]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ALIFAST/AliFTrackMaker.cxx
Transition to NewIO
[u/mrichter/AliRoot.git] / ALIFAST / AliFTrackMaker.cxx
1 //////////////////////////////////////////////////////////////////////////
2 //                                                                      //
3 // AliFast TrackMaker class.                                            //
4 //                                                                      //
5 //                                                                      //
6 //////////////////////////////////////////////////////////////////////////
7 // ---------------------------------------------------------------------//
8 //                                                                      //
9 // origin: "res.f" fortran by Karel Safarik which was used to           //
10 //         calculate the track resolution for TP.                       //
11 //         Different detectors and material can be selected.            //
12 //         The basic routines compute information and error matrices    //
13 //         used for the calculation of momentum resolution.             //
14 //         see references: ASK KAREL??                                  //
15 //                                                                      //
16 // C++ in AliFast framework: Elzbieta Richter-Was and Yiota Foka        //
17 //                           following general structure od Makers in   //
18 //                           ATLFast by R. Brun.                        //
19 //                                                                      //
20 // purpose: provide a Maker which by using general basic routines of    //
21 //          "res.f" computes the necessary elements of covariance matrix// 
22 //          for the calculation of Track Resolution.                    //
23 //          Those elements are the product of the TrackResolMaker and   //
24 //          are hold in TrackResol class. They are expected to be used  //
25 //          together with additional information for the calculation of //
26 //          the smeared momenta.                                        //
27 //          Additional information necessary for this calculation       //
28 //          will be provided via classes or functions specific to the   //
29 //          specific study and/or detectors.                            //
30 //          One can select the detector and/or material for a specific  //
31 //          study.                                                      //
32 //                                                                      //
33 // starting point: res.f will be initialy partially contained in        // 
34 //                 AliFTrackResolMaker and in AliFDet                   // 
35 //                 It will be reorganised further in the framework of   //
36 //                 AliFast according to the needs.                      //
37 //                 Names of variables are kept as in fortran code.      //
38 //                                                                      //
39 //////////////////////////////////////////////////////////////////////////
40
41
42 #ifdef WIN32
43 // there is a bug in the Microsoft VisualC++ compiler
44 // this class must be compiled with optimization off on Windows
45 # pragma optimize( "", off )
46 #endif
47
48 #include <TParticle.h>
49 #include <TFile.h>
50 #include <TSystem.h>
51 #include <TRandom.h>
52 #include <TROOT.h>
53 #include <TMath.h>
54 #include <TH1.h>
55 #include <TH2.h>
56 #include <TH3.h>
57
58 #include "AliFast.h"
59 //#include "AliFMCMaker.h"
60 #include "AliFTrackMaker.h"
61 #include "AliFTrack.h"
62 #include "AliFDet.h"
63
64 const Double_t kPi       = TMath::Pi();
65 const Double_t k2Pi      = 2*kPi;
66 const Double_t kPiHalf   = kPi/2.;
67 extern  AliFast * gAliFast;
68 ClassImp(AliFTrackMaker)
69
70 //_____________________________________________________________________________
71 AliFTrackMaker::AliFTrackMaker()
72 {
73    fNTracks = 0;
74    fResID1Test = 0;
75    fResID2Test = 0;
76    fResID3Test = 0;
77    fResID4Test = 0;
78    fResID5Test = 0;
79 }
80
81 //_____________________________________________________________________________
82 AliFTrackMaker::AliFTrackMaker(const char *name, const char *title)
83                  :AliFMaker(name,title)
84 {
85 //    Default Setters for tracks
86
87    fFruits     = new TClonesArray("AliFTrack",100, kFALSE);
88    fBranchName = "Tracks";
89    fNTracks    = 0;
90 // Please, how to do this optionally ??!!!
91    Save();
92 }
93
94 //_____________________________________________________________________________
95 AliFTrackMaker::~AliFTrackMaker()
96 {
97    //dummy
98 }
99
100 //_____________________________________________________________________________
101 AliFTrack *AliFTrackMaker::AddTrack(Int_t code, Double_t charge, 
102                                     Double_t pT, Double_t eta,Double_t phi,
103                                     Double_t v11, Double_t v22, Double_t v33,
104                                     Double_t v12, Double_t v13, Double_t v23, Int_t iFlag)
105 {
106 //            Add a new track to the list of tracks
107
108  //Note the use of the "new with placement" to create a new track object.
109  //This complex "new" works in the following way:
110  //   tracks[i] is the value of the pointer for track number i in the TClonesArray
111  //   if it is zero, then a new track must be generated. This typically
112  //   will happen only at the first events
113  //   If it is not zero, then the already existing object is overwritten
114  //   by the new track parameters.
115  // This technique should save a huge amount of time otherwise spent
116  // in the operators new and delete.
117
118    TClonesArray &tracks = *(TClonesArray*)fFruits;
119    return new(tracks[fNTracks++]) AliFTrack(code,charge,pT,eta,phi,
120                                   v11, v22, v33, v12, v13, v23, iFlag);
121 }
122
123 //_____________________________________________________________________________
124 void AliFTrackMaker::Clear(Option_t *option)
125 {
126    //Reset Track Maker
127
128    fNTracks = 0;
129    AliFMaker::Clear(option);
130 }
131
132 //_____________________________________________________________________________
133 void AliFTrackMaker::Draw(Option_t *)
134 {
135 //    Dummy Draw
136
137 }
138
139 //_____________________________________________________________________________
140 void AliFTrackMaker::Init()
141 {
142   //Create control histograms 
143   if(gAliFast->TestTrack() == 0){
144
145      fResID11 = new TH1D("ResID11","Elec: delta(1/pTotal)*pTotal",1000,-0.5,0.5); 
146      fResID12 = new TH1D("ResID12","Elec: delta(lambda)/lambda",1000,-0.01,0.01); 
147      fResID13 = new TH1D("ResID13","Elec: delta(phi)/phi",1000,-0.01,0.01); 
148
149      fResID21 = new TH1D("ResID21","Pion: delta(1/pTotal)*pTotal",1000,-1.0,1.0); 
150      fResID22 = new TH1D("ResID22","Pion: delta(lambda)/lambda",1000,-1.0,1.0); 
151      fResID23 = new TH1D("ResID23","Pion: delta(phi)/phi",1000,-1.0,1.0); 
152
153      fResID31 = new TH1D("ResID31","Kaon: delta(1/pTotal)*pTotal",1000,-1.0,1.0); 
154      fResID32 = new TH1D("ResID32","Kaon: delta(lambda)/lambda",1000,-1.0,1.0); 
155      fResID33 = new TH1D("ResID33","Kaon: delta(phi)/phi",1000,-1.0,1.0); 
156
157      fResID41 = new TH1D("ResID41","Proton: delta(1/pTotal)*pTotal",1000,-1.0,1.0); 
158      fResID42 = new TH1D("ResID42","Proton: delta(lambda)/lambda",1000,-1.0,1.0); 
159      fResID43 = new TH1D("ResID43","Proton: delta(phi)/phi",1000,-1.0,1.0); 
160
161   }   
162   //Create test histograms for TestJob only  
163   if(gAliFast->TestTrack() == 1){
164      fResID1Test  = new TH1D("ResID1Test","histogram21 from res.f",1000,0.075,10.075); 
165      fResID2Test  = new TH1D("ResID2Test","histogram21 from res.f",1000,0.075,10.075); 
166      fResID3Test  = new TH1D("ResID3Test","histogram21 from res.f",1000,0.075,10.075); 
167      fResID4Test  = new TH1D("ResID4Test","histogram21 from res.f",1000,0.075,10.075); 
168      fResID5Test  = new TH1D("ResID5Test","histogram21 from res.f",1000,0.075,10.075); 
169   }
170
171   //Set particle masses
172    SetPionMass();
173    SetKaonMass();
174    SetElectronMass();
175    SetProtonMass();
176
177   //Switch on/off tracks reconstruction
178    SetRecTrack();
179
180 }
181
182 //_____________________________________________________________________________
183 // Calculate track and its resolution
184 //_____________________________________________________________________________
185 void AliFTrackMaker::Make()
186 {
187   Double_t v11, v22, v33, v12, v13, v23;
188   Int_t iFlag;
189
190   fNTracks = 0; 
191
192   // Check if it is a TestJob
193   if(gAliFast->TestTrack() == 1){
194      // Run test job
195      MakeTest(10);
196   }else{
197      // Run production job  
198      // Get pointers to Particles arrays and TClonesArray
199
200      Int_t idPart, idTrack;
201      Double_t  charge, pT, eta, phi;
202      TParticle *part;
203      Int_t  nparticles = gAlice->GetNtrack();
204      printf("%10s%10d\n","nparticles",nparticles);
205      for(Int_t ind=0;ind<nparticles;ind++) {       
206        part = gAlice->Particle(ind);
207        idPart  = part->GetPdgCode();
208        charge  = part->GetPDG()->Charge();
209        pT      = part->Pt();  
210        eta     = part->Eta();
211        phi     = part->Phi();
212        printf("%10s%10d%20.5e%20.5e%20.5e%20.5e\n","Particle",idPart,charge,pT,eta,phi);
213        // Check convention for tracks reconstruction
214        idTrack = 0;
215        if(TMath::Abs(idPart) ==   11)                 idTrack = 1;
216        if(TMath::Abs(idPart) == 111 || TMath::Abs(idPart) == 211) idTrack = 2;
217        if(TMath::Abs(idPart) == 311 || TMath::Abs(idPart) == 321) idTrack = 3;
218        if(TMath::Abs(idPart) == 2212)                 idTrack = 4;
219        
220        if(idTrack > 0 && fRecTrack > 0){
221          // Check if track should be reconstructed
222          if((fRecTrack == 1 && idTrack == 1) ||
223             (fRecTrack == 2 && idTrack == 2) ||
224             (fRecTrack == 3 && idTrack == 3) ||
225             (fRecTrack == 4 && idTrack == 4) ||
226             fRecTrack == 100 ) {
227            // Tracks are  reconstructed
228            ErrorMatrix(idTrack,pT,eta, v11, v22, v33, v12, v13, v23, iFlag);
229            
230            // Calculate and smear track parameters
231            Double_t lambda, cosLambda, pTotal,pInverse;
232            Double_t pInverseSmea, lambdaSmea, phiSmea;
233            Double_t a1, a2, a3, b2, b3, c3;
234            Double_t rn1, rn2, rn3;
235            
236            lambda    = kPiHalf -2.0*TMath::ATan(TMath::Exp(-eta));
237            cosLambda = TMath::Cos(lambda);
238            pTotal    = pT/cosLambda;
239            pInverse  = 1.0/pTotal;
240            
241            a1  = TMath::Sqrt(v11);
242            if(a1 == 0.){
243              a2 = 0;
244              a3 = 0;
245            }else{
246              a2  = v12/a1;
247              a3  = v13/a1;
248            }
249            b2  = TMath::Sqrt(v22-a2*a2);
250            if(b2 == 0.){
251              b3 = 0;
252            }else{
253              b3  = (v23 - a2*a3)/b2;
254            }
255            c3  = TMath::Sqrt(v33 - a3*a3 -b3*b3);
256            rn1 = gRandom->Gaus(0,1);
257            rn2 = gRandom->Gaus(0,1);
258            rn3 = gRandom->Gaus(0,1);
259            
260            pInverseSmea  = pInverse + a1*rn1;
261            lambdaSmea    = lambda + a2*rn1 + b2*rn2;
262            phiSmea       = phi + a3*rn1 + b3*rn2 + c3*rn3; 
263            
264            // Fill control histograms
265            if(idTrack == 1){
266              fResID11->Fill((pInverseSmea-pInverse)/pInverse);
267              fResID12->Fill((lambdaSmea-lambda)/lambda);
268              fResID13->Fill((phiSmea-phi)/phi);
269            }
270            else if(idTrack == 2){
271              fResID21->Fill((pInverseSmea-pInverse)/pInverse);
272              fResID22->Fill((lambdaSmea-lambda)/lambda);
273              fResID23->Fill((phiSmea-phi)/phi);
274            }
275            else if(idTrack == 3){
276              fResID31->Fill((pInverseSmea-pInverse)/pInverse);
277              fResID32->Fill((lambdaSmea-lambda)/lambda);
278              fResID33->Fill((phiSmea-phi)/phi);
279            }
280            else if(idTrack == 4){
281              fResID41->Fill((pInverseSmea-pInverse)/pInverse);
282              fResID42->Fill((lambdaSmea-lambda)/lambda);
283              fResID43->Fill((phiSmea-phi)/phi);
284            }
285          }else{
286            // Tracks are not reconstructed
287            v11=0.;
288            v12=0.;
289            v13=0.;
290            v22=0.;
291            v23=0.;
292            v33=0.;
293            iFlag=0;
294          }
295          // Store resolution variables  to AliFTrack  ClonesArray
296          AddTrack(idTrack, charge, pT, eta, phi, v11, v22, v33, v12, v13, v23, iFlag);
297          printf("%10s%10d%20.5e%20.5e%20.5e%20.5e%20.5e%20.5e%20.5e%20.5e%20.5e%20.5e%10d\n",
298               "Track",idTrack,charge,pT,eta,phi,v11, v22, v33, v12, v13, v23, iFlag);
299        }
300        
301      }
302   }
303 }
304
305 //_____________________________________________________________________________
306 void AliFTrackMaker::Finish()
307 {
308   // For TestJob only  
309   if(gAliFast->TestTrack() == 1){
310     /*
311     // Draw test histograms
312     TCanvas *c1 = new TCanvas("c1"," ",200,10,600,480);
313     c1->Divide(2,3);
314     c1->cd(1);   fResID1Test->Draw();
315     c1->cd(2);   fResID2Test->Draw();
316     c1->cd(3);   fResID3Test->Draw();
317     c1->cd(4);   fResID4Test->Draw();
318     c1->cd(5);   fResID5Test->Draw();
319     c1->Update();
320     // Store TestRes.eps file
321     c1->Print("TestRes.eps");
322     */
323     // Store histograms on file
324     TFile f2("TestRes.root","RECREATE","Test Res.f");
325     fResID1Test->Write();
326     fResID2Test->Write();
327     fResID3Test->Write();
328     fResID4Test->Write();
329     fResID5Test->Write();
330     f2.Close();
331   } 
332 }
333 //_____________________________________________________________________________
334 void AliFTrackMaker::ErrorMatrix(Int_t idTrack, Double_t pT,  Double_t eta,
335   Double_t &v11, Double_t &v22, Double_t &v33, Double_t &v12, Double_t &v13, Double_t &v23,
336   Int_t &iFlag)
337 {
338   ///////////////////////////////////////////////
339   //idTrack      track type            input   //
340   //pT           transverse mom        input   //
341   //lambda       deep angle            input   //
342   //v11,v22,v23  error matrix          output  //
343   //v12,v13,v23                        output  //
344   //iFlag                              output  //
345   ///////////////////////////////////////////////
346  
347   AliFDet *detector = gAliFast->Detector();
348   Int_t nDet = detector->NDet();
349   Int_t nDetActive = detector->NDetActive();
350   Int_t nTwice = nDetActive + nDetActive;
351
352   Double_t rTrack, rTrackInverse, pTotal, pInverse, diffPInverse;
353   Double_t safety;
354   Double_t cosLambda, tanLambda, diffLambda;
355   Double_t rDet;
356  
357   Double_t hh0[kNMaxDet2][kNMaxDet2], hhi0[kNMaxDet2][kNMaxDet2];  
358   Double_t hh1[kNMaxDet2][kNMaxDet2], hhi1[kNMaxDet2][kNMaxDet2];  
359   Double_t dhhiOverPInverse[kNMaxDet2][kNMaxDet2];  
360   Double_t dhhiOverLambda[kNMaxDet2][kNMaxDet2];  
361   Double_t a1[kNMaxDet2][kNMaxDet2], a2[kNMaxDet2][kNMaxDet2];  
362   Double_t a0PInverse[kNMaxDet2];  
363   Double_t a0Lambda[kNMaxDet2];  
364   Double_t a0Phi[kNMaxDet2]; 
365
366   Double_t vF11, vF12, vF13, vF22, vF23, vF33, d1, d2, d3, det; 
367   Int_t   idet, icyl, im, in;
368   Double_t phiHalf;
369   Double_t lambda;
370
371   lambda = kPiHalf -2.0*TMath::ATan(TMath::Exp(-eta));
372   rTrack    = detector->ConstMag()*pT;
373   safety    = 10.0;
374   if(2.0*rTrack < (detector->RDet(nDet) + safety)){
375       iFlag     = 0;
376       v11 = 0;
377       v22 = 0;
378       v33 = 0;
379       v12 = 0;
380       v13 = 0;
381       v23 = 0;
382       return;
383   }
384   iFlag        = 1;
385   cosLambda    = TMath::Cos(lambda);
386   pTotal       = pT/cosLambda;
387   pInverse     = 1.0/pTotal;
388   diffPInverse = pInverse*1.0e-5;
389   diffLambda   = 1.0e-4; 
390
391   // Compute likelihood and derivatives
392
393   LogLikelyhood(idTrack, pInverse, lambda);
394   for(icyl=1; icyl<nTwice+1; icyl++){
395      for(im=1; im<nTwice+1; im++){
396       hh0[icyl][im]  = HH(icyl,im); 
397       hhi0[icyl][im] = HHI(icyl,im);
398      }
399   }
400   LogLikelyhood(idTrack, pInverse+diffPInverse,lambda);
401   for(icyl=1; icyl<nTwice+1; icyl++){   
402      for(im=1; im<nTwice+1; im++){
403       hh1[icyl][im]  = HH(icyl,im);
404       hhi1[icyl][im] = HHI(icyl,im);
405      }
406   }  
407   for(icyl=1; icyl<nTwice+1; icyl++){
408      for(im=1; im<icyl+1; im++){
409         dhhiOverPInverse[icyl][im] = (hhi1[icyl][im]-hhi0[icyl][im])/diffPInverse; 
410      }
411   }
412   LogLikelyhood(idTrack, pInverse, lambda+diffLambda);
413   for(icyl=1; icyl<nTwice+1; icyl++){
414      for(im=1; im<nTwice+1; im++){
415       hh1[icyl][im]  = HH(icyl,im);
416       hhi1[icyl][im] = HHI(icyl,im);
417      }
418   }
419   for(icyl=1; icyl<nTwice+1; icyl++){
420      for(im=1; im<icyl+1; im++){
421         dhhiOverLambda[icyl][im] = (hhi1[icyl][im]-hhi0[icyl][im])/diffLambda; 
422      }
423   }
424
425   // Compute additional derivatives
426   rTrackInverse = 1.0/rTrack;
427   tanLambda    = TMath::Tan(lambda);
428   icyl = 0;
429   for(idet=1; idet<nDet+1;idet++){
430      if(detector->IFlagDet(idet) > 0){
431         icyl = icyl + 1;
432         rDet = detector->RDet(idet);
433         phiHalf = TMath::ASin(0.5*rDet*rTrackInverse);
434         Double_t rHelp   = rDet /
435                           (2.0 * TMath::Sqrt(1.0-(0.5 *rDet*rTrackInverse)*
436                                                  (0.5 *rDet*rTrackInverse)));
437         a0PInverse[icyl] = - rDet* rHelp
438                            /(detector->ConstMag()*cosLambda);
439         a0Lambda[icyl]   = - rDet* rHelp
440                            * tanLambda * rTrackInverse;
441         a0Phi[icyl]      =   rDet;
442         a0PInverse[nDetActive+icyl] = 2.0 * tanLambda
443                            *rTrack*(rHelp-rTrack*phiHalf)
444                            /(detector->ConstMag()*cosLambda);
445         a0Lambda[nDetActive+icyl]   = 2.0 * (  rHelp*tanLambda*tanLambda
446                                              + rTrack*phiHalf);
447         a0Phi[nDetActive+icyl] = 0.0 ;
448     }
449   }
450  
451   // Compute information matrix
452
453     vF11=0.0;
454     vF12=0.0;
455     vF13=0.0;
456     vF22=0.0;
457     vF23=0.0;
458     vF33=0.0;
459     for(icyl=1; icyl<nTwice+1; icyl++){
460        d1=0.0;     
461        d2=0.0;     
462        d3=0.0; 
463        for(im=1; im < icyl+1; im++){
464           d1 = d1 + hhi0[icyl][im]*a0PInverse[im];
465           d2 = d2 + hhi0[icyl][im]*a0Lambda[im];
466           d3 = d3 + hhi0[icyl][im]*a0Phi[im];
467        }
468        vF11 =vF11 + d1*d1;
469        vF12 =vF12 + d1*d2;
470        vF13 =vF13 + d1*d3;
471        vF22 =vF22 + d2*d2;
472        vF23 =vF23 + d2*d3;
473        vF33 =vF33 + d3*d3;
474     }
475     for(icyl=1; icyl<nTwice+1; icyl++){
476        for(im=1; im<icyl+1; im++){
477           a1[icyl][im] = 0;
478           a2[icyl][im] = 0;
479           for(in=im; in<icyl+1;in++){
480              a1[icyl][im]=a1[icyl][im]+dhhiOverPInverse[icyl][in]*hh0[im][in];
481              a2[icyl][im]=a2[icyl][im]+dhhiOverLambda[icyl][in]*hh0[im][in];
482           }
483           vF11=vF11+a1[icyl][im]*a1[icyl][im];
484           vF12=vF12+a1[icyl][im]*a2[icyl][im];
485           vF22=vF22+a2[icyl][im]*a2[icyl][im];
486        }
487        vF11=vF11+a1[icyl][icyl]*a1[icyl][icyl];
488        vF12=vF12+a1[icyl][icyl]*a2[icyl][icyl];
489        vF22=vF22+a2[icyl][icyl]*a2[icyl][icyl];
490        }
491  
492   // Invert information matrix
493
494     det=( vF11*vF22 - vF12*vF12 ) *vF33 + (vF12*vF23 - vF13*vF22)*vF13
495                                         + (vF12*vF13 - vF11*vF23)*vF23;
496
497     v11 = (vF22*vF33 - vF23*vF23)/det;
498     v22 = (vF11*vF33 - vF13*vF13)/det;
499     v33 = (vF11*vF22 - vF12*vF12)/det;
500     v12 = (vF13*vF23 - vF12*vF33)/det;
501     v13 = (vF12*vF23 - vF13*vF22)/det;
502     v23 = (vF12*vF13 - vF11*vF23)/det;
503   
504     }
505 //_____________________________________________________________________________//
506 void AliFTrackMaker::LogLikelyhood(Int_t idTrack, Double_t pInverse,Double_t lambda)
507 {
508   ///////////////////////////////////////////////
509   //hh           ??                    output  //
510   //hhi          ??                    output  //
511   //idTrack       track type           input   //
512   //pInverse      inverse  momentum    input   //
513   //lambda       polar angle of track  input   //
514   ///////////////////////////////////////////////
515
516  
517   AliFDet *detector = gAliFast->Detector();
518   Int_t nDet = detector->NDet();
519   Int_t nDetActive = detector->NDetActive();
520   Int_t nTwice = nDetActive + nDetActive;
521
522   Double_t    rDet, rDetSQ;
523   Int_t      idet, icyl, im, imc;
524   Double_t    cosLambda, tanLambda, pTotal, pT, rTrack, rTrackSQ;
525   Double_t    beta, overPBeta, rTrackInv, thickCorr, temp1, temp2;
526   Double_t    partMassSQ;
527   Double_t    aShelp[kNMaxDet2], dShelp[kNMaxDet2];
528   Double_t    projXVXT[kNMaxDet2],projYVXT[kNMaxDet2], projZVXT[kNMaxDet2]; 
529   Double_t    proj[kNMaxDet2][kNMaxDet2]; 
530   Double_t    erroScatt[kNMaxDet2], variance[kNMaxDet2][kNMaxDet2];
531   Double_t    erroSQ[kNMaxDet2];
532   Double_t    hh[kNMaxDet2][kNMaxDet2];
533   Double_t    hhi[kNMaxDet2][kNMaxDet2];
534   Double_t    errorVX, errorVY, errorVZ;
535
536   cosLambda = TMath::Cos(lambda);
537   tanLambda = TMath::Tan(lambda);
538   pTotal    = 1.0/pInverse;
539   pT        = pTotal * cosLambda;
540   rTrack    = detector->ConstMag() * pTotal * cosLambda;
541   rTrackSQ  = rTrack * rTrack;
542   partMassSQ= ParticleMass(idTrack)*ParticleMass(idTrack);
543   beta      = pTotal / TMath::Sqrt(partMassSQ+pTotal*pTotal);
544   overPBeta = 1./(pTotal*beta);
545   rTrackInv = 1./rTrack;
546   errorVX   = detector->ErrorVertexX();
547   errorVY   = detector->ErrorVertexY();
548   errorVZ   = detector->ErrorVertexZ();
549
550     
551   erroScatt[0]=0.0;
552   erroScatt[1]=0.0;
553   for(idet=1; idet < nDet; idet++){
554      thickCorr = detector->ThickDet(idet)/TMath::Sqrt(cosLambda*
555                  TMath::Sqrt(1.0-0.25*(detector->RDetSQ(idet)/rTrackSQ)));
556      if(detector->IFlagGas(idet) == 0){
557          thickCorr = thickCorr * (1.3266 + 0.076 * TMath::Log(thickCorr));}
558      thickCorr = overPBeta * thickCorr;
559      erroScatt[idet+1]=thickCorr*thickCorr;
560   }
561
562
563   icyl = 0;
564   for(idet=1; idet<nDet+1; idet++){
565     rDet   = detector->RDet(idet);
566     rDetSQ = rDet*rDet;
567     dShelp[idet] = TMath::Sqrt(4.0*rTrackSQ-rDetSQ);
568     aShelp[idet] = TMath::ASin(rDet/(rTrack+rTrack));
569     if(detector->IFlagDet(idet) > 0) {
570        icyl = icyl + 1;
571        projXVXT[icyl] = rDet * rTrackInv;
572        projXVXT[nDetActive+icyl] = -tanLambda;
573        temp1 = (rTrackSQ + rTrackSQ - rDetSQ)/dShelp[idet];
574        temp2 = rDet/dShelp[idet];
575        projYVXT[icyl] = temp1*rTrackInv;
576        projYVXT[nDetActive+icyl] = tanLambda * temp2;
577        projZVXT[icyl] = 0.0;
578        projZVXT[nDetActive+icyl] = 1.0;
579        proj[icyl][1] = 0.0;
580        proj[nDetActive+icyl][0] = 0.0;
581        proj[nDetActive+icyl][nDet] = 0.0;
582        proj[icyl][nDet] = 0.0;
583        for(im=2; im<idet+1; im++){
584           proj[icyl][im]= (( rDet
585                            *(rTrackSQ+rTrackSQ-detector->RDetSQ(im-1))
586                            - detector->RDet(im-1)*temp1*dShelp[im-1])
587                          /((rTrackSQ + rTrackSQ)*cosLambda));
588           proj[nDetActive+icyl][im]= 0.5 * detector->RDet(im-1)
589                                    * rTrackInv
590                                    * tanLambda * (detector->RDet(im-1)
591                                    - dShelp[im-1]*temp2)/cosLambda;
592           proj[nDetActive+icyl][nDet+im]= (rTrack+rTrack) * (aShelp[idet] - aShelp[im-1])
593              + ( rDet*dShelp[im-1]-detector->RDet(im-1)*dShelp[idet])
594              *  dShelp[im-1] * tanLambda * tanLambda
595                / (dShelp[idet] * (rTrack+rTrack));
596           proj[icyl][nDet+im]= tanLambda 
597                         *  (rDet*detector->RDet(im-1)*dShelp[im-1]
598                         / (rTrackSQ+rTrackSQ)
599                         - (rDetSQ + detector->RDetSQ(im-1)
600                         -  rDetSQ * detector->RDetSQ(im-1)
601                         / (rTrackSQ+rTrackSQ))
602                         / dShelp[idet]);
603        }
604        for(im=idet+1; im < nDet+1; im++){
605           proj[icyl][im] = 0.0;
606           proj[nDetActive+icyl][im] = 0.0;
607           proj[nDetActive+icyl][nDet+im] = 0.0;
608           proj[icyl][nDet+im] = 0.0;
609        }
610        if(detector->IFlagDet(idet) == 1){
611           erroSQ[icyl] = detector->ErrorRPhi(idet);
612           erroSQ[nDetActive+icyl] = detector->ErrorZ(idet);
613        }else{
614           TPCResolution(pT, rDet, lambda);
615           erroSQ[icyl]            = SigmaRPhiSQ();
616           erroSQ[nDetActive+icyl] = SigmaZSQ();
617        }
618        erroSQ[icyl] = erroSQ[icyl] + detector->ErrorR(idet)*temp2*temp2;
619        erroSQ[nDetActive+icyl] =  erroSQ[nDetActive+icyl] 
620                                 + detector->ErrorR(idet)*tanLambda*tanLambda;
621     }
622   }
623     for(icyl=1; icyl<nTwice+1; icyl++){
624       for(im=1; im<icyl+1; im++){
625           variance[icyl][im]=
626                projXVXT[icyl]*projXVXT[im]*errorVX
627               +projYVXT[icyl]*projYVXT[im]*errorVY
628               +projZVXT[icyl]*projZVXT[im]*errorVZ;
629           for(imc=1; imc<nDet+1; imc++){
630              variance[icyl][im]=variance[icyl][im]
631                     +(proj[icyl][imc]*proj[im][imc]
632                     + proj[icyl][nDet+imc]*proj[im][nDet+imc])
633                     * erroScatt[imc];
634           }
635       }
636       variance[icyl][icyl] = variance[icyl][icyl]+erroSQ[icyl];
637     }
638    
639     for(icyl=1; icyl<nTwice+1; icyl++){
640       for(im=icyl; im<nTwice+1; im++){
641           hh[icyl][im]=variance[im][icyl];
642           for(imc=1; imc<icyl;imc++){
643                hh[icyl][im]=hh[icyl][im]-hh[imc][icyl]*hh[imc][im];
644             }
645             if(im == icyl){
646                hh[icyl][im] = TMath::Sqrt(hh[icyl][im]);
647             }  else {
648                hh[icyl][im] = hh[icyl][im]/hh[icyl][icyl];
649             }
650           }
651     }
652        
653     for(icyl=1; icyl<nTwice+1; icyl++){
654         hhi[icyl][icyl] = 1.0 / hh[icyl][icyl];
655         for(im=1; im<icyl; im++){
656            hhi[icyl][im] = 0.0;
657            for(imc=im; imc<icyl; imc++){
658               hhi[icyl][im] = hhi[icyl][im]-hh[imc][icyl]*hhi[imc][im];
659            }
660            hhi[icyl][im] = hhi[icyl][im]*hhi[icyl][icyl];
661        }
662     }
663     
664     for(icyl=1; icyl<nTwice+1; icyl++){
665       for(im=1; im<nTwice+1; im++){
666           SetHH(icyl,im,hh[icyl][im]);
667           SetHHI(icyl,im,hhi[icyl][im]);
668       }
669     }
670
671   
672 }
673 //_____________________________________________________________________________
674 // translation of routine tpc_resolution of res.f
675 //_____________________________________________________________________________
676 void AliFTrackMaker::TPCResolution(Double_t pTransv, Double_t radiPad, Double_t lambda)
677 {
678   ///////////////////////////////////////////////
679   //sigmaRPhiSQ  resolution in r-phi   output  //
680   //sigmaZSQ     resolution in z       output  //
681   //pTransv      transverse momentum   input   //
682   //radiPad      radius of pad row     input   //
683   //lambda       polar angle of track  input   //
684   //
685   //units: cm, GeV/c, radian                   //
686   //parametrisation of TPC resolution          //
687   //version of 03.07.1995                      //
688   //source: Marek Kowalski, Karel Safarik      //
689   ///////////////////////////////////////////////
690
691   Double_t aRCoeff=0.41818e-2;
692   Double_t bRCoeff=0.17460e-4;
693   Double_t cRCoeff=0.30993e-8;
694   Double_t dRCoeff=0.41061e-6;
695   Double_t aZCoeff=0.39610e-2;
696   Double_t bZCoeff=0.22443e-4;
697   Double_t cZCoeff=0.51504e-1;
698
699   Double_t sigmaRPhiSQ;
700   Double_t sigmaZSQ;
701
702   sigmaRPhiSQ = aRCoeff - bRCoeff * radiPad * TMath::Tan(lambda)+
703                (cRCoeff * (radiPad/pTransv) + dRCoeff) * radiPad/pTransv;
704
705   sigmaZSQ    = aZCoeff - bZCoeff * radiPad * TMath::Tan(lambda)+
706                 cZCoeff * TMath::Tan(lambda)*TMath::Tan(lambda);
707
708   if(sigmaRPhiSQ < 1.0e-6 ) sigmaRPhiSQ = 1.0e-6;
709   if(sigmaZSQ    < 1.0e-6 ) sigmaZSQ    = 1.0e-6;
710
711   sigmaRPhiSQ =   (TMath::Sqrt(sigmaRPhiSQ) + 0.005)
712                 * (TMath::Sqrt(sigmaRPhiSQ) + 0.005);
713   sigmaZSQ    =   (TMath::Sqrt(sigmaZSQ)    + 0.005)
714                 * (TMath::Sqrt(sigmaZSQ)    + 0.005);
715
716   SetSigmaRPhiSQ(sigmaRPhiSQ);
717   SetSigmaZSQ(sigmaZSQ); 
718
719   
720 }
721
722 //_____________________________________________________________________________
723 // returns the mass given particle ID 
724 //-----------------------------------------------------------------------------
725 Double_t AliFTrackMaker::ParticleMass(Int_t idTrack)
726 {
727   Double_t mass = 0.0;
728
729        if(idTrack == 2){ mass = fPionMass;}
730   else if(idTrack == 3){ mass = fKaonMass;}
731   else if(idTrack == 1) {mass = fElectronMass;}
732   else if(idTrack == 4) {mass = fProtonMass;}
733
734   return mass;
735
736 }
737
738 //_____________________________________________________________________________
739 // returns the rapidity given particle pT, pz 
740 //-----------------------------------------------------------------------------
741 Double_t AliFTrackMaker::Rapidity(Double_t pt, Double_t pz)
742 {
743 //   Compute rapidity
744
745    Double_t etalog = TMath::Log((TMath::Sqrt(pt*pt + pz*pz) + TMath::Abs(pz))/pt);
746    if (pz < 0 ) return -TMath::Abs(etalog);
747    else         return  TMath::Abs(etalog);
748 }
749
750 //_____________________________________________________________________________
751 // returns the phi angle given particle px, py 
752 //-----------------------------------------------------------------------------
753 Double_t AliFTrackMaker::Angle(Double_t x, Double_t y)
754 {
755 //   Compute phi angle of particle
756 // ... this is a copy of function ULANGL
757 //  .. sign(a,b) = -abs(a) if b <  0
758 //               =  abs(a) if b >= 0
759
760    Double_t angle = 0;
761    Double_t r = TMath::Sqrt(x*x + y*y);
762    if (r < 1e-20) return angle;
763    if (TMath::Abs(x)/r < 0.8) {
764       angle = TMath::Sign((Double_t)TMath::Abs(TMath::ACos(x/r)), y);
765    } else {
766       angle = TMath::ASin(y/r);
767       if (x < 0 ) {
768          if(angle >= 0) angle =  kPi - angle;
769          else           angle = -kPi - angle;
770       }
771    }
772    return angle;
773 }
774 //_____________________________________________________________________________
775 Int_t AliFTrackMaker::Charge(Int_t kf)
776 {
777 //...this is copy of function LUCHGE 
778 //...Purpose: to give three times the charge for a particle/parton. 
779
780   static Int_t kchg[500] = { -1,2,-1,2,-1,2,-1,2,0,0,-3,0,-3,0,-3,0,-3,0,
781         0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,3,0,0,3,0,-1,0,0,0,0,0,0,0,0,0,0,0,
782        0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
783        2,-1,2,-1,2,3,0,0,0,0,0,0,0,0,0,0,0,3,0,3,3,0,3,0,3,0,3,0,0,0,0,0,
784        0,0,0,0,0,3,0,3,3,0,3,0,3,0,3,0,0,0,0,0,0,0,0,0,0,3,0,3,3,0,3,0,3,
785        0,3,0,0,0,0,0,0,0,0,0,0,3,0,3,3,0,3,0,3,0,3,0,0,0,0,0,0,0,0,0,0,3,
786        0,3,3,0,3,0,3,0,3,0,0,0,0,0,0,0,0,0,0,3,0,3,3,0,3,0,3,0,3,0,0,0,0,
787        0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
788        0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
789        3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,
790        0,3,0,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,3,0,-3,0,3,-3,0,0,0,3,6,0,
791        3,0,0,0,0,0,-3,0,3,-3,0,-3,0,0,0,0,-3,0,3,6,-3,0,3,-3,0,-3,0,3,6,
792        0,3,0,0,0,0,0,-3,0,3,-3,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
793        0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
794        0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
795        0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
796
797 //    extern integer kfcomp_(integer *);
798   Int_t ipower;
799   Int_t ret = 0;
800   Int_t kfa = TMath::Abs(kf);
801   Int_t kc  = Compress(kfa);
802
803 //...Initial values. Simple case of direct readout. 
804   if (kc == 0) {
805   } else if (kfa <= 100 || kc <= 80 || kc > 100) {
806      ret = kchg[kc-1];
807
808 // ...Construction from quark content for heavy meson, diquark, baryon.
809   } else if (kfa/1000 % 10 == 0) {
810         ipower = kfa/100 % 10;
811         ret = (kchg[kfa / 100 % 10 - 1] - kchg[kfa/10 % 10 - 1])*Int_t(TMath::Power(-1, ipower));
812   } else if (kfa / 10 % 10 == 0) {
813         ret = kchg[kfa/1000 % 10 - 1] + kchg[kfa/100 % 10 - 1];
814   } else {
815         ret = kchg[kfa/1000 % 10 - 1] + kchg[kfa/100 % 10 - 1] + kchg[kfa/10 % 10 - 1];
816   }
817
818 // ...Add on correct sign.
819   if (kf > 0) return ret;
820   else        return -ret;
821 }
822 //_____________________________________________________________________________
823 Int_t AliFTrackMaker::Compress(Int_t kf)
824 {
825 //...this is copy of function LUCOMP 
826 //...Purpose: to compress the standard KF codes for use in mass and decay 
827 //...arrays; also to check whether a given code actually is defined.
828 //     from BLOCK LUDATA
829   static Int_t  kchg[500] = { 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,
830         0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
831         0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,
832         1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,
833         1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,
834         0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,
835         1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,
836         0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
837         0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,
838         0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,
839         0,0,1,0,1,1,0,0,0,0,0,0,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,0,0,0,0,1,1,
840         1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,
841         1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
842         0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
843         0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
844         0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
845   static Int_t kftab[25] = { 211,111,221,311,321,130,310,213,113,223,313,
846             323,2112,2212,210,2110,2210,110,220,330,440,30443,30553,0,0 };
847   static Int_t kctab[25] = { 101,111,112,102,103,221,222,121,131,132,122,
848             123,332,333,281,282,283,284,285,286,287,231,235,0,0 };
849
850   Int_t ret = 0;
851   Int_t kfla, kflb, kflc, kflr, kfls, kfa, ikf;
852
853   kfa = TMath::Abs(kf);
854 //...Simple cases: direct translation or table.
855   if (kfa == 0 || kfa >= 100000) {
856      return ret;
857   } else if (kfa <= 100) {
858      ret = kfa;
859      if (kf < 0 && kchg[kfa - 1] == 0)  ret = 0;
860      return ret;
861   } else {
862      for (ikf = 1; ikf <= 23; ++ikf) {
863         if (kfa == kftab[ikf-1]) {
864            ret = kctab[ikf-1];
865            if (kf < 0 && kchg[ret-1] == 0)  ret = 0;
866            return ret;
867         }
868      }
869   }
870 // ...Subdivide KF code into constituent pieces.
871   kfla = kfa / 1000%10;
872   kflb = kfa / 100%10;
873   kflc = kfa / 10%10;
874   kfls = kfa%10;
875   kflr = kfa / 10000%10;
876 // ...Mesons.
877   if (kfa - kflr*10000 < 1000) {
878      if (kflb == 0 || kflb == 9 || kflc == 0 || kflc == 9) {
879      } else if (kflb < kflc) {
880      } else if (kf < 0 && kflb == kflc) {
881      } else if (kflb == kflc) {
882         if (kflr == 0 && kfls == 1) {        ret = kflb + 110;
883         } else if (kflr == 0 && kfls == 3) { ret = kflb + 130;
884         } else if (kflr == 1 && kfls == 3) { ret = kflb + 150;
885         } else if (kflr == 1 && kfls == 1) { ret = kflb + 170;
886         } else if (kflr == 2 && kfls == 3) { ret = kflb + 190;
887         } else if (kflr == 0 && kfls == 5) { ret = kflb + 210;
888         }
889      } else if (kflb <= 5) {
890         if (kflr == 0 && kfls == 1) {        ret = (kflb-1)*(kflb-2)/2 + 100 + kflc;
891         } else if (kflr == 0 && kfls == 3) { ret = (kflb-1)*(kflb-2)/2 + 120 + kflc;
892         } else if (kflr == 1 && kfls == 3) { ret = (kflb-1)*(kflb-2)/2 + 140 + kflc;
893         } else if (kflr == 1 && kfls == 1) { ret = (kflb-1)*(kflb-2)/2 + 160 + kflc;
894         } else if (kflr == 2 && kfls == 3) { ret = (kflb-1)*(kflb-2)/2 + 180 + kflc;
895         } else if (kflr == 0 && kfls == 5) { ret = (kflb-1)*(kflb-2)/2 + 200 + kflc;
896         }
897      } else if (kfls == 1 && kflr <= 1 || kfls == 3 && kflr <= 2 || kfls == 5 && kflr == 0) {
898         ret = kflb + 80;
899      }
900 // ...Diquarks.
901   } else if ((kflr == 0 || kflr == 1) && kflc == 0) {
902      if (kfls != 1 && kfls != 3) {
903      } else if (kfla == 9 || kflb == 0 || kflb == 9) {
904      } else if (kfla < kflb) {
905      } else if (kfls == 1 && kfla == kflb) {
906      } else { ret = 90;
907      }
908 // ...Spin 1/2 baryons.
909   } else if (kflr == 0 && kfls == 2) {
910      if (kfla == 9 || kflb == 0 || kflb == 9 || kflc == 9) {
911      } else if (kfla <= kflc || kfla < kflb) {
912      } else if (kfla >= 6 || kflb >= 4 || kflc >= 4) {
913          ret = kfla + 80;
914      } else if (kflb < kflc) {
915          ret = (kfla+1)*kfla*(kfla-1)/6 + 300 + kflc*(kflc-1)/2 + kflb;
916      } else {
917          ret = (kfla+1)*kfla*(kfla-1)/6 + 330 + kflb*(kflb-1)/2 + kflc;
918      }
919 // ...Spin 3/2 baryons.
920   } else if (kflr == 0 && kfls == 4) {
921      if (kfla == 9 || kflb == 0 || kflb == 9 || kflc == 9) {
922      } else if (kfla < kflb || kflb < kflc) {
923      } else if (kfla >= 6 || kflb >= 4) {
924          ret = kfla + 80;
925      } else {
926          ret = (kfla+1)*kfla*(kfla-1) / 6 + 360 + kflb*(kflb -1) / 2 + kflc;
927      }
928   }
929     return ret;
930 }
931
932 //_____________________________________________________________________________
933 // TEST JOB: Calculate tracks resolution
934 //_____________________________________________________________________________
935 void AliFTrackMaker::MakeTest(Int_t n)
936 {
937   Double_t v11, v22, v33, v12, v13, v23;
938   Int_t iFlag;
939   Int_t idTrack;
940   Double_t  pTStart, pT, eta;
941
942   Double_t sumDPop,sumDDip,sumDPhi;
943   Double_t isum,fm;
944   Double_t pTotal,partMassSQ,beta,lambda;
945   Double_t dPop,dLop,dDip,dPhi,rho12,rho13,rho23;
946   Double_t dPPStrag,dPPTot=0;
947   //  Double_t resol1[1001][11],resol2[10001][11],resol3[1001][11],
948   //           resol4[1001][11],resol5[10001][11]
949   Double_t store1[1001],store2[10001],store3[1001],
950            store4[1001],store5[10001];
951
952
953   idTrack  = 2;
954   pTStart = 0.07;
955   for(Int_t istep=1; istep<n; istep++){
956       if(istep < 100 && istep >  20) istep = istep -1 +  5;
957       if(istep < 500 && istep > 100) istep = istep -1 + 25;
958       if(istep <1000 && istep > 500) istep = istep -1 + 100;
959       pT = pTStart + 0.01*istep;
960       eta = - 0.044;
961       sumDPop = 0;
962       sumDDip = 0;
963       sumDPhi = 0;
964       isum    = 0;
965       for(Int_t in=1; in<11; in++){
966          eta    = eta + 0.088;
967          lambda = kPiHalf -2.0*TMath::ATan(TMath::Exp(-eta));
968          pTotal = pT / TMath::Cos(lambda);
969          if(idTrack == 1){
970            dPPStrag = 0.055 /pT;}
971          else{
972            partMassSQ = ParticleMass(idTrack)*ParticleMass(idTrack);
973            beta       = pTotal/ TMath::Sqrt(pTotal*pTotal + partMassSQ); 
974            dPPStrag   = 0.04/(pT*TMath::Power(beta,2.6666666667));
975          }
976          ErrorMatrix(idTrack,pT,eta, v11, v22, v33, v12, v13, v23, iFlag);
977          if(iFlag == 1){
978             dLop   = TMath::Sqrt(v11);
979             dDip   = TMath::Sqrt(v22);
980             dPhi   = TMath::Sqrt(v33);
981             rho12  = v12/(dLop*dDip);
982             rho13  = v13/(dLop*dPhi);
983             rho23  = v23/(dDip*dPhi);
984             dPop   = 100. *dLop * pTotal;
985             dDip   = 1000. * dDip;
986             dPhi   = 1000. * dPhi;
987             dPPTot = TMath::Sqrt(dPop*dPop + dPPStrag*dPPStrag);
988             //            resol1[istep][in] = dPop;
989             //            resol2[istep][in] = dDip;
990             //            resol3[istep][in] = dPhi;
991             //            resol4[istep][in] = dPPTot;
992             //            resol5[istep][in] = dPPStrag;
993             sumDPop = sumDPop + dPop;
994             sumDDip = sumDDip + dDip;
995             sumDPhi = sumDPhi + dPhi;
996             isum    = isum + 1;}
997          else{
998             printf("%20s %10.5f %10.5f %20s\n","pT,eta",pT,eta,"cannot smear");
999          }
1000        }
1001        if(isum > 0){
1002          dPop   = sumDPop/isum;
1003          dDip   = sumDDip/isum;
1004          dPhi   = sumDPhi/isum;
1005          dPPTot = TMath::Sqrt(dPop*dPop + dPPStrag*dPPStrag);}
1006        else{
1007          dPop   = 0;
1008          dDip   = 0;
1009          dPhi   = 0;
1010        }
1011        store1[istep] = dPop;
1012        store2[istep] = dDip;
1013        store3[istep] = dPhi;
1014        store4[istep] = dPPTot;
1015        store5[istep] = dPPStrag;
1016        if(istep > 20 ){
1017           Int_t im = 5;
1018           if(istep > 100) {im =  25;}
1019           if(istep > 500) {im = 100;}
1020           fm = 1./(1.*im);
1021           for(Int_t ist=1; ist<im; ist++){
1022               //               for(Int_t in=1; in < 11; in++){
1023               //                   resol1[istep-im+ist][in] = resol1[istep-im][in]+
1024               //                         ist*fm*(resol1[istep][in]-resol1[istep-im][in]);
1025               //                   resol2[istep-im+ist][in] = resol2[istep-im][in]+
1026               //                         ist*fm*(resol2[istep][in]-resol2[istep-im][in]);
1027               //                   resol3[istep-im+ist][in] = resol3[istep-im][in]+
1028               //                         ist*fm*(resol3[istep][in]-resol3[istep-im][in]);
1029               //                   resol4[istep-im+ist][in] = resol4[istep-im][in]+
1030               //                         ist*fm*(resol4[istep][in]-resol4[istep-im][in]);
1031               //                   resol5[istep-im+ist][in] = resol5[istep-im][in]+
1032               //                         ist*fm*(resol5[istep][in]-resol5[istep-im][in]);
1033               //             }
1034             store1[istep-im+ist]=store1[istep-im]+
1035                                  ist*fm*(store1[istep]-store1[istep-im]);
1036             store2[istep-im+ist]=store2[istep-im]+
1037                                  ist*fm*(store2[istep]-store2[istep-im]);
1038             store3[istep-im+ist]=store3[istep-im]+
1039                                  ist*fm*(store3[istep]-store3[istep-im]);
1040             store4[istep-im+ist]=store4[istep-im]+
1041                                  ist*fm*(store4[istep]-store4[istep-im]);
1042             store5[istep-im+ist]=store5[istep-im]+
1043                                  ist*fm*(store5[istep]-store5[istep-im]);
1044             // Fill control histograms
1045             fResID1Test->Fill(pTStart + 0.01*(istep-im+ist),store1[istep-im+ist]);
1046             fResID2Test->Fill(pTStart + 0.01*(istep-im+ist),store2[istep-im+ist]);
1047             fResID3Test->Fill(pTStart + 0.01*(istep-im+ist),store3[istep-im+ist]);
1048             fResID4Test->Fill(pTStart + 0.01*(istep-im+ist),store4[istep-im+ist]);
1049             fResID5Test->Fill(pTStart + 0.01*(istep-im+ist),store5[istep-im+ist]);
1050           }
1051           printf("%10s %10d %20.15f %20.15f %20.15f %20.15f %20.15f \n", 
1052                        "TestTrack:",istep,store1[istep],store2[istep],store3[istep],
1053                                     store4[istep],store5[istep]);
1054        } else {     
1055           printf("%10s %10d %20.15f %20.15f %20.15f %20.15f %20.15f \n", 
1056                        "TestTrack:",istep,store1[istep],store2[istep],store3[istep],
1057                                     store4[istep],store5[istep]);
1058           fResID1Test->Fill(pT,store1[istep]);
1059           fResID2Test->Fill(pT,store2[istep]);
1060           fResID3Test->Fill(pT,store3[istep]);
1061           fResID4Test->Fill(pT,store4[istep]);
1062           fResID5Test->Fill(pT,store5[istep]);
1063        }
1064   }
1065 }
1066 //_____________________________________________________________________________