]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ITS/AliITSClusterFinderSDD.cxx
3c825108f6218886fb624bd9bd8f9c07b31c5956
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15 /*
16   $Id$
17  */
18 /////////////////////////////////////////////////////////////////////////// 
19 //  Cluster finder                                                       //
20 //  for Silicon                                                          //
21 //  Drift Detector                                                       //
22 ////////////////////////////////////////////////////////////////////////// 
23
24
25 #include "AliITSClusterFinderSDD.h"
26 #include "AliITSMapA1.h"
27 #include "AliITSRawClusterSDD.h"
28 #include "AliITSRecPoint.h"
29 #include "AliITSdigitSDD.h"
30 #include "AliITSDetTypeRec.h"
31 #include "AliITSCalibrationSDD.h"
32 #include "AliITSsegmentationSDD.h"
33 #include "AliLog.h"
34
35 ClassImp(AliITSClusterFinderSDD)
36
37 //______________________________________________________________________
38 AliITSClusterFinderSDD::AliITSClusterFinderSDD():
39 AliITSClusterFinder(),
40 fNclusters(0),
41 fDAnode(0.0),
42 fDTime(0.0),
43 fTimeCorr(0.0),
44 fCutAmplitude(0),
45 fMinPeak(0),
46 fMinCharge(0),
47 fMinNCells(0),
48 fMaxNCells(0){
49     // default constructor
50 }
51 //______________________________________________________________________
52 AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSDetTypeRec* dettyp,
53                                                TClonesArray *digits,
54                                                TClonesArray *recp):
55 AliITSClusterFinder(dettyp),
56 fNclusters(0),
57 fDAnode(0.0),
58 fDTime(0.0),
59 fTimeCorr(0.0),
60 fCutAmplitude(0),
61 fMinPeak(0),
62 fMinCharge(0),
63 fMinNCells(0),
64 fMaxNCells(0){
65     // standard constructor
66
67     SetDigits(digits);
68     SetClusters(recp);
69     SetCutAmplitude(fDetTypeRec->GetITSgeom()->GetStartSDD());
70     SetDAnode();
71     SetDTime();
72     SetMinPeak((Int_t)((AliITSCalibrationSDD*)GetResp(fDetTypeRec->GetITSgeom()->GetStartSDD()))->GetNoiseAfterElectronics(0)*5);
73     SetMinNCells();
74     SetMaxNCells();
75     SetTimeCorr();
76     SetMinCharge();
77     SetMap(new AliITSMapA1(GetSeg(),Digits(),fCutAmplitude));
78 }
79 //______________________________________________________________________
80 void AliITSClusterFinderSDD::SetCutAmplitude(Int_t mod,Double_t nsigma){
81     // set the signal threshold for cluster finder
82     Double_t baseline,noiseAfterEl;
83
84     
85     Int_t nanodes = GetResp(mod)->Wings()*GetResp(mod)->Channels()*GetResp(mod)->Chips();
86     fCutAmplitude.Set(nanodes);
87     for(Int_t ian=0;ian<nanodes;ian++){
88       baseline=GetResp(mod)->GetBaseline(ian);
89       noiseAfterEl = ((AliITSCalibrationSDD*)GetResp(mod))->GetNoiseAfterElectronics(ian);
90       fCutAmplitude[ian] = (Int_t)((baseline + nsigma*noiseAfterEl));
91     }
92 }
93 //______________________________________________________________________
94 void AliITSClusterFinderSDD::Find1DClusters(){
95     // find 1D clusters
96   
97     // retrieve the parameters 
98     Int_t fNofMaps       = GetSeg()->Npz();
99     Int_t fMaxNofSamples = GetSeg()->Npx();
100     Int_t fNofAnodes     = fNofMaps/2;
101     Int_t dummy          = 0;
102     Double_t fTimeStep    = GetSeg()->Dpx(dummy);
103     Double_t fSddLength   = GetSeg()->Dx();
104     Double_t anodePitch   = GetSeg()->Dpz(dummy);
105     AliITSCalibrationSDD* cal = (AliITSCalibrationSDD*)GetResp(fModule);
106     // map the signal
107     Map()->ClearMap();
108     Map()->SetThresholdArr(fCutAmplitude);
109     Map()->FillMap2();
110   
111     Int_t nofFoundClusters = 0;
112     Int_t i;
113     Double_t **dfadc = new Double_t*[fNofAnodes];
114     for(i=0;i<fNofAnodes;i++) dfadc[i] = new Double_t[fMaxNofSamples];
115     Double_t fadc  = 0.;
116     Double_t fadc1 = 0.;
117     Double_t fadc2 = 0.;
118     Int_t j,k,idx,l,m;
119     for(j=0;j<2;j++) {
120         for(k=0;k<fNofAnodes;k++) {
121             idx = j*fNofAnodes+k;
122             // signal (fadc) & derivative (dfadc)
123             dfadc[k][255]=0.;
124             for(l=0; l<fMaxNofSamples; l++) {
125                 fadc2=(Double_t)Map()->GetSignal(idx,l);
126                 if(l>0) fadc1=(Double_t)Map()->GetSignal(idx,l-1);
127                 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
128             } // samples
129         } // anodes
130
131         for(k=0;k<fNofAnodes;k++) {
132             AliDebug(5,Form("Anode: %d, Wing: %d",k+1,j+1));
133             idx = j*fNofAnodes+k;
134             Int_t imax  = 0;
135             Int_t imaxd = 0;
136             Int_t it    = 0;
137             while(it <= fMaxNofSamples-3) {
138                 imax  = it;
139                 imaxd = it;
140                 // maximum of signal          
141                 Double_t fadcmax  = 0.;
142                 Double_t dfadcmax = 0.;
143                 Int_t lthrmina   = 1;
144                 Int_t lthrmint   = 3;
145                 Int_t lthra      = 1;
146                 Int_t lthrt      = 0;
147                 for(m=0;m<20;m++) {
148                     Int_t id = it+m;
149                     if(id>=fMaxNofSamples) break;
150                     fadc=(float)Map()->GetSignal(idx,id);
151                     if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
152                     if(fadc > (float)fCutAmplitude[idx])lthrt++; 
153                     if(dfadc[k][id] > dfadcmax) {
154                         dfadcmax = dfadc[k][id];
155                         imaxd    = id;
156                     } // end if
157                 } // end for m
158                 it = imaxd;
159                 if(Map()->TestHit(idx,imax) == kEmpty) {it++; continue;}
160                 // cluster charge
161                 Int_t tstart = it-2;
162                 if(tstart < 0) tstart = 0;
163                 Bool_t ilcl = 0;
164                 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
165                 if(ilcl) {
166                     nofFoundClusters++;
167                     Int_t tstop      = tstart;
168                     Double_t dfadcmin = 10000.;
169                     Int_t ij;
170                     for(ij=0; ij<20; ij++) {
171                         if(tstart+ij > 255) { tstop = 255; break; }
172                         fadc=(float)Map()->GetSignal(idx,tstart+ij);
173                         if((dfadc[k][tstart+ij] < dfadcmin) && 
174                            (fadc > fCutAmplitude[idx])) {
175                             tstop = tstart+ij+5;
176                             if(tstop > 255) tstop = 255;
177                             dfadcmin = dfadc[k][it+ij];
178                         } // end if
179                     } // end for ij
180
181                     Double_t clusterCharge = 0.;
182                     Double_t clusterAnode  = k+0.5;
183                     Double_t clusterTime   = 0.;
184                     Int_t   clusterMult   = 0;
185                     Double_t clusterPeakAmplitude = 0.;
186                     Int_t its,peakpos     = -1;
187                     //Double_t n, baseline;
188                     //GetResp(fModule)->GetNoiseParam(n,baseline);
189                     Double_t baseline=GetResp(fModule)->GetBaseline(idx);
190                     for(its=tstart; its<=tstop; its++) {
191                         fadc=(float)Map()->GetSignal(idx,its);
192                         if(fadc>baseline) fadc -= baseline;
193                         else fadc = 0.;
194                         clusterCharge += fadc;
195                         // as a matter of fact we should take the peak
196                         // pos before FFT
197                         // to get the list of tracks !!!
198                         if(fadc > clusterPeakAmplitude) {
199                             clusterPeakAmplitude = fadc;
200                             //peakpos=Map()->GetHitIndex(idx,its);
201                             Int_t shift = (int)(fTimeCorr/fTimeStep);
202                             if(its>shift && its<(fMaxNofSamples-shift))
203                                 peakpos  = Map()->GetHitIndex(idx,its+shift);
204                             else peakpos = Map()->GetHitIndex(idx,its);
205                             if(peakpos<0) peakpos =Map()->GetHitIndex(idx,its);
206                         } // end if
207                         clusterTime += fadc*its;
208                         if(fadc > 0) clusterMult++;
209                         if(its == tstop) {
210                             clusterTime /= (clusterCharge/fTimeStep);   // ns
211                             if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
212                             //ns
213                         } // end if
214                     } // end for its
215
216                     Double_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
217                                                  anodePitch;
218                     Double_t clusterDriftPath = (Double_t)cal->GetDriftPath(clusterTime,clusteranodePath);
219                     clusterDriftPath = fSddLength-clusterDriftPath;
220                     if(clusterCharge <= 0.) break;
221                     AliITSRawClusterSDD clust(j+1,//i
222                                               clusterAnode,clusterTime,//ff
223                                               clusterCharge, //f
224                                               clusterPeakAmplitude, //f
225                                               peakpos, //i
226                                               0.,0.,clusterDriftPath,//fff
227                                               clusteranodePath, //f
228                                               clusterMult, //i
229                                               0,0,0,0,0,0,0);//7*i
230                     fDetTypeRec->AddCluster(1,&clust);
231                     it = tstop;
232                 } // ilcl
233                 it++;
234             } // while (samples)
235         } // anodes
236     } // detectors (2)
237
238     for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
239     delete [] dfadc;
240
241     return;
242 }
243 //______________________________________________________________________
244 void AliITSClusterFinderSDD::Find1DClustersE(){
245     // find 1D clusters
246     // retrieve the parameters 
247     Int_t fNofMaps = GetSeg()->Npz();
248     Int_t fMaxNofSamples = GetSeg()->Npx();
249     Int_t fNofAnodes = fNofMaps/2;
250     Int_t dummy=0;
251     Double_t fTimeStep = GetSeg()->Dpx( dummy );
252     Double_t fSddLength = GetSeg()->Dx();
253     Double_t anodePitch = GetSeg()->Dpz( dummy );
254     AliITSCalibrationSDD* cal = (AliITSCalibrationSDD*)GetResp(fModule);
255     Map()->ClearMap();
256     Map()->SetThresholdArr( fCutAmplitude );
257     Map()->FillMap2();
258
259     Int_t nClu = 0;
260     //        cout << "Search  cluster... "<< endl;
261     for( Int_t j=0; j<2; j++ ){
262         for( Int_t k=0; k<fNofAnodes; k++ ){
263             Int_t idx = j*fNofAnodes+k;
264             Double_t baseline=GetResp(fModule)->GetBaseline(idx);
265             Bool_t on = kFALSE;
266             Int_t start = 0;
267             Int_t nTsteps = 0;
268             Double_t fmax = 0.;
269             Int_t lmax = 0;
270             Double_t charge = 0.;
271             Double_t time = 0.;
272             Double_t anode = k+0.5;
273             Int_t peakpos = -1;
274             for( Int_t l=0; l<fMaxNofSamples; l++ ){
275                 Double_t fadc = (Double_t)Map()->GetSignal( idx, l );
276                 if( fadc > 0.0 ){
277                     if( on == kFALSE && l<fMaxNofSamples-4){
278                         // star RawCluster (reset var.)
279                         Double_t fadc1 = (Double_t)Map()->GetSignal( idx, l+1 );
280                         if( fadc1 < fadc ) continue;
281                         start = l;
282                         fmax = 0.;
283                         lmax = 0;
284                         time = 0.;
285                         charge = 0.; 
286                         on = kTRUE; 
287                         nTsteps = 0;
288                     } // end if on...
289                     nTsteps++ ;
290                     if( fadc > baseline ) fadc -= baseline;
291                     else fadc=0.;
292                     charge += fadc;
293                     time += fadc*l;
294                     if( fadc > fmax ){ 
295                         fmax = fadc; 
296                         lmax = l; 
297                         Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
298                         if( l > shift && l < (fMaxNofSamples-shift) )  
299                             peakpos = Map()->GetHitIndex( idx, l+shift );
300                         else
301                             peakpos = Map()->GetHitIndex( idx, l );
302                         if( peakpos < 0) peakpos = Map()->GetHitIndex(idx,l);
303                     } // end if fadc
304                 }else{ // end fadc>0
305                     if( on == kTRUE ){        
306                         if( nTsteps > 2 ){
307                             //  min # of timesteps for a RawCluster
308                             // Found a RawCluster...
309                             Int_t stop = l-1;
310                             time /= (charge/fTimeStep);   // ns
311                                 // time = lmax*fTimeStep;   // ns
312                             if( time > fTimeCorr ) time -= fTimeCorr;   // ns
313                             Double_t anodePath =(anode-fNofAnodes/2)*anodePitch;
314                             
315                             Double_t driftPath = (Double_t)cal->GetDriftPath(time,anodePath);
316                             driftPath = fSddLength-driftPath;
317                             AliITSRawClusterSDD clust(j+1,anode,time,charge,
318                                                       fmax, peakpos,0.,0.,
319                                                       driftPath,anodePath,
320                                                       nTsteps,start,stop,
321                                                       start, stop, 1, k, k );
322                             fDetTypeRec->AddCluster( 1, &clust );
323                             if(AliDebugLevel()>=5) clust.PrintInfo();
324                             nClu++;
325                         } // end if nTsteps
326                         on = kFALSE;
327                     } // end if on==kTRUE
328                 } // end if fadc>0
329             } // samples
330         } // anodes
331     } // wings
332     AliDebug(3,Form("# Rawclusters %d",nClu));         
333     return; 
334 }
335 //_______________________________________________________________________
336 Int_t AliITSClusterFinderSDD::SearchPeak(Double_t *spect,Int_t xdim,Int_t zdim,
337                                          Int_t *peakX, Int_t *peakZ, 
338                                          Double_t *peakAmp, Double_t minpeak ){
339     // search peaks on a 2D cluster
340     Int_t npeak = 0;    // # peaks
341     Int_t i,j;
342     // search peaks
343     for( Int_t z=1; z<zdim-1; z++ ){
344         for( Int_t x=1; x<xdim-2; x++ ){
345             Double_t sxz = spect[x*zdim+z];
346             Double_t sxz1 = spect[(x+1)*zdim+z];
347             Double_t sxz2 = spect[(x-1)*zdim+z];
348             // search a local max. in s[x,z]
349             if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
350             if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
351                 sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
352                 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
353                 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
354                 // peak found
355                 peakX[npeak] = x;
356                 peakZ[npeak] = z;
357                 peakAmp[npeak] = sxz;
358                 npeak++;
359             } // end if ....
360         } // end for x
361     } // end for z
362     // search groups of peaks with same amplitude.
363     Int_t *flag = new Int_t[npeak];
364     for( i=0; i<npeak; i++ ) flag[i] = 0;
365     for( i=0; i<npeak; i++ ){
366         for( j=0; j<npeak; j++ ){
367             if( i==j) continue;
368             if( flag[j] > 0 ) continue;
369             if( peakAmp[i] == peakAmp[j] && 
370                 TMath::Abs(peakX[i]-peakX[j])<=1 && 
371                 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
372                 if( flag[i] == 0) flag[i] = i+1;
373                 flag[j] = flag[i];
374             } // end if ...
375         } // end for j
376     } // end for i
377     // make average of peak groups        
378     for( i=0; i<npeak; i++ ){
379         Int_t nFlag = 1;
380         if( flag[i] <= 0 ) continue;
381         for( j=0; j<npeak; j++ ){
382             if( i==j ) continue;
383             if( flag[j] != flag[i] ) continue;
384             peakX[i] += peakX[j];
385             peakZ[i] += peakZ[j];
386             nFlag++;
387             npeak--;
388             for( Int_t k=j; k<npeak; k++ ){
389                 peakX[k] = peakX[k+1];
390                 peakZ[k] = peakZ[k+1];
391                 peakAmp[k] = peakAmp[k+1];
392                 flag[k] = flag[k+1];
393             } // end for k        
394             j--;
395         } // end for j
396         if( nFlag > 1 ){
397             peakX[i] /= nFlag;
398             peakZ[i] /= nFlag;
399         } // end fi nFlag
400     } // end for i
401     delete [] flag;
402     return( npeak );
403 }
404 //______________________________________________________________________
405 void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Double_t *par,
406                                        Double_t *spe, Double_t *integral){
407     // function used to fit the clusters
408     // par -> parameters..
409     // par[0]  number of peaks.
410     // for each peak i=1, ..., par[0]
411     //                 par[i] = Ampl.
412     //                 par[i+1] = xpos
413     //                 par[i+2] = zpos
414     //                 par[i+3] = tau
415     //                 par[i+4] = sigma.
416     Int_t electronics = GetResp(fModule)->GetElectronics(); // 1 = PASCAL, 2 = OLA
417     const Int_t knParam = 5;
418     Int_t npeak = (Int_t)par[0];
419
420     memset( spe, 0, sizeof( Double_t )*zdim*xdim );
421
422     Int_t k = 1;
423     for( Int_t i=0; i<npeak; i++ ){
424         if( integral != 0 ) integral[i] = 0.;
425         Double_t sigmaA2 = par[k+4]*par[k+4]*2.;
426         Double_t t2 = par[k+3];   // PASCAL
427         if( electronics == 2 ) { t2 *= t2; t2 *= 2; } // OLA
428         for( Int_t z=0; z<zdim; z++ ){
429             for( Int_t x=0; x<xdim; x++ ){
430                 Double_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
431                 Double_t x2 = 0.;
432                 Double_t signal = 0.;
433                 if( electronics == 1 ){ // PASCAL
434                     x2 = (x-par[k+1]+t2)/t2;
435                     signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
436                 //  signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
437                 }else if( electronics == 2 ) { // OLA
438                     x2 = (x-par[k+1])*(x-par[k+1])/t2;
439                     signal = par[k]  * exp( -x2 - z2 );
440                 } else {
441                     Warning("PeakFunc","Wrong SDD Electronics = %d",
442                             electronics);
443                     // exit( 1 );
444                 } // end if electronicx
445                 spe[x*zdim+z] += signal;
446                 if( integral != 0 ) integral[i] += signal;
447             } // end for x
448         } // end for z
449         k += knParam;
450     } // end for i
451     return;
452 }
453 //__________________________________________________________________________
454 Double_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Double_t *spe,
455                                         Double_t *speFit ) const{
456     // EVALUATES UNNORMALIZED CHI-SQUARED
457     Double_t chi2 = 0.;
458     for( Int_t z=0; z<zdim; z++ ){
459         for( Int_t x=1; x<xdim-1; x++ ){
460             Int_t index = x*zdim+z;
461             Double_t tmp = spe[index] - speFit[index];
462             chi2 += tmp*tmp;
463         } // end for x
464     } // end for z
465     return( chi2 );
466 }
467 //_______________________________________________________________________
468 void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Double_t *param,
469                                     Double_t *prm0,Double_t *steprm,
470                                     Double_t *chisqr,Double_t *spe,
471                                     Double_t *speFit ){
472     // 
473     Int_t   k, nnn, mmm, i;
474     Double_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
475     const Int_t knParam = 5;
476     Int_t npeak = (Int_t)param[0];
477     for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
478     for( k=1; k<(npeak*knParam+1); k++ ){
479         p1 = param[k];
480         delta = steprm[k];
481         d1 = delta;
482         // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
483         if( TMath::Abs( p1 ) > 1.0E-6 ) 
484             if ( TMath::Abs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
485             else  delta = (Double_t)1.0E-4;
486         //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
487         PeakFunc( xdim, zdim, param, speFit );
488         chisq1 = ChiSqr( xdim, zdim, spe, speFit );
489         p2 = p1+delta;
490         param[k] = p2;
491         PeakFunc( xdim, zdim, param, speFit );
492         chisq2 = ChiSqr( xdim, zdim, spe, speFit );
493         if( chisq1 < chisq2 ){
494             // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
495             delta = -delta;
496             t = p1;
497             p1 = p2;
498             p2 = t;
499             t = chisq1;
500             chisq1 = chisq2;
501             chisq2 = t;
502         } // end if
503         i = 1; nnn = 0;
504         do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
505             nnn++;
506             p3 = p2 + delta;
507             mmm = nnn - (nnn/5)*5;  // multiplo de 5
508             if( mmm == 0 ){
509                 d1 = delta;
510                 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
511                 delta *= 5;
512             } // end if
513             param[k] = p3;
514             // Constrain paramiters
515             Int_t kpos = (k-1) % knParam;
516             switch( kpos ){
517             case 0 :
518                 if( param[k] <= 20 ) param[k] = fMinPeak;
519                 break;
520             case 1 :
521                 if( TMath::Abs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
522                 break;
523             case 2 :
524                 if( TMath::Abs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
525                 break;
526             case 3 :
527                 if( param[k] < .5 ) param[k] = .5;        
528                 break;
529             case 4 :
530                 if( param[k] < .288 ) param[k] = .288;// 1/sqrt(12) = 0.288
531                 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
532                 break;
533             }; // end switch
534             PeakFunc( xdim, zdim, param, speFit );
535             chisq3 = ChiSqr( xdim, zdim, spe, speFit );
536             if( chisq3 < chisq2 && nnn < 50 ){
537                 p1 = p2;
538                 p2 = p3;
539                 chisq1 = chisq2;
540                 chisq2 = chisq3;
541             }else i=0;
542         } while( i );
543         // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
544         a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
545         b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
546         if( a!=0 ) p0 = (Double_t)(0.5*b/a);
547         else p0 = 10000;
548         //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
549         //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
550         //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
551         //dp = (Double_t) max (TMath::Abs(p3-p2), TMath::Abs(p2-p1));
552         //if( TMath::Abs( p2-p0 ) > dp ) p0 = p2;
553         param[k] = p0;
554         // Constrain paramiters
555         Int_t kpos = (k-1) % knParam;
556         switch( kpos ){
557         case 0 :
558             if( param[k] <= 20 ) param[k] = fMinPeak;   
559             break;
560         case 1 :
561             if( TMath::Abs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
562             break;
563         case 2 :
564             if( TMath::Abs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
565             break;
566         case 3 :
567             if( param[k] < .5 ) param[k] = .5;        
568             break;
569         case 4 :
570             if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
571             if( param[k] > zdim*.5 ) param[k] = zdim*.5;
572             break;
573         }; // end switch
574         PeakFunc( xdim, zdim, param, speFit );
575         chisqt = ChiSqr( xdim, zdim, spe, speFit );
576         // DO NOT ALLOW ERRONEOUS INTERPOLATION
577         if( chisqt <= *chisqr ) *chisqr = chisqt;
578         else param[k] = prm0[k];
579         // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
580         steprm[k] = (param[k]-prm0[k])/5;
581         if( steprm[k] >= d1 ) steprm[k] = d1/5;
582     } // end for k
583     // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
584     PeakFunc( xdim, zdim, param, speFit );
585     *chisqr = ChiSqr( xdim, zdim, spe, speFit );
586     return;
587 }
588 //_________________________________________________________________________
589 Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim, 
590                                            Double_t *param, Double_t *spe, 
591                                            Int_t *niter, Double_t *chir ){
592     // fit method from Comput. Phys. Commun 46(1987) 149
593     const Double_t kchilmt = 0.01;  //        relative accuracy           
594     const Int_t   knel = 3;        //        for parabolic minimization  
595     const Int_t   knstop = 50;     //        Max. iteration number          
596     const Int_t   knParam = 5;
597     Int_t npeak = (Int_t)param[0];
598     // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
599     if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
600     Double_t degFree = (xdim*zdim - npeak*knParam)-1;
601     Int_t   n, k, iterNum = 0;
602     Double_t *prm0 = new Double_t[npeak*knParam+1];
603     Double_t *step = new Double_t[npeak*knParam+1];
604     Double_t *schi = new Double_t[npeak*knParam+1]; 
605     Double_t *sprm[3];
606     sprm[0] = new Double_t[npeak*knParam+1];
607     sprm[1] = new Double_t[npeak*knParam+1];
608     sprm[2] = new Double_t[npeak*knParam+1];
609     Double_t  chi0, chi1, reldif, a, b, prmin, dp;
610     Double_t *speFit = new Double_t[ xdim*zdim ];
611     PeakFunc( xdim, zdim, param, speFit );
612     chi0 = ChiSqr( xdim, zdim, spe, speFit );
613     chi1 = chi0;
614     for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
615         for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
616             step[k] = param[k] / 20.0 ;
617             step[k+1] = param[k+1] / 50.0;
618             step[k+2] = param[k+2] / 50.0;                 
619             step[k+3] = param[k+3] / 20.0;                 
620             step[k+4] = param[k+4] / 20.0;                 
621         } // end for k
622     Int_t out = 0;
623     do{
624         iterNum++;
625             chi0 = chi1;
626             Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
627             reldif = ( chi1 > 0 ) ? ((Double_t) TMath::Abs( chi1-chi0)/chi1 ) : 0;
628         // EXIT conditions
629         if( reldif < (float) kchilmt ){
630             *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
631             *niter = iterNum;
632             out = 0;
633             break;
634         } // end if
635         if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
636             *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
637             *niter = iterNum;
638             out = 0;
639             break;
640         } // end if
641         if( iterNum > 5*knstop ){
642             *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
643             *niter = iterNum;
644             out = 1;
645             break;
646         } // end if
647         if( iterNum <= knel ) continue;
648         n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
649         if( n > 3 || n == 0 ) continue;
650         schi[n-1] = chi1;
651         for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
652         if( n != 3 ) continue;
653         // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
654         //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
655         for( k=1; k<(npeak*knParam+1); k++ ){
656             Double_t tmp0 = sprm[0][k];
657             Double_t tmp1 = sprm[1][k];
658             Double_t tmp2 = sprm[2][k];
659             a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
660             a += (schi[2]*(tmp0-tmp1));
661             b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
662             b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
663                                              (tmp0*tmp0-tmp1*tmp1)));
664             if ((double)a < 1.0E-6) prmin = 0;
665             else prmin = (float) (0.5*b/a);
666             dp = 5*(tmp2-tmp0);
667             if( TMath::Abs(prmin-tmp2) > TMath::Abs(dp) ) prmin = tmp2+dp;
668             param[k] = prmin;
669             step[k]  = dp/10; // OPTIMIZE SEARCH STEP
670         } // end for k
671     } while( kTRUE );
672     delete [] prm0;
673     delete [] step;
674     delete [] schi; 
675     delete [] sprm[0];
676     delete [] sprm[1];
677     delete [] sprm[2];
678     delete [] speFit;
679     return( out );
680 }
681
682 //______________________________________________________________________
683 void AliITSClusterFinderSDD::ResolveClusters(){
684     // The function to resolve clusters if the clusters overlapping exists
685     Int_t i;
686     // get number of clusters for this module
687     Int_t nofClusters = NClusters();
688     nofClusters -= fNclusters;
689     Int_t fNofMaps = GetSeg()->Npz();
690     Int_t fNofAnodes = fNofMaps/2;
691     //Int_t fMaxNofSamples = GetSeg()->Npx();
692     Int_t dummy=0;
693     Double_t fTimeStep = GetSeg()->Dpx( dummy );
694     Double_t fSddLength = GetSeg()->Dx();
695     Double_t anodePitch = GetSeg()->Dpz( dummy );
696     //Double_t n, baseline;
697     //GetResp(fModule)->GetNoiseParam( n, baseline );
698     Int_t electronics =GetResp(fModule)->GetElectronics(); // 1 = PASCAL, 2 = OLA
699     AliITSCalibrationSDD* cal = (AliITSCalibrationSDD*)GetResp(fModule);
700     
701
702     for( Int_t j=0; j<nofClusters; j++ ){ 
703         // get cluster information
704         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) Cluster(j);
705         Int_t astart = clusterJ->Astart();
706         Int_t astop = clusterJ->Astop();
707         Int_t tstart = clusterJ->Tstartf();
708         Int_t tstop = clusterJ->Tstopf();
709         Int_t wing = (Int_t)clusterJ->W();
710         if( wing == 2 ){
711             astart += fNofAnodes; 
712             astop  += fNofAnodes;
713         } // end if 
714         Int_t xdim = tstop-tstart+3;
715         Int_t zdim = astop-astart+3;
716         if( xdim > 50 || zdim > 30 ) { 
717             Warning("ResolveClusters","xdim: %d , zdim: %d ",xdim,zdim);
718             continue;
719         }
720         Double_t *sp = new Double_t[ xdim*zdim+1 ];
721         memset( sp, 0, sizeof(Double_t)*(xdim*zdim+1) );
722         
723         // make a local map from cluster region
724         for( Int_t ianode=astart; ianode<=astop; ianode++ ){
725             for( Int_t itime=tstart; itime<=tstop; itime++ ){
726                 Double_t fadc = Map()->GetSignal( ianode, itime );
727                 Double_t baseline=GetResp(fModule)->GetBaseline(ianode);
728                 if( fadc > baseline ) fadc -= (Double_t)baseline;
729                 else fadc = 0.;
730                 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
731                 sp[index] = fadc;
732             } // time loop
733         } // anode loop
734         
735         // search peaks on cluster
736         const Int_t kNp = 150;
737         Int_t peakX1[kNp];
738         Int_t peakZ1[kNp];
739         Double_t peakAmp1[kNp];
740         Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
741
742         // if multiple peaks, split cluster
743         if( npeak >= 1 ){
744             //        cout << "npeak " << npeak << endl;
745             //        clusterJ->PrintInfo();
746             Double_t *par = new Double_t[npeak*5+1];
747             par[0] = (Double_t)npeak;                
748             // Initial parameters in cell dimentions
749             Int_t k1 = 1;
750             for( i=0; i<npeak; i++ ){
751                 par[k1] = peakAmp1[i];
752                 par[k1+1] = peakX1[i]; // local time pos. [timebin]
753                 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
754                 if( electronics == 1 ) par[k1+3] = 2.; // PASCAL
755                 else if(electronics==2) par[k1+3] = 0.7;//tau [timebin] OLA 
756                 par[k1+4] = .4;    // sigma        [anodepich]
757                 k1 += 5;
758             } // end for i                        
759             Int_t niter;
760             Double_t chir;                        
761             NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
762             Double_t peakX[kNp];
763             Double_t peakZ[kNp];
764             Double_t sigma[kNp];
765             Double_t tau[kNp];
766             Double_t peakAmp[kNp];
767             Double_t integral[kNp];
768             //get integrals => charge for each peak
769             PeakFunc( xdim, zdim, par, sp, integral );
770             k1 = 1;
771             for( i=0; i<npeak; i++ ){
772                 peakAmp[i] = par[k1];
773                 peakX[i]   = par[k1+1];
774                 peakZ[i]   = par[k1+2];
775                 tau[i]     = par[k1+3];
776                 sigma[i]   = par[k1+4];
777                 k1+=5;
778             } // end for i
779             // calculate parameter for new clusters
780             for( i=0; i<npeak; i++ ){
781                 AliITSRawClusterSDD clusterI( *clusterJ );
782             
783                 Int_t newAnode = peakZ1[i]-1 + astart;
784
785             //    Int_t newiTime = peakX1[i]-1 + tstart;
786             //    Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
787             //    if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) 
788             //        shift = 0;
789             //    Int_t peakpos = Map()->GetHitIndex(newAnode,newiTime+shift );
790             //    clusterI.SetPeakPos( peakpos );
791             
792                 clusterI.SetPeakAmpl( peakAmp1[i] );
793                 Double_t newAnodef = peakZ[i] - 0.5 + astart;
794                 Double_t newiTimef = peakX[i] - 1 + tstart;
795                 if( wing == 2 ) newAnodef -= fNofAnodes; 
796                 Double_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
797                 newiTimef *= fTimeStep;
798                 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
799                 if( electronics == 1 ){
800                 //    newiTimef *= 0.999438;    // PASCAL
801                 //    newiTimef += (6./fDriftSpeed - newiTimef/3000.);
802                 }else if( electronics == 2 )
803                     newiTimef *= 0.99714;    // OLA
804                     
805                 Int_t timeBin = (Int_t)(newiTimef/fTimeStep+0.5);    
806                 Int_t peakpos = Map()->GetHitIndex( newAnode, timeBin );
807                 if( peakpos < 0 ) { 
808                     for( Int_t ii=0; ii<3; ii++ ) {
809                         peakpos = Map()->GetHitIndex( newAnode, timeBin+ii );
810                         if( peakpos > 0 ) break;
811                         peakpos = Map()->GetHitIndex( newAnode, timeBin-ii );
812                         if( peakpos > 0 ) break;
813                     }
814                 }
815                 
816                 if( peakpos < 0 ) { 
817                     //Warning("ResolveClusters",
818                     //        "Digit not found for cluster");
819                     //if(AliDebugLevel()>=3) clusterI.PrintInfo(); 
820                    continue;
821                 }
822                 clusterI.SetPeakPos( peakpos ); 
823                 Float_t dp = cal->GetDriftPath(newiTimef,anodePath);   
824                 Double_t driftPath = fSddLength - (Double_t)dp;
825                 Double_t sign = ( wing == 1 ) ? -1. : 1.;
826                 Double_t xcoord = driftPath*sign * 0.0001;
827                 Double_t zcoord = anodePath * 0.0001;
828                 CorrectPosition(zcoord,xcoord);
829                 clusterI.SetX( xcoord );        
830                 clusterI.SetZ( zcoord );
831                 clusterI.SetAnode( newAnodef );
832                 clusterI.SetTime( newiTimef );
833                 clusterI.SetAsigma( sigma[i]*anodePitch );
834                 clusterI.SetTsigma( tau[i]*fTimeStep );
835                 clusterI.SetQ( integral[i] );
836                 
837                 fDetTypeRec->AddCluster( 1, &clusterI );
838             } // end for i
839             Clusters()->RemoveAt( j );
840             delete [] par;
841         } else {  // something odd
842             Warning( "ResolveClusters",
843                      "--- Peak not found!!!!  minpeak=%d ,cluster peak= %f"
844                      " , module= %d",
845                      fMinPeak, clusterJ->PeakAmpl(),GetModule()); 
846             clusterJ->PrintInfo();
847             Warning( "ResolveClusters"," xdim= %d zdim= %d", xdim-2, zdim-2 );
848         }
849         delete [] sp;
850     } // cluster loop
851     Clusters()->Compress();
852 //    Map()->ClearMap(); 
853 }
854 //________________________________________________________________________
855 void  AliITSClusterFinderSDD::GroupClusters(){
856     // group clusters
857     Int_t dummy=0;
858     Double_t fTimeStep = GetSeg()->Dpx(dummy);
859     // get number of clusters for this module
860     Int_t nofClusters = NClusters();
861     nofClusters -= fNclusters;
862     AliITSRawClusterSDD *clusterI;
863     AliITSRawClusterSDD *clusterJ;
864     Int_t *label = new Int_t [nofClusters];
865     Int_t i,j;
866     for(i=0; i<nofClusters; i++) label[i] = 0;
867     for(i=0; i<nofClusters; i++) { 
868         if(label[i] != 0) continue;
869         for(j=i+1; j<nofClusters; j++) { 
870             if(label[j] != 0) continue;
871             clusterI = (AliITSRawClusterSDD*) Cluster(i);
872             clusterJ = (AliITSRawClusterSDD*) Cluster(j);
873             // 1.3 good
874             if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
875             if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
876             Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
877             if(!pair) continue;
878             if(AliDebugLevel()>=4){
879                 clusterI->PrintInfo();
880                 clusterJ->PrintInfo();
881             } // end if AliDebugLevel
882             clusterI->Add(clusterJ);
883             label[j] = 1;
884             Clusters()->RemoveAt(j);
885             j=i; // <- Ernesto
886         } // J clusters  
887         label[i] = 1;
888     } // I clusters
889     Clusters()->Compress();
890
891     delete [] label;
892     return;
893 }
894 //________________________________________________________________________
895 void AliITSClusterFinderSDD::SelectClusters(){
896     // get number of clusters for this module
897     Int_t nofClusters = NClusters();
898
899     nofClusters -= fNclusters;
900     Int_t i;
901     for(i=0; i<nofClusters; i++) { 
902         AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) Cluster(i);
903         Int_t rmflg = 0;
904         Double_t wy = 0.;
905         if(clusterI->Anodes() != 0.) {
906             wy = ((Double_t) clusterI->Samples())/clusterI->Anodes();
907         } // end if
908         Int_t amp = (Int_t) clusterI->PeakAmpl();
909         Int_t cha = (Int_t) clusterI->Q();
910         if(amp < fMinPeak) rmflg = 1;  
911         if(cha < fMinCharge) rmflg = 1;
912         if(wy < fMinNCells) rmflg = 1;
913         //if(wy > fMaxNCells) rmflg = 1;
914         if(rmflg) Clusters()->RemoveAt(i);
915     } // I clusters
916     Clusters()->Compress();
917     return;
918 }
919
920 //______________________________________________________________________
921 void AliITSClusterFinderSDD::GetRecPoints(){
922     // get rec points
923   
924     // get number of clusters for this module
925     Int_t nofClusters = NClusters();
926     nofClusters -= fNclusters;
927     const Double_t kconvGeV = 1.e-6; // GeV -> KeV
928     const Double_t kconv = 1.0e-4; 
929     const Double_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
930     const Double_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
931     Int_t i;
932     Int_t ix, iz, idx=-1;
933     AliITSdigitSDD *dig=0;
934     Int_t ndigits=NDigits();
935
936     Int_t lay,lad,det;
937     fDetTypeRec->GetITSgeom()->GetModuleId(fModule,lay,lad,det);
938     Int_t ind=(lad-1)*fDetTypeRec->GetITSgeom()->GetNdetectors(lay)+(det-1);
939     Int_t lyr=(lay-1);
940
941
942     for(i=0; i<nofClusters; i++) { 
943         AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)Cluster(i);
944         if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
945         if(clusterI) idx=clusterI->PeakPos();
946         if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
947         // try peak neighbours - to be done 
948         if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)GetDigit(idx);
949         if(!dig) {
950             // try cog
951             GetSeg()->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
952             dig = (AliITSdigitSDD*)Map()->GetHit(iz-1,ix-1);
953             // if null try neighbours
954             if (!dig) dig = (AliITSdigitSDD*)Map()->GetHit(iz-1,ix); 
955             if (!dig) dig = (AliITSdigitSDD*)Map()->GetHit(iz-1,ix+1); 
956             if (!dig) printf("SDD: cannot assign the track number!\n");
957         } //  end if !dig
958
959         Int_t lab[4] = {-3141593,-3141593,-3141593,ind};
960         if (dig) {
961           lab[0] = dig->GetTrack(0);
962           lab[1] = dig->GetTrack(1);
963           lab[2] = dig->GetTrack(2);
964         }
965         Float_t hit[5] = {clusterI->X(),clusterI->Z(),kRMSx*kRMSx,kRMSz*kRMSz,clusterI->Q()};
966         Int_t info[3] = {0,0,lyr};
967
968         AliITSRecPoint rnew(lab,hit,info,kTRUE);
969         rnew.SetdEdX(kconvGeV*clusterI->Q());
970
971         fDetTypeRec->AddRecPoint(rnew);        
972     } // I clusters
973 //    Map()->ClearMap();
974 }
975 //______________________________________________________________________
976 void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
977     // find raw clusters
978     
979     SetModule(mod);
980     SetCutAmplitude(mod);
981     Int_t nanodes=GetSeg()->Npz();
982     Int_t noise=0;
983     for(Int_t i=0;i<nanodes;i++){
984       noise+=(Int_t)(((AliITSCalibrationSDD*)GetResp(mod))->GetNoiseAfterElectronics(i));
985     }    
986     SetMinPeak((noise/nanodes)*5);
987     Find1DClustersE();
988     GroupClusters();
989     SelectClusters();
990     ResolveClusters();
991     GetRecPoints();
992 }
993 //_______________________________________________________________________
994 void AliITSClusterFinderSDD::PrintStatus() const{
995     // Print SDD cluster finder Parameters
996
997     cout << "**************************************************" << endl;
998     cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
999     cout << "**************************************************" << endl;
1000     cout << "Number of Clusters: " << fNclusters << endl;
1001     cout << "Anode Tolerance: " << fDAnode << endl;
1002     cout << "Time  Tolerance: " << fDTime << endl;
1003     cout << "Time  correction (electronics): " << fTimeCorr << endl;
1004     cout << "Cut Amplitude (threshold): " << fCutAmplitude[0] << endl;
1005     cout << "Minimum Amplitude: " << fMinPeak << endl;
1006     cout << "Minimum Charge: " << fMinCharge << endl;
1007     cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1008     cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1009     cout << "**************************************************" << endl;
1010 }
1011
1012 //_________________________________________________________________________
1013 void AliITSClusterFinderSDD::CorrectPosition(Double_t &z, Double_t&y){
1014   //correction of coordinates using the maps stored in the DB
1015
1016   AliITSCalibrationSDD* cal = (AliITSCalibrationSDD*)GetResp(fModule);
1017   static const Int_t nbint = cal->GetMapTimeNBin();
1018   static const Int_t nbina = cal->Chips()*cal->Channels();
1019   Float_t stepa = (GetSeg()->Dpz(0))/10000.; //anode pitch in cm
1020   Float_t stept = (GetSeg()->Dx()/cal->GetMapTimeNBin()/2.)/10.;
1021
1022   Int_t bint = TMath::Abs((Int_t)(y/stept));
1023   if(y>=0) bint+=(Int_t)(nbint/2.);
1024   if(bint>nbint) AliError("Wrong bin number!");
1025
1026   Int_t bina = TMath::Abs((Int_t)(z/stepa));
1027   if(z>=0) bina+=(Int_t)(nbina/2.);
1028   if(bina>nbina) AliError("Wrong bin number!");
1029
1030   Double_t devz = (Double_t)cal->GetMapACell(bina,bint)/10000.;
1031   Double_t devx = (Double_t)cal->GetMapTCell(bina,bint)/10000.;
1032   z+=devz;
1033   y+=devx;
1034
1035 }