]> git.uio.no Git - u/mrichter/AliRoot.git/blob - HMPID/AliHMPIDRecon.cxx
Fields for HMPID in the ESD filled in an optimized way+minors
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDRecon.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 //////////////////////////////////////////////////////////////////////////
17 //                                                                      //
18 // AliHMPIDRecon                                                         //
19 //                                                                      //
20 // HMPID class to perfom pattern recognition based on Hough transfrom    //
21 // for single chamber                                                   //
22 //////////////////////////////////////////////////////////////////////////
23
24 #include "AliHMPIDRecon.h"   //class header
25 #include "AliHMPIDCluster.h" //CkovAngle()
26 #include <TRotation.h>       //TracePhot()
27 #include <TH1D.h>            //HoughResponse()
28 #include <TClonesArray.h>    //CkovAngle()
29 #include <AliESDtrack.h>     //CkovAngle()
30
31   Int_t     fPhotCnt;                           // counter of photons candidate
32   Int_t    *fPhotFlag;                          // flags of photon candidates
33   Double_t *fPhotCkov;                          // Ckov angles of photon candidates, [rad]
34   Double_t *fPhotPhi;                           // phis of photons candidates, [rad]
35   Double_t *fPhotWei;                           // weigths of photon candidates
36   Double_t  fCkovSigma2;                        // sigma2 of the reconstructed ring
37
38   Bool_t    fIsWEIGHT;                          // flag to consider weight procedure
39   Float_t   fDTheta;                            // Step for sliding window
40   Float_t   fWindowWidth;                       // Hough width of sliding window
41   
42   Double_t  fRingArea;                          // area of a given ring
43   Double_t  fRingAcc;                           // fraction of the ring accepted by geometry
44   TVector3  fTrkDir;                            // track direction in LORS at RAD
45   TVector2  fTrkPos;                            // track positon in LORS at RAD
46   TVector2  fMipPos;                            // mip positon for a given track
47   TVector2  fPc;                                // track position at PC
48   
49   AliHMPIDParam *fParam;                        // Pointer to AliHMPIDParam
50
51
52 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
53 AliHMPIDRecon::AliHMPIDRecon():
54   TTask("RichRec","RichPat"),
55   fPhotCnt(-1),
56   fPhotFlag(0x0),
57   fPhotCkov(0x0),
58   fPhotPhi(0x0),
59   fPhotWei(0x0),
60   fCkovSigma2(0),
61   fIsWEIGHT(kFALSE),
62   fDTheta(0.001),
63   fWindowWidth(0.045),
64   fRingArea(0),
65   fRingAcc(0),
66   fTrkDir(0,0,1),  // Just for test
67   fTrkPos(30,40),  // Just for test
68   fMipPos(0,0),
69   fPc(0,0),
70   fParam(AliHMPIDParam::Instance())
71 {
72 //..
73 //init of data members
74 //..
75   
76   fParam->SetRefIdx(fParam->MeanIdxRad()); // initialization of ref index to a default one
77 }
78 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
79 void AliHMPIDRecon::InitVars(Int_t n)
80 {
81 //..
82 //Init some variables
83 //..
84   if(n<0) return;
85   fPhotFlag = new Int_t[n];
86   fPhotCkov = new Double_t[n];
87   fPhotPhi  = new Double_t[n];
88   fPhotWei  = new Double_t[n];
89 //
90 }
91 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
92 void AliHMPIDRecon::DeleteVars()const
93 {
94 //..
95 //Delete variables
96 //..
97   delete fPhotFlag;
98   delete fPhotCkov;
99   delete fPhotPhi;
100   delete fPhotWei;
101 }
102 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
103 void AliHMPIDRecon::CkovAngle(AliESDtrack *pTrk,TClonesArray *pCluLst,Double_t nmean,Double_t qthre)
104 {
105 // Pattern recognition method based on Hough transform
106 // Arguments:   pTrk     - track for which Ckov angle is to be found
107 //              pCluLst  - list of clusters for this chamber   
108 //   Returns:            - track ckov angle, [rad], 
109     
110
111   const Int_t nMinPhotAcc = 3;                      // Minimum number of photons required to perform the pattern recognition
112   
113   
114   Int_t nClusTot = pCluLst->GetEntries();
115   if(nClusTot>fParam->MultCut()) fIsWEIGHT = kTRUE; // offset to take into account bkg in reconstruction
116   else                           fIsWEIGHT = kFALSE;
117
118   InitVars(nClusTot);
119   
120   Float_t xRa,yRa,th,ph;
121   pTrk->GetHMPIDtrk(xRa,yRa,th,ph);        //initialize this track: th and ph angles at middle of RAD 
122   SetTrack(xRa,yRa,th,ph);
123
124   fParam->SetRefIdx(nmean);
125
126   Float_t dMin=999,mipX=-1,mipY=-1;Int_t chId=-1,mipId=-1,mipQ=-1;                                                                           
127   fPhotCnt=0;                                                      
128   for (Int_t iClu=0; iClu<pCluLst->GetEntriesFast();iClu++){//clusters loop
129     AliHMPIDCluster *pClu=(AliHMPIDCluster*)pCluLst->UncheckedAt(iClu);                       //get pointer to current cluster    
130     chId=pClu->Ch();
131     if(pClu->Q()>qthre){                                                                      //charge compartible with MIP clusters      
132       Float_t dX=fPc.X()-pClu->X(),dY=fPc.Y()-pClu->Y(),d =TMath::Sqrt(dX*dX+dY*dY);          //distance between current cluster and intersection point
133       if( d < dMin) {mipId=iClu; dMin=d;mipX=pClu->X();mipY=pClu->Y();mipQ=(Int_t)pClu->Q();} //current cluster is closer, overwrite data for min cluster
134     }else{                                                                                    //charge compatible with photon cluster
135       Double_t thetaCer,phiCer;
136       if(FindPhotCkov(pClu->X(),pClu->Y(),thetaCer,phiCer)){                                  //find ckov angle for this  photon candidate
137         fPhotCkov[fPhotCnt]=thetaCer;                                                         //actual theta Cerenkov (in TRS)
138         fPhotPhi [fPhotCnt]=phiCer;                                                           //actual phi   Cerenkov (in TRS): -pi to come back to "unusual" ref system (X,Y,-Z)
139         //PH        Printf("photon n. %i reconstructed theta = %f",fPhotCnt,fPhotCkov[fPhotCnt]);
140         fPhotCnt++;                                                                           //increment counter of photon candidates
141       }
142     }
143   }//clusters loop
144   
145   if(fPhotCnt<=nMinPhotAcc) {                                                                 //no reconstruction with <=3 photon candidates
146     pTrk->SetHMPIDsignal(kNoPhotAccept);                                                      //set the appropriate flag
147     pTrk->SetHMPIDmip(mipX,mipY,mipQ,fPhotCnt);                                               //store mip info 
148     pTrk->SetHMPIDcluIdx(-1,-1);                                                              //set index of cluster
149     return;
150   }
151   
152   if(mipId==-1) {
153     pTrk->SetHMPIDcluIdx(chId,9999);                                                          //set index of cluster
154     pTrk->SetHMPIDsignal(kMipQdcCut);
155     return;
156   }                                                                                           //no clusters with QDC more the threshold at all
157     pTrk->SetHMPIDcluIdx(chId,mipId);                                                         //set index of cluster
158     if(dMin>fParam->DistCut()) {pTrk->SetHMPIDsignal(kMipDistCut); return;}                   //closest cluster with enough charge is still too far from intersection
159   
160   fMipPos.Set(mipX,mipY);
161   
162   
163 //PATTERN RECOGNITION STARTED: 
164   
165   Int_t iNrec=FlagPhot(HoughResponse());                                                      //flag photons according to individual theta ckov with respect to most probable
166   pTrk->SetHMPIDmip(mipX,mipY,mipQ,iNrec);                                                    //store mip info 
167
168   if(iNrec<1){
169     pTrk->SetHMPIDsignal(kNoPhotAccept);                                                      //no photon candidates are accepted
170     return;
171   }
172   Double_t thetaC = FindRingCkov(pCluLst->GetEntries());                                    //find the best reconstructed theta Cherenkov
173 //    FindRingGeom(thetaC,2);
174   pTrk->SetHMPIDsignal(thetaC);                                                             //store theta Cherenkov
175   pTrk->SetHMPIDchi2(fCkovSigma2);                                                          //store errors squared
176
177   DeleteVars();
178 }//CkovAngle()
179 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
180 Bool_t AliHMPIDRecon::FindPhotCkov(Double_t cluX,Double_t cluY,Double_t &thetaCer,Double_t &phiCer)
181 {
182 // Finds Cerenkov angle  for this photon candidate
183 // Arguments: cluX,cluY - position of cadidate's cluster  
184 // Returns: Cerenkov angle 
185
186   TVector3 dirCkov;
187   
188   Double_t zRad= -0.5*fParam->RadThick()-0.5*fParam->WinThick();     //z position of middle of RAD
189   TVector3 rad(fTrkPos.X(),fTrkPos.Y(),zRad);                        //impact point at middle of RAD
190   TVector3  pc(cluX,cluY,0.5*fParam->WinThick()+fParam->GapIdx());   //mip at PC
191   Double_t cluR = TMath::Sqrt((cluX-fTrkPos.X())*(cluX-fTrkPos.X())+
192                               (cluY-fTrkPos.Y())*(cluY-fTrkPos.Y()));//ref. distance impact RAD-CLUSTER   
193   Double_t phi=(pc-rad).Phi();                                       //phi of photon
194     
195   Double_t ckov1=0;
196   Double_t ckov2=0.75+fTrkDir.Theta();                        //start to find theta cerenkov in DRS
197   const Double_t kTol=0.01;
198   Int_t iIterCnt = 0;
199   while(1){
200     if(iIterCnt>=50) return kFALSE;
201     Double_t ckov=0.5*(ckov1+ckov2);
202     dirCkov.SetMagThetaPhi(1,ckov,phi);
203     TVector2 posC=TraceForward(dirCkov);                      //trace photon with actual angles
204     Double_t dist=cluR-(posC-fTrkPos).Mod();                  //get distance between trial point and cluster position
205     if(posC.X()==-999) dist = - 999;                          //total reflection problem
206     iIterCnt++;                                               //counter step
207     if     (dist> kTol) ckov1=ckov;                           //cluster @ larger ckov
208     else if(dist<-kTol) ckov2=ckov;                           //cluster @ smaller ckov
209     else{                                                     //precision achived: ckov in DRS found
210       dirCkov.SetMagThetaPhi(1,ckov,phi);                     //
211       Lors2Trs(dirCkov,thetaCer,phiCer);                       //find ckov (in TRS:the effective Cherenkov angle!)
212       return kTRUE;
213     }
214   }
215 }//FindPhotTheta()
216 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
217 TVector2 AliHMPIDRecon::TraceForward(TVector3 dirCkov)const
218 {
219   //Trace forward a photon from (x,y) up to PC
220   // Arguments: dirCkov photon vector in LORS
221   //   Returns: pos of traced photon at PC
222   
223   TVector2 pos(-999,-999);
224   Double_t thetaCer = dirCkov.Theta();
225   if(thetaCer > TMath::ASin(1./fParam->GetRefIdx())) return pos;          //total refraction on WIN-GAP boundary
226   Double_t zRad= -0.5*fParam->RadThick()-0.5*fParam->WinThick();          //z position of middle of RAD
227   TVector3  posCkov(fTrkPos.X(),fTrkPos.Y(),zRad);                        //RAD: photon position is track position @ middle of RAD 
228   Propagate(dirCkov,posCkov,           -0.5*fParam->WinThick());          //go to RAD-WIN boundary  
229   Refract  (dirCkov,         fParam->GetRefIdx(),fParam->WinIdx());       //RAD-WIN refraction
230   Propagate(dirCkov,posCkov,            0.5*fParam->WinThick());          //go to WIN-GAP boundary
231   Refract  (dirCkov,         fParam->WinIdx(),fParam->GapIdx());          //WIN-GAP refraction
232   Propagate(dirCkov,posCkov,0.5*fParam->WinThick()+fParam->GapThick());   //go to PC
233   pos.Set(posCkov.X(),posCkov.Y());
234   return pos;
235 }//TraceForward()
236 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
237 void AliHMPIDRecon::Lors2Trs(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer)const
238 {
239   //Theta Cerenkov reconstruction 
240   // Arguments: dirCkov photon vector in LORS
241   //   Returns: thetaCer of photon in TRS
242   //              phiCer of photon in TRS
243 //  TVector3 dirTrk;
244 //  dirTrk.SetMagThetaPhi(1,fTrkDir.Theta(),fTrkDir.Phi());
245 //  Double_t thetaCer = TMath::ACos(dirCkov*dirTrk);
246   TRotation mtheta;   mtheta.RotateY(-fTrkDir.Theta());
247   TRotation mphi;       mphi.RotateZ(-fTrkDir.Phi());
248   TRotation mrot=mtheta*mphi;
249   TVector3 dirCkovTRS;
250   dirCkovTRS=mrot*dirCkov;
251   phiCer  = dirCkovTRS.Phi();                                          //actual value of the phi of the photon
252   thetaCer= dirCkovTRS.Theta();                                        //actual value of thetaCerenkov of the photon
253 }
254 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
255 void AliHMPIDRecon::Trs2Lors(TVector3 dirCkov,Double_t &thetaCer,Double_t &phiCer)const
256 {
257   //Theta Cerenkov reconstruction 
258   // Arguments: dirCkov photon vector in TRS
259   //   Returns: thetaCer of photon in LORS
260   //              phiCer of photon in LORS
261   TRotation mtheta;   mtheta.RotateY(fTrkDir.Theta());
262   TRotation mphi;       mphi.RotateZ(fTrkDir.Phi());
263   TRotation mrot=mphi*mtheta;
264   TVector3 dirCkovLORS;
265   dirCkovLORS=mrot*dirCkov;
266   phiCer  = dirCkovLORS.Phi();                                          //actual value of the phi of the photon
267   thetaCer= dirCkovLORS.Theta();                                        //actual value of thetaCerenkov of the photon
268 }
269 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
270 void AliHMPIDRecon::FindRingGeom(Double_t ckovAng,Int_t level)
271 {
272 // Find area covered in the PC acceptance
273 // Arguments: ckovAng - cerenkov angle
274 //            level   - precision in finding area and portion of ring accepted (multiple of 50)
275 //   Returns: area of the ring in cm^2 for given theta ckov
276    
277   Int_t kN=50*level;
278   Int_t nPoints = 0;
279   Double_t area=0;
280   
281   Bool_t first=kFALSE;
282   TVector2 pos1;
283   
284   for(Int_t i=0;i<kN;i++){
285    if(!first) {
286       pos1=TracePhot(ckovAng,Double_t(TMath::TwoPi()*(i+1)/kN));                                    //find a good trace for the first photon
287      if(pos1.X()==-999) continue;                                                                   //no area: open ring                  
288      if(!fParam->IsInside(pos1.X(),pos1.Y(),0)) {
289        pos1 = IntWithEdge(fMipPos,pos1);                                                            // find the very first intersection...
290      } else {
291        if(!AliHMPIDParam::IsInDead(pos1.X(),pos1.Y())) nPoints++;                                   //photon is accepted if not in dead zone
292      }
293      first=kTRUE;
294      continue;
295    }
296    TVector2 pos2=TracePhot(ckovAng,Double_t(TMath::TwoPi()*(i+1)/kN));                              //trace the next photon
297    if(pos2.X()==-999) continue;                                                                     //no area: open ring             
298    if(!fParam->IsInside(pos2.X(),pos2.Y(),0)) {
299      pos2 = IntWithEdge(fMipPos,pos2);
300    } else {
301      if(!AliHMPIDParam::IsInDead(pos2.X(),pos2.Y())) nPoints++;                                     //photon is accepted if not in dead zone
302    }
303    area+=TMath::Abs((pos1-fMipPos).X()*(pos2-fMipPos).Y()-(pos1-fMipPos).Y()*(pos2-fMipPos).X());   //add area of the triangle...            
304    pos1 = pos2;
305   }
306 //---  find area and length of the ring;
307   fRingAcc = (Double_t)nPoints/(Double_t)kN;
308   area*=0.5;
309   fRingArea = area;
310 }//FindRingGeom()
311 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
312 TVector2 AliHMPIDRecon::IntWithEdge(TVector2 p1,TVector2 p2)const
313 {
314 // It finds the intersection of the line for 2 points traced as photons
315 // and the edge of a given PC
316 // Arguments: 2 points obtained tracing the photons
317 //   Returns: intersection point with detector (PC) edges
318
319   Double_t xmin = (p1.X()<p2.X())? p1.X():p2.X(); 
320   Double_t xmax = (p1.X()<p2.X())? p2.X():p1.X(); 
321   Double_t ymin = (p1.Y()<p2.Y())? p1.Y():p2.Y(); 
322   Double_t ymax = (p1.Y()<p2.Y())? p2.Y():p1.Y(); 
323   
324   Double_t m = TMath::Tan((p2-p1).Phi());
325   TVector2 pint;
326   //intersection with low  X
327   pint.Set((Double_t)(p1.X() + (0-p1.Y())/m),0.);
328   if(pint.X()>=0 && pint.X()<=fParam->SizeAllX() &&
329      pint.X()>=xmin && pint.X()<=xmax            &&
330      pint.Y()>=ymin && pint.Y()<=ymax) return pint;
331   //intersection with high X  
332   pint.Set((Double_t)(p1.X() + (fParam->SizeAllY()-p1.Y())/m),(Double_t)(fParam->SizeAllY()));
333   if(pint.X()>=0 && pint.X()<=fParam->SizeAllX() &&
334      pint.X()>=xmin && pint.X()<=xmax            &&
335      pint.Y()>=ymin && pint.Y()<=ymax) return pint;
336   //intersection with left Y  
337   pint.Set(0.,(Double_t)(p1.Y() + m*(0-p1.X())));
338   if(pint.Y()>=0 && pint.Y()<=fParam->SizeAllY() &&
339      pint.Y()>=ymin && pint.Y()<=ymax            &&
340      pint.X()>=xmin && pint.X()<=xmax) return pint;
341   //intersection with righ Y  
342   pint.Set((Double_t)(fParam->SizeAllX()),(Double_t)(p1.Y() + m*(fParam->SizeAllX()-p1.X())));
343   if(pint.Y()>=0 && pint.Y()<=fParam->SizeAllY() &&
344      pint.Y()>=ymin && pint.Y()<=ymax            &&
345      pint.X()>=xmin && pint.X()<=xmax) return pint;
346   return p1;
347 }//IntWithEdge()
348 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
349 Double_t AliHMPIDRecon::FindRingCkov(Int_t)
350 {
351 // Loops on all Ckov candidates and estimates the best Theta Ckov for a ring formed by those candidates. Also estimates an error for that Theat Ckov
352 // collecting errors for all single Ckov candidates thetas. (Assuming they are independent)  
353 // Arguments: iNclus- total number of clusters in chamber for background estimation
354 //    Return: best estimation of track Theta ckov
355
356   Double_t wei = 0.;
357   Double_t weightThetaCerenkov = 0.;
358
359   Double_t ckovMin=9999.,ckovMax=0.;
360   Double_t sigma2 = 0;   //to collect error squared for this ring
361   
362   for(Int_t i=0;i<fPhotCnt;i++){//candidates loop
363     if(fPhotFlag[i] == 2){
364       if(fPhotCkov[i]<ckovMin) ckovMin=fPhotCkov[i];                         //find max and min Theta ckov from all candidates within probable window
365       if(fPhotCkov[i]>ckovMax) ckovMax=fPhotCkov[i]; 
366       weightThetaCerenkov += fPhotCkov[i]*fPhotWei[i];
367       wei += fPhotWei[i];                                                    //collect weight as sum of all candidate weghts   
368       
369       sigma2 += 1./fParam->Sigma2(fTrkDir.Theta(),fTrkDir.Phi(),fPhotCkov[i],fPhotPhi[i]);
370     }
371   }//candidates loop
372   
373   if(sigma2>0) fCkovSigma2=1./sigma2;
374   else         fCkovSigma2=1e10;  
375   
376   if(wei != 0.) weightThetaCerenkov /= wei; else weightThetaCerenkov = 0.;
377   return weightThetaCerenkov;
378 }//FindCkovRing()
379 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
380 Int_t AliHMPIDRecon::FlagPhot(Double_t ckov)
381 {
382 // Flag photon candidates if their individual ckov angle is inside the window around ckov angle returned by  HoughResponse()
383 // Arguments: ckov- value of most probable ckov angle for track as returned by HoughResponse()
384 //   Returns: number of photon candidates happened to be inside the window
385
386 // Photon Flag:  Flag = 0 initial set; 
387 //               Flag = 1 good candidate (charge compatible with photon); 
388 //               Flag = 2 photon used for the ring;
389   
390   Int_t steps = (Int_t)((ckov )/ fDTheta); //how many times we need to have fDTheta to fill the distance between 0  and thetaCkovHough
391
392   Double_t tmin = (Double_t)(steps - 1)*fDTheta;
393   Double_t tmax = (Double_t)(steps)*fDTheta;
394   Double_t tavg = 0.5*(tmin+tmax);
395
396   tmin = tavg - 0.5*fWindowWidth;  tmax = tavg + 0.5*fWindowWidth;
397
398   Int_t iInsideCnt = 0; //count photons which Theta ckov inside the window
399   for(Int_t i=0;i<fPhotCnt;i++){//photon candidates loop
400     fPhotFlag[i] = 0;
401     if(fPhotCkov[i] >= tmin && fPhotCkov[i] <= tmax)    { 
402       fPhotFlag[i]=2;     
403       iInsideCnt++;
404     }
405   }
406   return iInsideCnt;
407 }//FlagPhot()
408 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
409 TVector2 AliHMPIDRecon::TracePhot(Double_t ckovThe,Double_t ckovPhi)const
410 {
411 // Trace a single Ckov photon from emission point somewhere in radiator up to photocathode taking into account ref indexes of materials it travereses
412 // Arguments: ckovThe,ckovPhi- photon ckov angles in TRS, [rad]
413 //   Returns: distance between photon point on PC and track projection  
414   
415   Double_t theta,phi;
416   TVector3  dirTRS,dirLORS;   
417   dirTRS.SetMagThetaPhi(1,ckovThe,ckovPhi);                     //photon in TRS
418   Trs2Lors(dirTRS,theta,phi);
419   dirLORS.SetMagThetaPhi(1,theta,phi);                          //photon in LORS
420   return TraceForward(dirLORS);                                 //now foward tracing
421 }//TracePhot()
422 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
423 void AliHMPIDRecon::Propagate(const TVector3 dir,TVector3 &pos,Double_t z)const
424 {
425 // Finds an intersection point between a line and XY plane shifted along Z.
426 // Arguments:  dir,pos   - vector along the line and any point of the line
427 //             z         - z coordinate of plain 
428 //   Returns:  none
429 //   On exit:  pos is the position if this intesection if any
430   static TVector3 nrm(0,0,1); 
431          TVector3 pnt(0,0,z);
432   
433   TVector3 diff=pnt-pos;
434   Double_t sint=(nrm*diff)/(nrm*dir);
435   pos+=sint*dir;
436 }//Propagate()
437 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
438 void AliHMPIDRecon::Refract(TVector3 &dir,Double_t n1,Double_t n2)const
439 {
440 // Refract direction vector according to Snell law
441 // Arguments: 
442 //            n1 - ref idx of first substance
443 //            n2 - ref idx of second substance
444 //   Returns: none
445 //   On exit: dir is new direction
446   Double_t sinref=(n1/n2)*TMath::Sin(dir.Theta());
447   if(TMath::Abs(sinref)>1.) dir.SetXYZ(-999,-999,-999);
448   else             dir.SetTheta(TMath::ASin(sinref));
449 }//Refract()
450 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
451 Double_t AliHMPIDRecon::HoughResponse()
452 {
453 //
454 //    fIdxMip = mipId;
455
456 //       
457   Double_t kThetaMax=0.75;
458   Int_t nChannels = (Int_t)(kThetaMax/fDTheta+0.5);
459   TH1D *phots   = new TH1D("Rphot"  ,"phots"         ,nChannels,0,kThetaMax);
460   TH1D *photsw  = new TH1D("RphotWeighted" ,"photsw" ,nChannels,0,kThetaMax);
461   TH1D *resultw = new TH1D("resultw","resultw"       ,nChannels,0,kThetaMax);
462   Int_t nBin = (Int_t)(kThetaMax/fDTheta);
463   Int_t nCorrBand = (Int_t)(fWindowWidth/(2*fDTheta));
464   
465   for (Int_t i=0; i< fPhotCnt; i++){//photon cadidates loop
466     Double_t angle = fPhotCkov[i];  if(angle<0||angle>kThetaMax) continue;
467     phots->Fill(angle);
468     Int_t bin = (Int_t)(0.5+angle/(fDTheta));
469     Double_t weight=1.;
470     if(fIsWEIGHT){
471       Double_t lowerlimit = ((Double_t)bin)*fDTheta - 0.5*fDTheta;  Double_t upperlimit = ((Double_t)bin)*fDTheta + 0.5*fDTheta;
472       FindRingGeom(lowerlimit);
473       Double_t areaLow  = GetRingArea();
474       FindRingGeom(upperlimit);
475       Double_t areaHigh = GetRingArea();
476       Double_t diffArea = areaHigh - areaLow;
477       if(diffArea>0) weight = 1./diffArea;
478     }
479     photsw->Fill(angle,weight);
480     fPhotWei[i]=weight;
481   }//photon candidates loop 
482    
483   for (Int_t i=1; i<=nBin;i++){
484     Int_t bin1= i-nCorrBand;
485     Int_t bin2= i+nCorrBand;
486     if(bin1<1) bin1=1;
487     if(bin2>nBin)bin2=nBin;
488     Double_t sumPhots=phots->Integral(bin1,bin2);
489     if(sumPhots<3) continue;                            // if less then 3 photons don't trust to this ring
490     Double_t sumPhotsw=photsw->Integral(bin1,bin2);
491     resultw->Fill((Double_t)((i+0.5)*fDTheta),sumPhotsw);
492   } 
493 // evaluate the "BEST" theta ckov as the maximum value of histogramm
494   Double_t *pVec = resultw->GetArray();
495   Int_t locMax = TMath::LocMax(nBin,pVec);
496   delete phots;delete photsw;delete resultw; // Reset and delete objects
497   
498   return (Double_t)(locMax*fDTheta+0.5*fDTheta); //final most probable track theta ckov   
499 }//HoughResponse()
500 //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++