1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 Revision 1.6 2002/07/26 06:21:12 gamez
19 CRT3 volume taken as sensitive volume
21 Revision 1.5 2002/07/25 12:52:34 morsch
22 AddHit call only if hit has been defined.
24 Revision 1.4 2002/07/12 12:57:29 gamez
25 Division of CRT1 corrected
27 Revision 1.3.2.1 2002/07/12 12:32:50 gamez
28 Division of CRT1 corrected
30 Revision 1.3 2002/07/10 15:57:04 gamez
31 CreateHall() removed, and new Molasse volumes
33 Revision 1.2 2002/07/09 08:45:35 hristov
34 Old style include files needed on HP (aCC)
36 Revision 1.1 2002/06/16 17:08:19 hristov
42 ///////////////////////////////////////////////////////////////////////////////
44 // ALICE Cosmic Ray Trigger //
46 // This class contains the functions for version 0 of the ALICE Cosmic Ray //
47 // Trigger. This version will be used to simulation comic rays in alice //
48 // with all the detectors. //
52 // Arturo Fernandez <afernand@fcfm.buap.mx>
53 // Enrique Gamez <egamez@fcfm.buap.mx>
55 // Universidad Autonoma de Puebla
60 <img src="picts/AliCRTv0Class.gif">
63 <p>The responsible person for this module is
64 <a href="mailto:egamez@fcfm.buap.mx">Enrique Gamez</a>.
70 ///////////////////////////////////////////////////////////////////////////////
74 #include <TGeometry.h>
77 #include <TLorentzVector.h>
86 #include "AliCRTConstants.h"
90 //_____________________________________________________________________________
91 AliCRTv0::AliCRTv0() : AliCRT()
94 // Default constructor for CRT v0
98 //_____________________________________________________________________________
99 AliCRTv0::AliCRTv0(const char *name, const char *title)
103 // Standard constructor for CRT v0
107 <img src="picts/AliCRTv0.gif">
112 //_____________________________________________________________________________
113 AliCRTv0::AliCRTv0(const AliCRTv0& crt)
121 //_____________________________________________________________________________
122 AliCRTv0& AliCRTv0::operator= (const AliCRTv0& crt)
125 // Asingment operator.
131 //_____________________________________________________________________________
132 void AliCRTv0::BuildGeometry()
135 // Create the ROOT TNode geometry for the CRT
140 const Int_t kColorCRT = kRed;
142 // Find the top node alice.
143 top = gAlice->GetGeometry()->GetNode("alice");
145 new TBRIK("S_CRT_A", "CRT box", "void",
146 AliCRTConstants::fgActiveAreaLenght/2.,
147 AliCRTConstants::fgActiveAreaHeight/2.,
148 AliCRTConstants::fgActiveAreaWidth/2.);
151 new TRotMatrix("Left", "Left", 90., 315., 90., 45., 0., 337.5);
152 new TRotMatrix("Right", "Right", 90., 45., 90., 315., 180., 202.5);
153 new TRotMatrix("Up", "Up", 90., 0., 90., 90., 0., 90.);
157 // Put 4 modules on the top of the magnet
158 Float_t box = AliCRTConstants::fgCageWidth/2.;
160 node = new TNode("upper1", "upper1", "S_CRT_A", 0., 790., 3.*box, "Up");
161 node->SetLineColor(kColorCRT);
165 node = new TNode("upper2", "upper2", "S_CRT_A", 0., 790., box, "Up");
166 node->SetLineColor(kColorCRT);
170 node = new TNode("upper3", "upper3", "S_CRT_A", 0., 790., -1.*box, "Up");
171 node->SetLineColor(kColorCRT);
175 node = new TNode("upper4", "upper4", "S_CRT_A", 0., 790., -3.*box, "Up");
176 node->SetLineColor(kColorCRT);
180 // Modules on the left side.
181 Float_t xtragap = 10.;
182 Float_t initXside = (790.+xtragap)*TMath::Sin(2*22.5*kDegrad); //rigth side
183 Float_t initYside = (790.+xtragap)*TMath::Cos(2*22.5*kDegrad);
185 node = new TNode("upper5", "upper5", "S_CRT_A", initXside, initYside, 3.*box, "Left");
186 node->SetLineColor(kColorCRT);
190 node = new TNode("upper6", "upper6", "S_CRT_A", initXside, initYside, box, "Left");
191 node->SetLineColor(kColorCRT);
195 node = new TNode("upper7", "upper7", "S_CRT_A", initXside, initYside, -1.*box, "Left");
196 node->SetLineColor(kColorCRT);
200 node = new TNode("upper8", "upper8", "S_CRT_A", initXside, initYside, -3.*box, "Left");
201 node->SetLineColor(kColorCRT);
205 // Modules on the right side.
207 node = new TNode("upper9", "upper9", "S_CRT_A", -initXside, initYside, 3.*box, "Right");
208 node->SetLineColor(kColorCRT);
212 node = new TNode("upper10", "upper10", "S_CRT_A", -initXside, initYside, box, "Right");
213 node->SetLineColor(kColorCRT);
217 node = new TNode("upper11","upper11", "S_CRT_A", -initXside, initYside, -1.*box, "Right");
218 node->SetLineColor(kColorCRT);
222 node = new TNode("upper12","upper12", "S_CRT_A", -initXside, initYside, -3.*box, "Right");
223 node->SetLineColor(kColorCRT);
229 //_____________________________________________________________________________
230 void AliCRTv0::CreateGeometry()
233 // Create geometry for the CRT array
235 Int_t idrotm[2499]; // The rotation matrix.
237 Int_t * idtmed = fIdtmed->GetArray() - 1099 ;
247 box[0] = AliCRTConstants::fgCageLenght/2.; // Half Length of the box along the X axis, cm.
248 box[1] = AliCRTConstants::fgCageHeight/2.; // Half Length of the box along the Y axis, cm.
249 box[2] = AliCRTConstants::fgCageWidth/2.; // Half Length of the box along the Z axis, cm.
252 // Define the Scintillators. as a big box.
254 scint[0] = AliCRTConstants::fgActiveAreaLenght/2.; // Half Length in X
255 scint[1] = AliCRTConstants::fgActiveAreaHeight/2.; // Half Length in Y
256 scint[2] = AliCRTConstants::fgActiveAreaWidth/2.; // Half Length in Z
257 gMC->Gsvolu("CRT1", "BOX ", idtmed[1112], scint, 3); // Scintillators
260 // Define the coordinates where the draw will begin.
265 // we'll start dawing from the center.
270 Float_t gapY = 30.; // 30 cms. above the barrel.
271 // For the height we staimate the from the center of the ceiling,
272 // if were a cilinder, must be about 280cm.
273 Float_t barrel = 790.; // Barrel radius.
274 Float_t height = barrel + gapY - 30.;
275 Float_t initY = height;
279 // we'll start dawing from the center.
282 // Put 4 modules on the top of the magnet
284 for ( Int_t i = 1 ; i <= 4 ; i++ ) {
285 gMC->Gspos("CRT1", i, "ALIC", initX, initY, (i-step)*box[2], 0, "ONLY");
289 // Modules on the barrel sides.
290 // Because the openenig angle for each face is 22.5, and if we want to
291 // put the modules right in the middle
292 Float_t xtragap = 10.;
293 Float_t initXside = (height+xtragap)*TMath::Sin(2*22.5*kDegrad); //rigth side
294 Float_t initYside = (height+xtragap)*TMath::Cos(2*22.5*kDegrad);
296 // Put 4 modules on the left side of the magnet
297 // The rotation matrix parameters, for the left side.
298 AliMatrix(idrotm[232], 90., 315., 90., 45., 0., 337.5);
300 for ( Int_t i = 1 ; i <= 4 ; i++ ) {
301 gMC->Gspos("CRT1", i+4, "ALIC", initXside, initYside, (i-stepl)*box[2],
302 idrotm[232], "ONLY");
306 // Put 4 modules on the right side of the magnet
307 // The rotation matrix parameters for the right side.
308 AliMatrix(idrotm[231], 90., 45., 90., 315., 180., 202.5);
310 for ( Int_t i = 1 ; i <= 4 ; i++ ) {
311 gMC->Gspos("CRT1", i+8, "ALIC", -initXside, initYside, (i-stepr)*box[2],
312 idrotm[231], "ONLY");
316 // Divide the modules in 2 planes.
317 //gMC->Gsdvn("CRT2", "CRT1", 2, 2);
318 // Now divide each plane in 8 palettes
319 //gMC->Gsdvn("CRT3", "CRT2", 8, 3);
323 //_____________________________________________________________________________
324 void AliCRTv0::CreateMolasse()
326 Int_t idrotm[2499]; // The rotation matrix.
328 Int_t * idtmed = fIdtmed->GetArray() - 1099 ;
334 // Exactly above the hall
337 tspar[1] = 1170. + 375.;
338 tspar[2] = (1900.+1150.)/2.+100.;
341 gMC->Gsvolu("CMO1", "TUBS", idtmed[1123], tspar, 5);
342 gMC->Gspos("CMO1", 1, "ALIC", 0., 500., 1900.-tspar[2]+400., 0, "MANY");
346 tbox[1] = (4420. - 1670.)/2.;
347 tbox[2] = (1900.+1150.)/2. + 200.;
348 gMC->Gsvolu("CM12", "BOX", idtmed[1123], tbox, 3);
349 gMC->Gspos("CM12", 1, "ALIC", 0., 4420. -tbox[1], 1900.-tbox[2]+400., 0, "MANY");
351 AliMatrix(idrotm[2003], 0., 0., 90., 0., 90., 90.);
354 tube[0] = 455. + 100.;
355 tube[1] = 555. + 375.;
356 tube[2] = (5150. - 1166.)/2.;
357 gMC->Gsvolu("CMO2", "TUBE", idtmed[1123], tube, 3);
358 gMC->Gspos("CMO2", 1, "ALIC", -2100., 4420.-tube[2], 0., idrotm[2003], "MANY");
364 tube[2] = (5150. - 690.)/2.;
365 gMC->Gsvolu("CMO3", "TUBE", idtmed[1123], tube, 3);
366 gMC->Gspos("CMO3", 1, "ALIC", 375., 4420.-tube[2], 1900.+2987.7, idrotm[2003], "MANY");
367 // Behind the PGC2 up to the end of the M. volume.
369 tbox[1] = 2575. + 95.;
370 tbox[2] = (12073. - 1900.-2987.7-650.)/2.;
371 gMC->Gsvolu("CMO7", "BOX", idtmed[1123], tbox, 3);
372 gMC->Gspos("CMO7", 1, "ALIC", 0., 4420.-tbox[1], 1900.+2987.7+650.+tbox[2], 0, "MANY");
374 // Along the PX24 , upper part.
377 tube[2] = 2575. - 1300. + 95.;
378 gMC->Gsvolu("CMO4", "TUBE", idtmed[1123], tube, 3);
379 gMC->Gspos("CMO4", 1, "ALIC", 0., 404.+1300.+tube[2], -2300., idrotm[2003], "MANY");
381 // Along the PX24 , lower part
385 tspar[3] = kRaddeg*TMath::ASin(1070./1150.);
386 tspar[4] = 360. - tspar[3];
387 gMC->Gsvolu("CMO5", "TUBS", idtmed[1123], tspar, 5);
388 gMC->Gspos("CMO5", 1, "ALIC", 0., 404., -2300., idrotm[2003], "MANY");
391 tbox[1] = 2575. + 95.;
393 gMC->Gsvolu("CMO6", "BOX", idtmed[1123], tbox, 3);
394 gMC->Gspos("CMO6", 1, "ALIC", 0., 4420.-tbox[1], -3550.-tbox[2], 0, "MANY");
397 // On the right side of th hall
398 tbox[0] = (12073. - 1250.)/2.;
399 tbox[1] = 2575. + 95.;
400 tbox[2] = (8437.7+650.)/2.;
401 gMC->Gsvolu("CMO8", "BOX", idtmed[1123], tbox, 3);
402 gMC->Gspos("CMO8", 1, "ALIC", 1250.+tbox[0], 4420.-tbox[1], -3550.+tbox[2], 0, "MANY");
404 // on the left side of the hall, behind
405 tbox[0] = (12073. - 2755.)/2.;
406 tbox[1] = 2575. + 95.;
407 tbox[2] = (8437.7+650.)/2.;
408 gMC->Gsvolu("CMO9", "BOX", idtmed[1123], tbox, 3);
409 gMC->Gspos("CMO9", 1, "ALIC", -2755.-tbox[0], 4420.-tbox[1], -3550.+tbox[2], 0, "MANY");
412 // Molasse betwen the PX24 & PM25 on the left side.
413 tbox[0] = (2755. - 1250.)/2.;
414 tbox[1] = 2575. + 95.;
415 tbox[2] = (3550. - 555.)/2.;
416 gMC->Gsvolu("CM10", "BOX", idtmed[1123], tbox, 3);
417 gMC->Gspos("CM10", 1, "ALIC", -1250.-tbox[0], 4420.-tbox[1], -tbox[2]-555., 0, "MANY");
420 // Molasse betwen the PGC2 & PM25 on the left side.
421 tbox[0] = (2755. - 1250.)/2.;
422 tbox[1] = 2575. + 95.;
423 tbox[2] = (1900.+2987.7 - 555. + 650.)/2.;
424 gMC->Gsvolu("CM11", "BOX", idtmed[1123], tbox, 3);
425 gMC->Gspos("CM11", 1, "ALIC", -1250.-tbox[0], 4420.-tbox[1], 555.+tbox[2], 0, "MANY");
430 //_____________________________________________________________________________
431 void AliCRTv0::CreateShafts()
436 Int_t idrotm[2499]; // The rotation matrix.
438 Int_t * idtmed = fIdtmed->GetArray() - 1099 ;
447 gMC->Gsvolu("CHC1", "TUBS", idtmed[1116], ptubs, 5);
448 gMC->Gspos("CHC1", 1, "ALIC", 0., 500., 0., 0, "ONLY");
454 AliMatrix(idrotm[2001], 0., 0., 90., 0., 90., 90.);
460 ptubs[3] = kRaddeg*TMath::ASin(1070./ptubs[0]);
461 ptubs[4] = 360 - ptubs[3];
462 gMC->Gsvolu("CSF1", "TUBS", idtmed[1116], ptubs, 5);
463 gMC->Gspos("CSF1", 1, "ALIC", 0., 404., -2300., idrotm[2001], "MANY");
468 ptube[2] = 2575. - ptubs[2] + 95.;
469 gMC->Gsvolu("CSF2", "TUBE", idtmed[1116], ptube, 3);
470 gMC->Gspos("CSF2", 1, "ALIC", 0., 404.+ptubs[2]+ptube[2], -2300., idrotm[2001], "MANY");
472 // Concrete walls along the shaft
475 pbox[1] = 2575. + 95.;
477 gMC->Gsvolu("CSW1", "BOX", idtmed[1116], pbox, 3);
478 gMC->Gspos("CSW1", 1, "ALIC", -290-pbox[0], 404.-1300.+pbox[1], -3450.+210.*2, 0, "MANY");
482 pbox[1] = 2575. + 95.;
484 gMC->Gsvolu("CSW3", "BOX", idtmed[1116], pbox, 3);
485 gMC->Gspos("CSW3", 1, "ALIC", 420.-290.+pbox[0], 404.-1300.+pbox[1], -3450.+210.*2, 0, "MANY");
489 pbox[1] = 2575. + 95.;
491 gMC->Gsvolu("CSW2", "BOX", idtmed[1116], pbox, 3);
492 gMC->Gspos("CSW2", 1, "ALIC", -290-pbox[0], 404.-1300.+pbox[1], -3450.+pbox[2], 0, "MANY");
493 gMC->Gspos("CSW2", 2, "ALIC", 420.-290.+pbox[0], 404.-1300.+pbox[1], -3450.+pbox[2], 0, "MANY");
500 gMC->Gsvolu("CSP1", "BOX", idtmed[1116], pbox, 3);
501 gMC->Gspos("CSP1", 1, "ALIC", 0., 2600.-700., -1150-pbox[2], 0, "MANY");
507 gMC->Gsvolu("CSP2", "BOX", idtmed[1116], pbox, 3);
508 gMC->Gspos("CSP2", 1, "ALIC", 0., 2950.-700., -3450+pbox[2], 0, "MANY");
514 gMC->Gsvolu("CSP3", "BOX", idtmed[1116], pbox, 3);
515 gMC->Gspos("CSP3", 1, "ALIC", 0., 2950.-700., -1150.-210.-pbox[2], 0, "MANY");
521 gMC->Gsvolu("CSP4", "BOX", idtmed[1116], pbox, 3);
522 gMC->Gspos("CSP4", 1, "ALIC", 0., 2950.-700.+155.+pbox[1], -1150.-210.-pbox[2], 0, "MANY");
529 gMC->Gsvolu("CSP5", "BOX", idtmed[1116], pbox, 3);
530 gMC->Gspos("CSP5", 1, "ALIC", 0., 2950.-700., -3450.+460.+pbox[2], 0, "MANY");
536 gMC->Gsvolu("CSP6", "BOX", idtmed[1116], pbox, 3);
537 gMC->Gspos("CSP6", 1, "ALIC", 1150.-600., 2950.-700., -3450.+460.+pbox[2], 0, "MANY");
538 gMC->Gspos("CSP6", 2, "ALIC", -1150.+600., 2950.-700., -3450.+460.+pbox[2], 0, "MANY");
545 gMC->Gsvolu("CSP7", "BOX", idtmed[1116], pbox, 3);
546 gMC->Gspos("CSP7", 1, "ALIC", 850.+pbox[0], 2950.-700.+100., -3450.+460.+pbox[2], 0, "MANY");
547 gMC->Gspos("CSP7", 2, "ALIC", -850.-pbox[0], 2950.-700.+100., -3450.+460.+pbox[2], 0, "MANY");
552 ptube[1] = ptube[0] + 100.;
553 ptube[2] = (5150. - 1166.)/2.;
554 gMC->Gsvolu("CSF3", "TUBE", idtmed[1116], ptube, 3);
555 gMC->Gspos("CSF3", 1, "ALIC", -2100., AliCRTConstants::fgDepth-ptube[2], 0., idrotm[2001], "MANY");
559 ptube[1] = ptube[0] + 100.;
560 ptube[2] = (5150. - 690.)/2.;
561 gMC->Gsvolu("CSF4", "TUBE", idtmed[1116], ptube, 3);
562 gMC->Gspos("CSF4", 1, "ALIC", 375., AliCRTConstants::fgDepth-ptube[2], 1900.+2987.7, idrotm[2001], "MANY");
566 //_____________________________________________________________________________
568 void AliCRTv0::CreateMaterials()
570 // Use the standard materials.
571 AliCRT::CreateMaterials();
575 //_____________________________________________________________________________
576 void AliCRTv0::DrawDetector()
579 // Draw a shaded view of the L3 magnet
581 cout << "AliCRTv0::DrawModule() : Drawing the module" << endl;
583 gMC->Gsatt("*", "seen", -1);
584 gMC->Gsatt("alic", "seen", 0);
586 gMC->Gsatt("ALIC","seen",0);
587 gMC->Gsatt("L3MO","seen",1); // L3 Magnet
588 gMC->Gsatt("CRT1","seen",1); // Scintillators
590 // Draw the molasse volumes
591 gMC->Gsatt("CMO1","seen",0); // Exactly above the HALL
592 gMC->Gsatt("CMO2","seen",0); // Molasse, along the PM25
593 gMC->Gsatt("CMO3","seen",0); // molasse along the PGC2
594 gMC->Gsatt("CMO4","seen",0); // Molasse, behind the PX24 upper part
595 gMC->Gsatt("CMO5","seen",0); // molasse behind px24, lower part
596 gMC->Gsatt("CMO6","seen",0); // behind the PX24
597 gMC->Gsatt("CMO7","seen",0); // behind the PGC2
598 gMC->Gsatt("CMO8","seen",0); // on the right side.
599 gMC->Gsatt("CMO9","seen",0); // on the left side.
600 gMC->Gsatt("CM10","seen",0); // betwen PX24 & PM25.
601 gMC->Gsatt("CM11","seen",0); // betwen PGC2 & PM25.
602 gMC->Gsatt("CM12","seen",0); // box above the hall.
604 gMC->Gdopt("hide", "on");
605 gMC->Gdopt("edge","off");
606 gMC->Gdopt("shad", "on");
607 gMC->Gsatt("*", "fill", 7);
608 gMC->SetClipBox("ALIC", 0, 3000, -3000, 3000, -6000, 6000);
610 gMC->Gdraw("alic", 40, 30, 0, 10, 9.5, .009, .009);
611 gMC->Gdhead(1111, "View of CRT(ACORDE)");
612 gMC->Gdman(18, 4, "MAN");
617 //_____________________________________________________________________________
618 void AliCRTv0::Init()
621 // Initialise L3 magnet after it has been built
625 printf("\n%s: ",ClassName());
626 for(i=0;i<35;i++) printf("*");
627 printf(" CRTv0_INIT ");
628 for(i=0;i<35;i++) printf("*");
629 printf("\n%s: ",ClassName());
631 // Here the CRTv0 initialisation code (if any!)
632 for(i=0;i<80;i++) printf("*");
638 //_____________________________________________________________________________
639 void AliCRTv0::StepManager()
642 // Called for every step in the Cosmic Ray Trigger
650 static Float_t hits[13];
651 Int_t tracknumber = gAlice->CurrentTrack();
653 static Float_t eloss;
654 static Float_t tlength;
658 if ( !gMC->IsTrackAlive() ) return;
660 if (gMC->IsNewTrack()) {
661 // Reset the deposited energy
665 eloss += gMC->Edep(); // Store the energy loss along the trajectory.
666 tlength += gMC->TrackStep();
668 if (gMC->IsTrackEntering() && (strcmp(gMC->CurrentVolName(),"CM12") == 0) ) {
670 // Get current particle id (ipart), track position (pos) and momentum (mom)
671 gMC->TrackPosition(pos);
672 gMC->TrackMomentum(mom);
673 ipart = gMC->TrackPid();
675 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
676 Double_t pt = TMath::Sqrt(tc);
677 theta = Float_t(TMath::ATan2(pt,Double_t(mom[2])))*kRaddeg;
678 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
681 vol[0] = gMC->CurrentVolOffID(1, vol[1]);
682 vol[2] = gMC->CurrentVolID(copy);
685 hits[0] = 0.f; // (fnmou)
686 hits[1] = (Float_t)ipart; // (fId)
688 hits[2] = pos[0]; // X coordinate (fX)
689 hits[3] = pos[1]; // Y coordinate (fY)
690 hits[4] = pos[2]; // Z coordinate (fZ)
691 hits[5] = mom[0]; // Px (fpxug)
692 hits[6] = mom[1]; // Py (fpyug)
693 hits[7] = mom[2]; // Pz (fpzug)
695 hits[8] = gMC->GetMedium();//layer(flay)
696 hits[9] = theta; // arrival angle
698 hits[11] = eloss; // Energy loss
699 hits[12] = tlength; // Trajectory lenght
700 hits[13] = (Float_t)tracknumber;
702 AddHit(gAlice->CurrentTrack(),vol, hits);