]> git.uio.no Git - u/mrichter/AliRoot.git/blame_incremental - TRD/AliTRDgeometry.h
Classes moved to STEERBase.
[u/mrichter/AliRoot.git] / TRD / AliTRDgeometry.h
... / ...
CommitLineData
1#ifndef ALITRDGEOMETRY_H
2#define ALITRDGEOMETRY_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
7
8///////////////////////////////////////////////////////////////////////////////
9// //
10// TRD geometry class //
11// //
12///////////////////////////////////////////////////////////////////////////////
13
14#include "AliGeometry.h"
15
16#include "TObjArray.h"
17
18class TGeoHMatrix;
19
20class AliRunLoader;
21
22class AliTRDpadPlane;
23
24class AliTRDgeometry : public AliGeometry {
25
26 public:
27
28 enum { kNplan = 6
29 , kNcham = 5
30 , kNsect = 18
31 , kNdet = 540
32 , kNdets = 30 };
33
34 AliTRDgeometry();
35 AliTRDgeometry(const AliTRDgeometry &g);
36 virtual ~AliTRDgeometry();
37 AliTRDgeometry &operator=(const AliTRDgeometry &g);
38
39 virtual void Init();
40 virtual void CreateGeometry(Int_t *idtmed);
41 virtual Int_t IsVersion() { return 1; }
42 virtual Bool_t Impact(const TParticle* ) const { return kTRUE; }
43 virtual Bool_t IsHole(Int_t /*p*/, Int_t /*c*/, Int_t /*s*/) const { return kFALSE; }
44
45 virtual Bool_t RotateBack(Int_t det, Double_t *loc, Double_t *glb) const;
46
47 void GroupChamber(Int_t iplan, Int_t icham, Int_t *idtmed);
48 void CreateFrame(Int_t *idtmed);
49 void CreateServices(Int_t *idtmed);
50
51 Bool_t ReadGeoMatrices();
52
53 void SetSMstatus(Int_t sm, Char_t status) { fSMstatus[sm] = status; }
54
55 static Int_t GetDetectorSec(Int_t p, Int_t c);
56 static Int_t GetDetector(Int_t p, Int_t c, Int_t s);
57 static Int_t GetPlane(Int_t d);
58 virtual Int_t GetChamber(Int_t d) const;
59 virtual Int_t GetSector(Int_t d) const;
60
61 void CreatePadPlaneArray();
62 AliTRDpadPlane *CreatePadPlane(Int_t p, Int_t c);
63 AliTRDpadPlane *GetPadPlane(Int_t p, Int_t c);
64 Int_t GetRowMax(Int_t p, Int_t c, Int_t /*s*/);
65 Int_t GetColMax(Int_t p);
66 Double_t GetRow0(Int_t p, Int_t c, Int_t /*s*/);
67 Double_t GetCol0(Int_t p);
68
69 // Translation from MCM to Pad and vice versa
70 virtual Int_t GetPadRowFromMCM(Int_t irob, Int_t imcm) const;
71 virtual Int_t GetPadColFromADC(Int_t irob, Int_t imcm, Int_t iadc) const;
72 virtual Int_t GetMCMfromPad(Int_t irow, Int_t icol) const;
73 virtual Int_t GetROBfromPad(Int_t irow, Int_t icol) const;
74 virtual Int_t GetRobSide(Int_t irob) const;
75 virtual Int_t GetColSide(Int_t icol) const;
76
77 static Float_t GetTime0(Int_t p) { return fgkTime0[p]; }
78
79 Char_t GetSMstatus(Int_t sm) const { return fSMstatus[sm]; }
80 Float_t GetChamberWidth(Int_t p) const { return fCwidth[p]; }
81 Float_t GetChamberLength(Int_t p, Int_t c) const { return fClength[p][c]; }
82
83 virtual void GetGlobal(const AliRecPoint*, TVector3&, TMatrixF& ) const { };
84 virtual void GetGlobal(const AliRecPoint*, TVector3& ) const { };
85
86 static Double_t GetAlpha() { return 2.0
87 * 3.14159265358979324
88 / fgkNsect; }
89
90 static Int_t Nsect() { return fgkNsect; }
91 static Int_t Nplan() { return fgkNplan; }
92 static Int_t Ncham() { return fgkNcham; }
93 static Int_t Ndet() { return fgkNdet; }
94
95 static Float_t Cheight() { return fgkCH; }
96 static Float_t Cspace() { return fgkVspace; }
97 static Float_t CraHght() { return fgkCraH; }
98 static Float_t CdrHght() { return fgkCdrH; }
99 static Float_t CamHght() { return fgkCamH; }
100 static Float_t CroHght() { return fgkCroH; }
101 static Float_t CroWid() { return fgkCroW; }
102 static Float_t MyThick() { return fgkMyThick; }
103 static Float_t DrThick() { return fgkDrThick; }
104 static Float_t AmThick() { return fgkAmThick; }
105 static Float_t DrZpos() { return fgkDrZpos; }
106 static Float_t RpadW() { return fgkRpadW; }
107 static Float_t CpadW() { return fgkCpadW; }
108
109 static Float_t Cwidcha() { return (fgkSwidth2 - fgkSwidth1)
110 / fgkSheight
111 * (fgkCH + fgkVspace); }
112
113 static Int_t MCMmax() { return fgkMCMmax; }
114 static Int_t MCMrow() { return fgkMCMrow; }
115 static Int_t ROBmaxC0() { return fgkROBmaxC0; }
116 static Int_t ROBmaxC1() { return fgkROBmaxC1; }
117 static Int_t ADCmax() { return fgkADCmax; }
118 static Int_t TBmax() { return fgkTBmax; }
119 static Int_t Padmax() { return fgkPadmax; }
120 static Int_t Colmax() { return fgkColmax; }
121 static Int_t RowmaxC0() { return fgkRowmaxC0; }
122 static Int_t RowmaxC1() { return fgkRowmaxC1; }
123
124 TGeoHMatrix *GetGeoMatrix(Int_t det) { return (TGeoHMatrix *)
125 fMatrixGeo->At(det); }
126 TGeoHMatrix *GetMatrix(Int_t det) { return (TGeoHMatrix *)
127 fMatrixArray->At(det); }
128 TGeoHMatrix *GetCorrectionMatrix(Int_t det) { return (TGeoHMatrix *)
129 fMatrixCorrectionArray->At(det); }
130
131 protected:
132
133 static const Int_t fgkNsect; // Number of sectors in the full detector (18)
134 static const Int_t fgkNplan; // Number of planes of the TRD (6)
135 static const Int_t fgkNcham; // Number of chambers in z-direction (5)
136 static const Int_t fgkNdet; // Total number of detectors (18 * 6 * 5 = 540)
137
138 static const Float_t fgkSheight; // Height of the TRD-volume in spaceframe (BTRD)
139 static const Float_t fgkSwidth1; // Lower width of the TRD-volume in spaceframe (BTRD)
140 static const Float_t fgkSwidth2; // Upper width of the TRD-volume in spaceframe (BTRD)
141 static const Float_t fgkSlength; // Length of the TRD-volume in spaceframe (BTRD)
142
143 static const Float_t fgkSMpltT; // Thickness of the super module side plates
144
145 static const Float_t fgkCraH; // Height of the radiator part of the chambers
146 static const Float_t fgkCdrH; // Height of the drift region of the chambers
147 static const Float_t fgkCamH; // Height of the amplification region of the chambers
148 static const Float_t fgkCroH; // Height of the readout of the chambers
149 static const Float_t fgkCH; // Total height of the chambers
150
151 static const Float_t fgkVspace; // Vertical spacing of the chambers
152 static const Float_t fgkHspace; // Horizontal spacing of the chambers
153 static const Float_t fgkVrocsm; // Radial distance of the first ROC to the outer SM plates
154 static const Float_t fgkCalT; // Thickness of the lower aluminum frame
155 static const Float_t fgkCalW; // Width of additional aluminum on lower frame
156 static const Float_t fgkCclsT; // Thickness of the lower Wacosit frame sides
157 static const Float_t fgkCclfT; // Thickness of the lower Wacosit frame front
158 static const Float_t fgkCglT; // Thichness of the glue around the radiator
159 static const Float_t fgkCcuT; // Thickness of the upper Wacosit frame
160 static const Float_t fgkCauT; // Thickness of the aluminum frame of the back panel
161
162 static const Float_t fgkCroW; // Additional width of the readout chamber frames
163
164 static const Float_t fgkCpadW; // Difference of outer chamber width and pad plane width
165 static const Float_t fgkRpadW; // Difference of outer chamber width and pad plane width
166
167 static const Float_t fgkMyThick; // Thickness of the mylar-layer
168 static const Float_t fgkRaThick; // Thickness of the radiator
169 static const Float_t fgkXeThick; // Thickness of the gas volume
170 static const Float_t fgkDrThick; // Thickness of the drift region
171 static const Float_t fgkAmThick; // Thickness of the amplification region
172 static const Float_t fgkWrThick; // Thickness of the wire planes
173 static const Float_t fgkCuThick; // Thickness of the pad plane
174 static const Float_t fgkGlThick; // Thickness of the glue layer
175 static const Float_t fgkSuThick; // Thickness of the NOMEX support structure
176 static const Float_t fgkRpThick; // Thickness of the PCB readout boards
177 static const Float_t fgkRcThick; // Thickness of the PCB copper layers
178 static const Float_t fgkRoThick; // Thickness of all other ROB componentes (caps, etc.)
179
180 static const Float_t fgkRaZpos; // Position of the radiator
181 static const Float_t fgkDrZpos; // Position of the drift region
182 static const Float_t fgkAmZpos; // Position of the amplification region
183 static const Float_t fgkWrZpos; // Position of the wire planes
184 static const Float_t fgkCuZpos; // Position of the pad plane
185 static const Float_t fgkGlZpos; // Position of the glue layer
186 static const Float_t fgkSuZpos; // Position of the HEXCEL+G10 support structure
187 static const Float_t fgkRpZpos; // Position of the PCB readout boards
188 static const Float_t fgkRcZpos; // Position of the PCB copper layers
189 static const Float_t fgkRoZpos; // Position of all other ROB componentes (caps, etc.)
190
191 static const Int_t fgkMCMmax; // Maximum number of MCMs per ROB
192 static const Int_t fgkMCMrow; // Maximum number of MCMs per ROB Row
193 static const Int_t fgkROBmaxC0; // Maximum number of ROBs per C0 chamber
194 static const Int_t fgkROBmaxC1; // Maximum number of ROBs per C1 chamber
195 static const Int_t fgkADCmax; // Maximum number of ADC channels per MCM
196 static const Int_t fgkTBmax; // Maximum number of Time bins
197 static const Int_t fgkPadmax; // Maximum number of pads per MCM
198 static const Int_t fgkColmax; // Maximum number of pads per padplane row
199 static const Int_t fgkRowmaxC0; // Maximum number of Rows per C0 chamber
200 static const Int_t fgkRowmaxC1; // Maximum number of Rows per C1 chamber
201
202 Char_t fSMstatus[kNsect]; // Super module status byte
203
204 Float_t fCwidth[kNplan]; // Outer widths of the chambers
205 Float_t fClength[kNplan][kNcham]; // Outer lengths of the chambers
206
207 Float_t fRotB11[kNsect]; // Matrix elements for the backward rotation
208 Float_t fRotB12[kNsect]; // Matrix elements for the backward rotation
209 Float_t fRotB21[kNsect]; // Matrix elements for the backward rotation
210 Float_t fRotB22[kNsect]; // Matrix elements for the backward rotation
211
212 static const Double_t fgkTime0Base; // Base value for calculation of Time-position of pad 0
213 static const Float_t fgkTime0[kNplan]; // Time-position of pad 0
214
215 Float_t fChamberUAorig[3*kNdets][3]; // Volumes origin in
216 Float_t fChamberUDorig[3*kNdets][3]; // the chamber
217 Float_t fChamberUForig[3*kNdets][3]; // [3] = x, y, z
218 Float_t fChamberUUorig[3*kNdets][3]; //
219
220 Float_t fChamberUAboxd[3*kNdets][3]; // Volumes box
221 Float_t fChamberUDboxd[3*kNdets][3]; // dimensions (half)
222 Float_t fChamberUFboxd[3*kNdets][3]; // [3] = x, y, z
223 Float_t fChamberUUboxd[3*kNdets][3]; //
224
225 TObjArray *fMatrixArray; //! Transformation Global to Local
226 TObjArray *fMatrixCorrectionArray; //! Transformation Cluster to Tracking systerm
227 TObjArray *fMatrixGeo; //! Geo matrices
228
229 TObjArray *fPadPlaneArray; //! Array of pad plane objects
230
231 ClassDef(AliTRDgeometry,14) // TRD geometry class
232
233};
234
235#endif