GetPad()));
1250 } else { // OROC
1251 factor = roc->GetValue(irow - row0, TMath::Nint(cluster->GetPad()));
1252 }
1253 if (factor>0.3) gainPad=factor;
1254 }
1255 //
1256 // Do position normalization - relative distance to
1257 // center of pad- time bin
1258
1259 Float_t ty = TMath::Abs(point->GetAngleY());
1260 Float_t tz = TMath::Abs(point->GetAngleZ()*TMath::Sqrt(1+ty*ty));
1261 Float_t yres0 = parcl->GetRMS0(0,ipad,0,0)/param->GetPadPitchWidth(cluster->GetDetector());
1262 Float_t zres0 = parcl->GetRMS0(1,ipad,0,0)/param->GetZWidth();
1263
1264 yres0 *=parcl->GetQnormCorr(ipad, type,0);
1265 zres0 *=parcl->GetQnormCorr(ipad, type,1);
1266 Float_t effLength=parcl->GetQnormCorr(ipad, type,4)*0.5;
1267 Float_t effDiff =(parcl->GetQnormCorr(ipad, type,2)+parcl->GetQnormCorr(ipad, type,3))*0.5;
1268 //
1269 if (type==1) {
1270 corrPos = parcl->GetQnormCorr(ipad, type,5)*
1271 parcl->QmaxCorrection(cluster->GetDetector(), cluster->GetRow(),cluster->GetPad(),
1272 cluster->GetTimeBin(),ty,tz,yres0,zres0,effLength,effDiff);
1273 Float_t drm = 0.5-TMath::Abs(cluster->GetZ()/250.);
1274 corrPos*=(1+parcl->GetQnormCorr(ipad, type+2,0)*drm);
1275 corrPos*=(1+parcl->GetQnormCorr(ipad, type+2,1)*ty*ty);
1276 corrPos*=(1+parcl->GetQnormCorr(ipad, type+2,2)*tz*tz);
1277 //
1278 }
1279 if (type==0) {
1280 corrPos = parcl->GetQnormCorr(ipad, type,5)*
1281 parcl->QtotCorrection(cluster->GetDetector(), cluster->GetRow(),cluster->GetPad(),
1282 cluster->GetTimeBin(),ty,tz,yres0,zres0,cluster->GetQ(),2.5,effLength,effDiff);
1283
1284 Float_t drm = 0.5-TMath::Abs(cluster->GetZ()/250.);
1285 corrPos*=(1+parcl->GetQnormCorr(ipad, type+2,0)*drm);
1286 corrPos*=(1+parcl->GetQnormCorr(ipad, type+2,1)*ty*ty);
1287 corrPos*=(1+parcl->GetQnormCorr(ipad, type+2,2)*tz*tz);
1288 //
1289 }
1290 //
1291 // pad region equalization outside of cluster param
1292 //
1293 Float_t gainEqualPadRegion = 1;
1294 if (grPadEqual && recoParam->GetUseGainCorrectionTime()>0) gainEqualPadRegion = grPadEqual->Eval(ipad);
1295 //
1296 // chamber-by-chamber equalization outside gain map
1297 //
1298 Float_t gainChamber = 1;
1299 if (grChamberGain[ipad] && recoParam->GetUseGainCorrectionTime()>0) gainChamber = grChamberGain[ipad]->Eval(cluster->GetDetector());
1300 //
1301 amp[ncl]=charge;
1302 amp[ncl]/=gainGG;
1303 amp[ncl]/=gainPad;
1304 amp[ncl]/=corrPos;
1305 amp[ncl]/=gainEqualPadRegion;
1306 amp[ncl]/=gainChamber;
1307 //
1308 ncl++;
1309 }
1310
1311 if (type==2) return ncl;
1312 TMath::Sort(ncl,amp, indexes, kFALSE);
1313 //
1314 if (ncl<10) return 0;
1315 //
1316 Double_t * ampWithBelow = new Double_t[ncl + nclBelowThr];
1317 for(Int_t iCl = 0; iCl < ncl + nclBelowThr; iCl++) {
1318 if (iCl < nclBelowThr) {
1319 ampWithBelow[iCl] = amp[indexes[0]];
1320 } else {
1321 ampWithBelow[iCl] = amp[indexes[iCl - nclBelowThr]];
1322 }
1323 }
1324 //printf("DEBUG: %i shit %f", nclBelowThr, amp[indexes[0]]);
1325 //
1326 Float_t suma=0;
1327 Float_t suma2=0;
1328 Float_t suma3=0;
1329 Float_t sumaS=0;
1330 Float_t sumn=0;
1331 // upper,and lower part statistic
1332 Float_t sumL=0, sumL2=0, sumLN=0;
1333 Float_t sumD=0, sumD2=0, sumDN=0;
1334
1335 Int_t icl0=TMath::Nint((ncl + nclBelowThr)*low);
1336 Int_t icl1=TMath::Nint((ncl + nclBelowThr)*up);
1337 Int_t iclm=TMath::Nint((ncl + nclBelowThr)*(low +(up+low)*0.5));
1338 //
1339 for (Int_t icl=icl0; icl<icl1;icl++){
1340 if (ampWithBelow[icl]<0.1) continue;
1341 Double_t camp=ampWithBelow[icl]/corrTimeGain;
1342 if (mode==1) camp= TMath::Log(camp);
1343 if (icl<icl1){
1344 suma+=camp;
1345 suma2+=camp*camp;
1346 suma3+=camp*camp*camp;
1347 sumaS+=TMath::Power(TMath::Abs(camp),1./3.);
1348 sumn++;
1349 }
1350 if (icl>iclm){
1351 sumL+=camp;
1352 sumL2+=camp*camp;
1353 sumLN++;
1354 }
1355 if (icl<=iclm){
1356 sumD+=camp;
1357 sumD2+=camp*camp;
1358 sumDN++;
1359 }
1360 }
1361 //
1362 Float_t mean = 0;
1363 Float_t meanL = 0;
1364 Float_t meanD = 0; // lower half mean
1365 if (sumn > 1e-30) mean =suma/sumn;
1366 if (sumLN > 1e-30) meanL =sumL/sumLN;
1367 if (sumDN > 1e-30) meanD =(sumD/sumDN);
1368 /*
1369 Float_t mean =suma/sumn;
1370 Float_t meanL = sumL/sumLN;
1371 Float_t meanD =(sumD/sumDN); // lower half mean
1372 */
1373
1374 Float_t rms = 0;
1375 Float_t mean2=0;
1376 Float_t mean3=0;
1377 Float_t meanS=0;
1378
1379 if(sumn>0){
1380 rms = TMath::Sqrt(TMath::Abs(suma2/sumn-mean*mean));
1381 mean2=suma2/sumn;
1382 mean3=suma3/sumn;
1383 meanS=sumaS/sumn;
1384 }
1385
1386 if (mean2>0) mean2=TMath::Power(TMath::Abs(mean2),1./2.);
1387 if (mean3>0) mean3=TMath::Power(TMath::Abs(mean3),1./3.);
1388 if (meanS>0) meanS=TMath::Power(TMath::Abs(meanS),3.);
1389 //
1390 if (mode==1) mean=TMath::Exp(mean);
1391 if (mode==1) meanL=TMath::Exp(meanL); // upper truncation
1392 if (mode==1) meanD=TMath::Exp(meanD); // lower truncation
1393 //
1394 delete [] ampWithBelow; //return?
1395
1396
1397 //
1398 if(returnVec){
1399 (*returnVec)(0) = mean;
1400 (*returnVec)(1) = rms;
1401 (*returnVec)(2) = ncl;
1402 (*returnVec)(3) = Double_t(nclBelowThr)/Double_t(nclBelowThr+ncl);
1403 (*returnVec)(4) = meanL;
1404 (*returnVec)(5) = meanD;
1405 (*returnVec)(6) = mean2;
1406 (*returnVec)(7) = mean3;
1407 (*returnVec)(8) = meanS;
1408 (*returnVec)(9) = nclBelowThr;
1409 }
1410
1411 if (returnVal==1) return rms;
1412 if (returnVal==2) return ncl;
1413 if (returnVal==3) return Double_t(nclBelowThr)/Double_t(nclBelowThr+ncl);
1414 if (returnVal==4) return meanL;
1415 if (returnVal==5) return meanD;
1416 if (returnVal==6) return mean2;
1417 if (returnVal==7) return mean3;
1418 if (returnVal==8) return meanS;
1419 if (returnVal==9) return nclBelowThr;
1420 return mean;
1421}
1422
1423
1424
1425
1426Float_t AliTPCseed::CookShape(Int_t type){
1427 //
1428 //
1429 //
1430 //-----------------------------------------------------------------
1431 // This funtion calculates dE/dX within the "low" and "up" cuts.
1432 //-----------------------------------------------------------------
1433 Float_t means=0;
1434 Float_t meanc=0;
1435 for (Int_t i =0; i<160;i++) {
1436 AliTPCTrackerPoint * point = GetTrackPoint(i);
1437 if (point==0) continue;
1438
1439 AliTPCclusterMI * cl = fClusterPointer[i];
1440 if (cl==0) continue;
1441
1442 Float_t rsigmay = TMath::Sqrt(point->GetSigmaY());
1443 Float_t rsigmaz = TMath::Sqrt(point->GetSigmaZ());
1444 Float_t rsigma = (rsigmay+rsigmaz)*0.5;
1445 if (type==0) means+=rsigma;
1446 if (type==1) means+=rsigmay;
1447 if (type==2) means+=rsigmaz;
1448 meanc++;
1449 }
1450 Float_t mean = (meanc>0)? means/meanc:0;
1451 return mean;
1452}
1453
1454
1455
1456Int_t AliTPCseed::RefitTrack(AliTPCseed *seed, AliExternalTrackParam * parin, AliExternalTrackParam * parout){
1457 //
1458 // Refit the track
1459 // return value - number of used clusters
1460 //
1461 //
1462 const Int_t kMinNcl =10;
1463 AliTPCseed *track=new AliTPCseed(*seed);
1464 Int_t sector=-1;
1465 // reset covariance
1466 //
1467 Double_t covar[15];
1468 for (Int_t i=0;i<15;i++) covar[i]=0;
1469 covar[0]=10.*10.;
1470 covar[2]=10.*10.;
1471 covar[5]=10.*10./(64.*64.);
1472 covar[9]=10.*10./(64.*64.);
1473 covar[14]=1*1;
1474 //
1475
1476 Float_t xmin=1000, xmax=-10000;
1477 Int_t imin=158, imax=0;
1478 for (Int_t i=0;i<160;i++) {
1479 AliTPCclusterMI *c=track->GetClusterPointer(i);
1480 if (!c || (track->GetClusterIndex(i) & 0x8000)) continue;
1481 if (sector<0) sector = c->GetDetector();
1482 if (c->GetX()<xmin) xmin=c->GetX();
1483 if (c->GetX()>xmax) xmax=c->GetX();
1484 if (i<imin) imin=i;
1485 if (i>imax) imax=i;
1486 }
1487 if(imax-imin<kMinNcl) {
1488 delete track;
1489 return 0 ;
1490 }
1491 // Not succes to rotate
1492 if (!track->Rotate(TMath::DegToRad()*(sector%18*20.+10.)-track->GetAlpha())) {
1493 delete track;
1494 return 0;
1495 }
1496 //
1497 //
1498 // fit from inner to outer row
1499 //
1500 AliExternalTrackParam paramIn;
1501 AliExternalTrackParam paramOut;
1502 Bool_t isOK=kTRUE;
1503 Int_t ncl=0;
1504 //
1505 //
1506 //
1507 for (Int_t i=imin; i<=imax; i++){
1508 AliTPCclusterMI *c=track->GetClusterPointer(i);
1509 if (!c || (track->GetClusterIndex(i) & 0x8000)) continue;
1510 // if (RejectCluster(c,track)) continue;
1511 sector = (c->GetDetector()%18);
1512 if (!track->Rotate(TMath::DegToRad()*(sector%18*20.+10.)-track->GetAlpha())) {
1513 //continue;
1514 }
1515 Double_t r[3]={c->GetX(),c->GetY(),c->GetZ()};
1516 Double_t cov[3]={0.01,0.,0.01}; //TODO: correct error parametrisation
1517 if (!track->PropagateTo(r[0])) {
1518 isOK=kFALSE;
1519 }
1520 if ( !((static_cast<AliExternalTrackParam*>(track)->Update(&r[1],cov)))) isOK=kFALSE;
1521 }
1522 if (!isOK) { delete track; return 0;}
1523 track->AddCovariance(covar);
1524 //
1525 //
1526 //
1527 for (Int_t i=imax; i>=imin; i--){
1528 AliTPCclusterMI *c=track->GetClusterPointer(i);
1529 if (!c || (track->GetClusterIndex(i) & 0x8000)) continue;
1530 //if (RejectCluster(c,track)) continue;
1531 sector = (c->GetDetector()%18);
1532 if (!track->Rotate(TMath::DegToRad()*(sector%18*20.+10.)-track->GetAlpha())) {
1533 //continue;
1534 }
1535 Double_t r[3]={c->GetX(),c->GetY(),c->GetZ()};
1536 Double_t cov[3]={0.01,0.,0.01}; //TODO: correct error parametrisation
1537 if (!track->PropagateTo(r[0])) {
1538 isOK=kFALSE;
1539 }
1540 if ( !((static_cast<AliExternalTrackParam*>(track)->Update(&r[1],cov)))) isOK=kFALSE;
1541 }
1542 //if (!isOK) { delete track; return 0;}
1543 paramIn = *track;
1544 track->AddCovariance(covar);
1545 //
1546 //
1547 for (Int_t i=imin; i<=imax; i++){
1548 AliTPCclusterMI *c=track->GetClusterPointer(i);
1549 if (!c || (track->GetClusterIndex(i) & 0x8000)) continue;
1550 sector = (c->GetDetector()%18);
1551 if (!track->Rotate(TMath::DegToRad()*(sector%18*20.+10.)-track->GetAlpha())) {
1552 //continue;
1553 }
1554 ncl++;
1555 //if (RejectCluster(c,track)) continue;
1556 Double_t r[3]={c->GetX(),c->GetY(),c->GetZ()};
1557 Double_t cov[3]={0.01,0.,0.01}; //TODO: correct error parametrisation
1558 if (!track->PropagateTo(r[0])) {
1559 isOK=kFALSE;
1560 }
1561 if ( !((static_cast<AliExternalTrackParam*>(track)->Update(&r[1],cov)))) isOK=kFALSE;
1562 }
1563 //if (!isOK) { delete track; return 0;}
1564 paramOut=*track;
1565 //
1566 //
1567 //
1568 if (parin) (*parin)=paramIn;
1569 if (parout) (*parout)=paramOut;
1570 delete track;
1571 return ncl;
1572}
1573
1574
1575
1576Bool_t AliTPCseed::RefitTrack(AliTPCseed* /*seed*/, Bool_t /*out*/){
1577 //
1578 //
1579 //
1580 return kFALSE;
1581}
1582
1583
1584
1585
1586
1587
1588void AliTPCseed::GetError(AliTPCclusterMI* cluster, AliExternalTrackParam * param,
1589 Double_t& erry, Double_t &errz)
1590{
1591 //
1592 // Get cluster error at given position
1593 //
1594 AliTPCClusterParam *clusterParam = AliTPCcalibDB::Instance()->GetClusterParam();
1595 Double_t tany,tanz;
1596 Double_t snp1=param->GetSnp();
1597 tany=snp1/TMath::Sqrt((1.-snp1)*(1.+snp1));
1598 //
1599 Double_t tgl1=param->GetTgl();
1600 tanz=tgl1/TMath::Sqrt((1.-snp1)*(1.+snp1));
1601 //
1602 Int_t padSize = 0; // short pads
1603 if (cluster->GetDetector() >= 36) {
1604 padSize = 1; // medium pads
1605 if (cluster->GetRow() > 63) padSize = 2; // long pads
1606 }
1607
1608 erry = clusterParam->GetError0Par( 0, padSize, (250.0 - TMath::Abs(cluster->GetZ())), TMath::Abs(tany) );
1609 errz = clusterParam->GetError0Par( 1, padSize, (250.0 - TMath::Abs(cluster->GetZ())), TMath::Abs(tanz) );
1610}
1611
1612
1613void AliTPCseed::GetShape(AliTPCclusterMI* cluster, AliExternalTrackParam * param,
1614 Double_t& rmsy, Double_t &rmsz)
1615{
1616 //
1617 // Get cluster error at given position
1618 //
1619 AliTPCClusterParam *clusterParam = AliTPCcalibDB::Instance()->GetClusterParam();
1620 Double_t tany,tanz;
1621 Double_t snp1=param->GetSnp();
1622 tany=snp1/TMath::Sqrt((1.-snp1)*(1.+snp1));
1623 //
1624 Double_t tgl1=param->GetTgl();
1625 tanz=tgl1/TMath::Sqrt((1.-snp1)*(1.+snp1));
1626 //
1627 Int_t padSize = 0; // short pads
1628 if (cluster->GetDetector() >= 36) {
1629 padSize = 1; // medium pads
1630 if (cluster->GetRow() > 63) padSize = 2; // long pads
1631 }
1632
1633 rmsy = clusterParam->GetRMSQ( 0, padSize, (250.0 - TMath::Abs(cluster->GetZ())), TMath::Abs(tany), TMath::Abs(cluster->GetMax()) );
1634 rmsz = clusterParam->GetRMSQ( 1, padSize, (250.0 - TMath::Abs(cluster->GetZ())), TMath::Abs(tanz) ,TMath::Abs(cluster->GetMax()));
1635}
1636
1637
1638
1639Double_t AliTPCseed::GetQCorrGeom(Float_t ty, Float_t tz){
1640 //Geoetrical
1641 //ty - tangent in local y direction
1642 //tz - tangent
1643 //
1644 Float_t norm=TMath::Sqrt(1+ty*ty+tz*tz);
1645 return norm;
1646}
1647
1648Double_t AliTPCseed::GetQCorrShape(Int_t ipad, Int_t type,Float_t z, Float_t ty, Float_t tz, Float_t /*q*/, Float_t /*thr*/){
1649 //
1650 // Q normalization
1651 //
1652 // return value = Q Normalization factor
1653 // Normalization - 1 - shape factor part for full drift
1654 // 1 - electron attachment for 0 drift
1655
1656 // Input parameters:
1657 //
1658 // ipad - 0 short pad
1659 // 1 medium pad
1660 // 2 long pad
1661 //
1662 // type - 0 qmax
1663 // - 1 qtot
1664 //
1665 //z - z position (-250,250 cm)
1666 //ty - tangent in local y direction
1667 //tz - tangent
1668 //
1669
1670 AliTPCClusterParam * paramCl = AliTPCcalibDB::Instance()->GetClusterParam();
1671 AliTPCParam * paramTPC = AliTPCcalibDB::Instance()->GetParameters();
1672
1673 if (!paramCl) return 1;
1674 //
1675 Double_t dr = 250.-TMath::Abs(z);
1676 Double_t sy = paramCl->GetRMS0( 0,ipad, dr, TMath::Abs(ty));
1677 Double_t sy0= paramCl->GetRMS0(0,ipad, 250, 0);
1678 Double_t sz = paramCl->GetRMS0( 1,ipad, dr, TMath::Abs(tz));
1679 Double_t sz0= paramCl->GetRMS0(1,ipad, 250, 0);
1680
1681 Double_t sfactorMax = TMath::Sqrt(sy0*sz0/(sy*sz));
1682
1683
1684 Double_t dt = 1000000*(dr/paramTPC->GetDriftV()); //time in microsecond
1685 Double_t attProb = TMath::Exp(-paramTPC->GetAttCoef()*paramTPC->GetOxyCont()*dt);
1686 //
1687 //
1688 if (type==0) return sfactorMax*attProb;
1689
1690 return attProb;
1691
1692
1693}
1694
1695
1696/*
1697//_______________________________________________________________________
1698Float_t AliTPCseed::GetTPCClustInfo(Int_t nNeighbours, Int_t type, Int_t row0, Int_t row1, TVectorT<float> *returnVec)
1699{
1700 //
1701 // TPC cluster information
1702 // type 0: get fraction of found/findable clusters with neighbourhood definition
1703 // 1: found clusters
1704 // 2: findable (number of clusters above and below threshold)
1705 //
1706 // definition of findable clusters:
1707 // a cluster is defined as findable if there is another cluster
1708 // within +- nNeighbours pad rows. The idea is to overcome threshold
1709 // effects with a very simple algorithm.
1710 //
1711
1712 const Float_t kClusterShapeCut = 1.5; // IMPPRTANT TO DO: move value to AliTPCRecoParam
1713 const Float_t ktany = TMath::Tan(TMath::DegToRad()*10);
1714 const Float_t kedgey =3.;
1715
1716 Float_t ncl = 0;
1717 Float_t nclBelowThr = 0; // counts number of clusters below threshold
1718
1719 for (Int_t irow=row0; irow<row1; irow++){
1720 AliTPCclusterMI* cluster = GetClusterPointer(irow);
1721
1722 if (!cluster && irow > 1 && irow < 157) {
1723 Bool_t isClBefore = kFALSE;
1724 Bool_t isClAfter = kFALSE;
1725 for(Int_t ithres = 1; ithres <= nNeighbours; ithres++) {
1726 AliTPCclusterMI * clusterBefore = GetClusterPointer(irow - ithres);
1727 if (clusterBefore) isClBefore = kTRUE;
1728 AliTPCclusterMI * clusterAfter = GetClusterPointer(irow + ithres);
1729 if (clusterAfter) isClAfter = kTRUE;
1730 }
1731 if (isClBefore && isClAfter) nclBelowThr++;
1732 }
1733 if (!cluster) continue;
1734 //
1735 //
1736 if (TMath::Abs(cluster->GetY())>cluster->GetX()*ktany-kedgey) continue; // edge cluster
1737 //
1738 AliTPCTrackerPoint * point = GetTrackPoint(irow);
1739 if (point==0) continue;
1740 Float_t rsigmay = TMath::Sqrt(point->GetSigmaY());
1741 if (rsigmay > kClusterShapeCut) continue;
1742 //
1743 if (cluster->IsUsed(11)) continue; // remove shared clusters for PbPb
1744 ncl++;
1745 }
1746 if(returnVec->GetNoElements != 3){
1747 returnVec->ResizeTo(3);
1748 }
1749 Float_t nclAll = nclBelowThr+ncl;
1750 returnVec(0) = nclAll>0?ncl/nclAll:0;
1751 returnVec(1) = ncl;
1752 returnVec(2) = nclAll;
1753
1754 if(ncl<10)
1755 return 0;
1756 if(type==0)
1757 if(nclAll>0)
1758 return ncl/nclAll;
1759 if(type==1)
1760 return ncl;
1761 if(type==2)
1762 return nclAll;
1763 return 0;
1764}
1765*/
1766//_______________________________________________________________________
1767Int_t AliTPCseed::GetNumberOfClustersIndices() {
1768 Int_t ncls = 0;
1769 for (int i=0; i < 160; i++) {
1770 if ((fIndex[i] & 0x8000) == 0)
1771 ncls++;
1772 }
1773 return ncls;
1774}
1775
1776//_______________________________________________________________________
1777void AliTPCseed::Clear(Option_t*)
1778{
1779 // formally seed may allocate memory for clusters (althought this should not happen for
1780 // the seeds in the pool). Hence we need this method for fwd. compatibility
1781 if (fClusterOwner) for (int i=160;i--;) {delete fClusterPointer[i]; fClusterPointer[i] = 0;}
1782}
1783
1784TObject* AliTPCseed::Clone(const char* /*newname*/) const
1785{
1786 // temporary override TObject::Clone to avoid crashes in reco
1787 AliTPCseed* src = (AliTPCseed*)this;
1788 AliTPCseed* dst = new AliTPCseed(*src,fClusterOwner);
1789 return dst;
1790}