]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ITS/AliITSClusterFinderSDD.cxx
First version of combined PID (Yu.Belikov)
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15 /*
16   $Id$
17   $Log$
18   Revision 1.30  2003/03/03 16:34:35  masera
19   Corrections to comply with coding conventions
20
21   Revision 1.29  2002/10/25 18:54:22  barbera
22   Various improvements and updates from B.S.Nilsen and T. Virgili
23
24   Revision 1.28  2002/10/22 14:45:29  alibrary
25   Introducing Riostream.h
26
27   Revision 1.27  2002/10/14 14:57:00  hristov
28   Merging the VirtualMC branch to the main development branch (HEAD)
29
30   Revision 1.23.4.2  2002/10/14 13:14:07  hristov
31   Updating VirtualMC to v3-09-02
32
33   Revision 1.26  2002/09/09 17:23:28  nilsen
34   Minor changes in support of changes to AliITSdigitS?D class'.
35
36   Revision 1.25  2002/05/10 22:29:40  nilsen
37   Change my Massimo Masera in the default constructor to bring things into
38   compliance.
39
40   Revision 1.24  2002/04/24 22:02:31  nilsen
41   New SDigits and Digits routines, and related changes,  (including new
42   noise values).
43
44  */
45 // 
46 //  Cluster finder 
47 //  for Silicon
48 //  Drift Detector
49 //
50 #include <Riostream.h>
51
52 #include <TMath.h>
53 #include <math.h>
54
55 #include "AliITSClusterFinderSDD.h"
56 #include "AliITSMapA1.h"
57 #include "AliITS.h"
58 #include "AliITSdigit.h"
59 #include "AliITSRawCluster.h"
60 #include "AliITSRecPoint.h"
61 #include "AliITSsegmentation.h"
62 #include "AliITSresponseSDD.h"
63 #include "AliRun.h"
64
65 ClassImp(AliITSClusterFinderSDD)
66
67 //______________________________________________________________________
68 AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
69                                                AliITSresponse *response,
70                                                TClonesArray *digits,
71                                                TClonesArray *recp){
72     // standard constructor
73
74     fSegmentation = seg;
75     fResponse     = response;
76     fDigits       = digits;
77     fClusters     = recp;
78     fNclusters    = fClusters->GetEntriesFast();
79     SetCutAmplitude();
80     SetDAnode();
81     SetDTime();
82     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
83     //    SetMinPeak();
84     SetMinNCells();
85     SetMaxNCells();
86     SetTimeCorr();
87     SetMinCharge();
88     fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
89 }
90 //______________________________________________________________________
91 AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
92     // default constructor
93
94     fSegmentation = 0;
95     fResponse     = 0;
96     fDigits       = 0;
97     fClusters     = 0;
98     fNclusters    = 0;
99     fMap          = 0;
100     fCutAmplitude = 0;
101     fDAnode = 0;
102     fDTime = 0;
103     fMinPeak = 0;
104     fMinNCells = 0;
105     fMaxNCells = 0;
106     fTimeCorr = 0;
107     fMinCharge = 0;
108     /*
109     SetDAnode();
110     SetDTime();
111     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
112     SetMinNCells();
113     SetMaxNCells();
114     SetTimeCorr();
115     SetMinCharge();
116     */
117 }
118 //____________________________________________________________________________
119 AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
120     // destructor
121
122     if(fMap) delete fMap;
123 }
124 //______________________________________________________________________
125 void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
126     // set the signal threshold for cluster finder
127     Float_t baseline,noise,noiseAfterEl;
128
129     fResponse->GetNoiseParam(noise,baseline);
130     noiseAfterEl = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
131     fCutAmplitude = (Int_t)((baseline + nsigma*noiseAfterEl));
132 }
133 //______________________________________________________________________
134 void AliITSClusterFinderSDD::Find1DClusters(){
135     // find 1D clusters
136     static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
137   
138     // retrieve the parameters 
139     Int_t fNofMaps       = fSegmentation->Npz();
140     Int_t fMaxNofSamples = fSegmentation->Npx();
141     Int_t fNofAnodes     = fNofMaps/2;
142     Int_t dummy          = 0;
143     Float_t fTimeStep    = fSegmentation->Dpx(dummy);
144     Float_t fSddLength   = fSegmentation->Dx();
145     Float_t fDriftSpeed  = fResponse->DriftSpeed();  
146     Float_t anodePitch   = fSegmentation->Dpz(dummy);
147
148     // map the signal
149     fMap->ClearMap();
150     fMap->SetThreshold(fCutAmplitude);
151     fMap->FillMap();
152   
153     Float_t noise;
154     Float_t baseline;
155     fResponse->GetNoiseParam(noise,baseline);
156   
157     Int_t nofFoundClusters = 0;
158     Int_t i;
159     Float_t **dfadc = new Float_t*[fNofAnodes];
160     for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
161     Float_t fadc  = 0.;
162     Float_t fadc1 = 0.;
163     Float_t fadc2 = 0.;
164     Int_t j,k,idx,l,m;
165     for(j=0;j<2;j++) {
166         for(k=0;k<fNofAnodes;k++) {
167             idx = j*fNofAnodes+k;
168             // signal (fadc) & derivative (dfadc)
169             dfadc[k][255]=0.;
170             for(l=0; l<fMaxNofSamples; l++) {
171                 fadc2=(Float_t)fMap->GetSignal(idx,l);
172                 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
173                 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
174             } // samples
175         } // anodes
176
177         for(k=0;k<fNofAnodes;k++) {
178         //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
179             idx = j*fNofAnodes+k;
180             Int_t imax  = 0;
181             Int_t imaxd = 0;
182             Int_t it    = 0;
183             while(it <= fMaxNofSamples-3) {
184                 imax  = it;
185                 imaxd = it;
186                 // maximum of signal          
187                 Float_t fadcmax  = 0.;
188                 Float_t dfadcmax = 0.;
189                 Int_t lthrmina   = 1;
190                 Int_t lthrmint   = 3;
191                 Int_t lthra      = 1;
192                 Int_t lthrt      = 0;
193                 for(m=0;m<20;m++) {
194                     Int_t id = it+m;
195                     if(id>=fMaxNofSamples) break;
196                     fadc=(float)fMap->GetSignal(idx,id);
197                     if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
198                     if(fadc > (float)fCutAmplitude) { 
199                         lthrt++; 
200                     } // end if
201                     if(dfadc[k][id] > dfadcmax) {
202                         dfadcmax = dfadc[k][id];
203                         imaxd    = id;
204                     } // end if
205                 } // end for m
206                 it = imaxd;
207                 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
208                 // cluster charge
209                 Int_t tstart = it-2;
210                 if(tstart < 0) tstart = 0;
211                 Bool_t ilcl = 0;
212                 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
213                 if(ilcl) {
214                     nofFoundClusters++;
215                     Int_t tstop      = tstart;
216                     Float_t dfadcmin = 10000.;
217                     Int_t ij;
218                     for(ij=0; ij<20; ij++) {
219                         if(tstart+ij > 255) { tstop = 255; break; }
220                         fadc=(float)fMap->GetSignal(idx,tstart+ij);
221                         if((dfadc[k][tstart+ij] < dfadcmin) && 
222                            (fadc > fCutAmplitude)) {
223                             tstop = tstart+ij+5;
224                             if(tstop > 255) tstop = 255;
225                             dfadcmin = dfadc[k][it+ij];
226                         } // end if
227                     } // end for ij
228
229                     Float_t clusterCharge = 0.;
230                     Float_t clusterAnode  = k+0.5;
231                     Float_t clusterTime   = 0.;
232                     Int_t   clusterMult   = 0;
233                     Float_t clusterPeakAmplitude = 0.;
234                     Int_t its,peakpos     = -1;
235                     Float_t n, baseline;
236                     fResponse->GetNoiseParam(n,baseline);
237                     for(its=tstart; its<=tstop; its++) {
238                         fadc=(float)fMap->GetSignal(idx,its);
239                         if(fadc>baseline) fadc -= baseline;
240                         else fadc = 0.;
241                         clusterCharge += fadc;
242                         // as a matter of fact we should take the peak
243                         // pos before FFT
244                         // to get the list of tracks !!!
245                         if(fadc > clusterPeakAmplitude) {
246                             clusterPeakAmplitude = fadc;
247                             //peakpos=fMap->GetHitIndex(idx,its);
248                             Int_t shift = (int)(fTimeCorr/fTimeStep);
249                             if(its>shift && its<(fMaxNofSamples-shift))
250                                 peakpos  = fMap->GetHitIndex(idx,its+shift);
251                             else peakpos = fMap->GetHitIndex(idx,its);
252                             if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
253                         } // end if
254                         clusterTime += fadc*its;
255                         if(fadc > 0) clusterMult++;
256                         if(its == tstop) {
257                             clusterTime /= (clusterCharge/fTimeStep);   // ns
258                             if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
259                             //ns
260                         } // end if
261                     } // end for its
262
263                     Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
264                                                anodePitch;
265                     Float_t clusterDriftPath = clusterTime*fDriftSpeed;
266                     clusterDriftPath = fSddLength-clusterDriftPath;
267                     if(clusterCharge <= 0.) break;
268                     AliITSRawClusterSDD clust(j+1,//i
269                                               clusterAnode,clusterTime,//ff
270                                               clusterCharge, //f
271                                               clusterPeakAmplitude, //f
272                                               peakpos, //i
273                                               0.,0.,clusterDriftPath,//fff
274                                               clusteranodePath, //f
275                                               clusterMult, //i
276                                               0,0,0,0,0,0,0);//7*i
277                     iTS->AddCluster(1,&clust);
278                     it = tstop;
279                 } // ilcl
280                 it++;
281             } // while (samples)
282         } // anodes
283     } // detectors (2)
284
285     for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
286     delete [] dfadc;
287
288     return;
289 }
290
291
292
293 //______________________________________________________________________
294 void AliITSClusterFinderSDD::Find1DClustersE(){
295     // find 1D clusters
296     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
297     // retrieve the parameters 
298     Int_t fNofMaps = fSegmentation->Npz();
299     Int_t fMaxNofSamples = fSegmentation->Npx();
300     Int_t fNofAnodes = fNofMaps/2;
301     Int_t dummy=0;
302     Float_t fTimeStep = fSegmentation->Dpx( dummy );
303     Float_t fSddLength = fSegmentation->Dx();
304     Float_t fDriftSpeed = fResponse->DriftSpeed();
305     Float_t anodePitch = fSegmentation->Dpz( dummy );
306     Float_t n, baseline;
307     fResponse->GetNoiseParam( n, baseline );
308     // map the signal
309     fMap->ClearMap();
310     fMap->SetThreshold( fCutAmplitude );
311     fMap->FillMap();
312     
313     Int_t nClu = 0;
314     //        cout << "Search  cluster... "<< endl;
315     for( Int_t j=0; j<2; j++ ){
316         for( Int_t k=0; k<fNofAnodes; k++ ){
317             Int_t idx = j*fNofAnodes+k;
318             Bool_t on = kFALSE;
319             Int_t start = 0;
320             Int_t nTsteps = 0;
321             Float_t fmax = 0.;
322             Int_t lmax = 0;
323             Float_t charge = 0.;
324             Float_t time = 0.;
325             Float_t anode = k+0.5;
326             Int_t peakpos = -1;
327             for( Int_t l=0; l<fMaxNofSamples; l++ ){
328                 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
329                 if( fadc > 0.0 ){
330                     if( on == kFALSE && l<fMaxNofSamples-4){
331                         // star RawCluster (reset var.)
332                         Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
333                         if( fadc1 < fadc ) continue;
334                         start = l;
335                         fmax = 0.;
336                         lmax = 0;
337                         time = 0.;
338                         charge = 0.; 
339                         on = kTRUE; 
340                         nTsteps = 0;
341                     } // end if on...
342                     nTsteps++ ;
343                     if( fadc > baseline ) fadc -= baseline;
344                     else fadc=0.;
345                     charge += fadc;
346                     time += fadc*l;
347                     if( fadc > fmax ){ 
348                         fmax = fadc; 
349                         lmax = l; 
350                         Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
351                         if( l > shift && l < (fMaxNofSamples-shift) )  
352                             peakpos = fMap->GetHitIndex( idx, l+shift );
353                         else
354                             peakpos = fMap->GetHitIndex( idx, l );
355                         if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
356                     } // end if fadc
357                 }else{ // end fadc>0
358                     if( on == kTRUE ){        
359                         if( nTsteps > 2 ){
360                             //  min # of timesteps for a RawCluster
361                             // Found a RawCluster...
362                             Int_t stop = l-1;
363                             time /= (charge/fTimeStep);   // ns
364                                 // time = lmax*fTimeStep;   // ns
365                             if( time > fTimeCorr ) time -= fTimeCorr;   // ns
366                             Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
367                             Float_t driftPath = time*fDriftSpeed;
368                             driftPath = fSddLength-driftPath;
369                             AliITSRawClusterSDD clust(j+1,anode,time,charge,
370                                                       fmax, peakpos,0.,0.,
371                                                       driftPath,anodePath,
372                                                       nTsteps,start,stop,
373                                                       start, stop, 1, k, k );
374                             iTS->AddCluster( 1, &clust );
375                             //        clust.PrintInfo();
376                             nClu++;
377                         } // end if nTsteps
378                         on = kFALSE;
379                     } // end if on==kTRUE
380                 } // end if fadc>0
381             } // samples
382         } // anodes
383     } // wings
384     //        cout << "# Rawclusters " << nClu << endl;         
385     return; 
386 }
387 //_______________________________________________________________________
388 Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
389                                          Int_t *peakX, Int_t *peakZ, 
390                                          Float_t *peakAmp, Float_t minpeak ){
391     // search peaks on a 2D cluster
392     Int_t npeak = 0;    // # peaks
393     Int_t i,j;
394     // search peaks
395     for( Int_t z=1; z<zdim-1; z++ ){
396         for( Int_t x=1; x<xdim-2; x++ ){
397             Float_t sxz = spect[x*zdim+z];
398             Float_t sxz1 = spect[(x+1)*zdim+z];
399             Float_t sxz2 = spect[(x-1)*zdim+z];
400             // search a local max. in s[x,z]
401             if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
402             if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
403                 sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
404                 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
405                 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
406                 // peak found
407                 peakX[npeak] = x;
408                 peakZ[npeak] = z;
409                 peakAmp[npeak] = sxz;
410                 npeak++;
411             } // end if ....
412         } // end for x
413     } // end for z
414     // search groups of peaks with same amplitude.
415     Int_t *flag = new Int_t[npeak];
416     for( i=0; i<npeak; i++ ) flag[i] = 0;
417     for( i=0; i<npeak; i++ ){
418         for( j=0; j<npeak; j++ ){
419             if( i==j) continue;
420             if( flag[j] > 0 ) continue;
421             if( peakAmp[i] == peakAmp[j] && 
422                 TMath::Abs(peakX[i]-peakX[j])<=1 && 
423                 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
424                 if( flag[i] == 0) flag[i] = i+1;
425                 flag[j] = flag[i];
426             } // end if ...
427         } // end for j
428     } // end for i
429     // make average of peak groups        
430     for( i=0; i<npeak; i++ ){
431         Int_t nFlag = 1;
432         if( flag[i] <= 0 ) continue;
433         for( j=0; j<npeak; j++ ){
434             if( i==j ) continue;
435             if( flag[j] != flag[i] ) continue;
436             peakX[i] += peakX[j];
437             peakZ[i] += peakZ[j];
438             nFlag++;
439             npeak--;
440             for( Int_t k=j; k<npeak; k++ ){
441                 peakX[k] = peakX[k+1];
442                 peakZ[k] = peakZ[k+1];
443                 peakAmp[k] = peakAmp[k+1];
444                 flag[k] = flag[k+1];
445             } // end for k        
446             j--;
447         } // end for j
448         if( nFlag > 1 ){
449             peakX[i] /= nFlag;
450             peakZ[i] /= nFlag;
451         } // end fi nFlag
452     } // end for i
453     delete [] flag;
454     return( npeak );
455 }
456 //______________________________________________________________________
457 void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
458                                        Float_t *spe, Float_t *integral){
459     // function used to fit the clusters
460     // par -> parameters..
461     // par[0]  number of peaks.
462     // for each peak i=1, ..., par[0]
463     //                 par[i] = Ampl.
464     //                 par[i+1] = xpos
465     //                 par[i+2] = zpos
466     //                 par[i+3] = tau
467     //                 par[i+4] = sigma.
468     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
469     const Int_t knParam = 5;
470     Int_t npeak = (Int_t)par[0];
471
472     memset( spe, 0, sizeof( Float_t )*zdim*xdim );
473
474     Int_t k = 1;
475     for( Int_t i=0; i<npeak; i++ ){
476         if( integral != 0 ) integral[i] = 0.;
477         Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
478         Float_t t2 = par[k+3];   // PASCAL
479         if( electronics == 2 ) { t2 *= t2; t2 *= 2; } // OLA
480         for( Int_t z=0; z<zdim; z++ ){
481             for( Int_t x=0; x<xdim; x++ ){
482                 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
483                 Float_t x2 = 0.;
484                 Float_t signal = 0.;
485                 if( electronics == 1 ){ // PASCAL
486                     x2 = (x-par[k+1]+t2)/t2;
487                     signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
488                 //  signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
489                 }else if( electronics == 2 ) { // OLA
490                     x2 = (x-par[k+1])*(x-par[k+1])/t2;
491                     signal = par[k]  * exp( -x2 - z2 );
492                 } else {
493                   Warning("PeakFunc","Wrong SDD Electronics = %d",electronics);
494                     // exit( 1 );
495                 } // end if electronicx
496                 spe[x*zdim+z] += signal;
497                 if( integral != 0 ) integral[i] += signal;
498             } // end for x
499         } // end for z
500         k += knParam;
501     } // end for i
502     return;
503 }
504 //__________________________________________________________________________
505 Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
506                                         Float_t *speFit ) const{
507     // EVALUATES UNNORMALIZED CHI-SQUARED
508     Float_t chi2 = 0.;
509     for( Int_t z=0; z<zdim; z++ ){
510         for( Int_t x=1; x<xdim-1; x++ ){
511             Int_t index = x*zdim+z;
512             Float_t tmp = spe[index] - speFit[index];
513             chi2 += tmp*tmp;
514         } // end for x
515     } // end for z
516     return( chi2 );
517 }
518 //_______________________________________________________________________
519 void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
520                                     Float_t *prm0,Float_t *steprm,
521                                     Float_t *chisqr,Float_t *spe,
522                                     Float_t *speFit ){
523     // 
524     Int_t   k, nnn, mmm, i;
525     Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
526     const Int_t knParam = 5;
527     Int_t npeak = (Int_t)param[0];
528     for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
529     for( k=1; k<(npeak*knParam+1); k++ ){
530         p1 = param[k];
531         delta = steprm[k];
532         d1 = delta;
533         // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
534         if( fabs( p1 ) > 1.0E-6 ) 
535             if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
536             else  delta = (Float_t)1.0E-4;
537         //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
538         PeakFunc( xdim, zdim, param, speFit );
539         chisq1 = ChiSqr( xdim, zdim, spe, speFit );
540         p2 = p1+delta;
541         param[k] = p2;
542         PeakFunc( xdim, zdim, param, speFit );
543         chisq2 = ChiSqr( xdim, zdim, spe, speFit );
544         if( chisq1 < chisq2 ){
545             // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
546             delta = -delta;
547             t = p1;
548             p1 = p2;
549             p2 = t;
550             t = chisq1;
551             chisq1 = chisq2;
552             chisq2 = t;
553         } // end if
554         i = 1; nnn = 0;
555         do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
556             nnn++;
557             p3 = p2 + delta;
558             mmm = nnn - (nnn/5)*5;  // multiplo de 5
559             if( mmm == 0 ){
560                 d1 = delta;
561                 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
562                 delta *= 5;
563             } // end if
564             param[k] = p3;
565             // Constrain paramiters
566             Int_t kpos = (k-1) % knParam;
567             switch( kpos ){
568             case 0 :
569                 if( param[k] <= 20 ) param[k] = fMinPeak;
570                 break;
571             case 1 :
572                 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
573                 break;
574             case 2 :
575                 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
576                 break;
577             case 3 :
578                 if( param[k] < .5 ) param[k] = .5;        
579                 break;
580             case 4 :
581                 if( param[k] < .288 ) param[k] = .288;        // 1/sqrt(12) = 0.288
582                 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
583                 break;
584             }; // end switch
585             PeakFunc( xdim, zdim, param, speFit );
586             chisq3 = ChiSqr( xdim, zdim, spe, speFit );
587             if( chisq3 < chisq2 && nnn < 50 ){
588                 p1 = p2;
589                 p2 = p3;
590                 chisq1 = chisq2;
591                 chisq2 = chisq3;
592             }else i=0;
593         } while( i );
594         // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
595         a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
596         b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
597         if( a!=0 ) p0 = (Float_t)(0.5*b/a);
598         else p0 = 10000;
599         //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
600         //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
601         //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
602         //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
603         //if( fabs( p2-p0 ) > dp ) p0 = p2;
604         param[k] = p0;
605         // Constrain paramiters
606         Int_t kpos = (k-1) % knParam;
607         switch( kpos ){
608         case 0 :
609             if( param[k] <= 20 ) param[k] = fMinPeak;   
610             break;
611         case 1 :
612             if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
613             break;
614         case 2 :
615             if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
616             break;
617         case 3 :
618             if( param[k] < .5 ) param[k] = .5;        
619             break;
620         case 4 :
621             if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
622             if( param[k] > zdim*.5 ) param[k] = zdim*.5;
623             break;
624         }; // end switch
625         PeakFunc( xdim, zdim, param, speFit );
626         chisqt = ChiSqr( xdim, zdim, spe, speFit );
627         // DO NOT ALLOW ERRONEOUS INTERPOLATION
628         if( chisqt <= *chisqr ) *chisqr = chisqt;
629         else param[k] = prm0[k];
630         // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
631         steprm[k] = (param[k]-prm0[k])/5;
632         if( steprm[k] >= d1 ) steprm[k] = d1/5;
633     } // end for k
634     // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
635     PeakFunc( xdim, zdim, param, speFit );
636     *chisqr = ChiSqr( xdim, zdim, spe, speFit );
637     return;
638 }
639 //_________________________________________________________________________
640 Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim, 
641                                            Float_t *param, Float_t *spe, 
642                                            Int_t *niter, Float_t *chir ){
643     // fit method from Comput. Phys. Commun 46(1987) 149
644     const Float_t kchilmt = 0.01;  //        relative accuracy           
645     const Int_t   knel = 3;        //        for parabolic minimization  
646     const Int_t   knstop = 50;     //        Max. iteration number          
647     const Int_t   knParam = 5;
648     Int_t npeak = (Int_t)param[0];
649     // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
650     if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
651     Float_t degFree = (xdim*zdim - npeak*knParam)-1;
652     Int_t   n, k, iterNum = 0;
653     Float_t *prm0 = new Float_t[npeak*knParam+1];
654     Float_t *step = new Float_t[npeak*knParam+1];
655     Float_t *schi = new Float_t[npeak*knParam+1]; 
656     Float_t *sprm[3];
657     sprm[0] = new Float_t[npeak*knParam+1];
658     sprm[1] = new Float_t[npeak*knParam+1];
659     sprm[2] = new Float_t[npeak*knParam+1];
660     Float_t  chi0, chi1, reldif, a, b, prmin, dp;
661     Float_t *speFit = new Float_t[ xdim*zdim ];
662     PeakFunc( xdim, zdim, param, speFit );
663     chi0 = ChiSqr( xdim, zdim, spe, speFit );
664     chi1 = chi0;
665     for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
666         for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
667             step[k] = param[k] / 20.0 ;
668             step[k+1] = param[k+1] / 50.0;
669             step[k+2] = param[k+2] / 50.0;                 
670             step[k+3] = param[k+3] / 20.0;                 
671             step[k+4] = param[k+4] / 20.0;                 
672         } // end for k
673     Int_t out = 0;
674     do{
675         iterNum++;
676             chi0 = chi1;
677             Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
678             reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
679         // EXIT conditions
680         if( reldif < (float) kchilmt ){
681             *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
682             *niter = iterNum;
683             out = 0;
684             break;
685         } // end if
686         if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
687             *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
688             *niter = iterNum;
689             out = 0;
690             break;
691         } // end if
692         if( iterNum > 5*knstop ){
693             *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
694             *niter = iterNum;
695             out = 1;
696             break;
697         } // end if
698         if( iterNum <= knel ) continue;
699         n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
700         if( n > 3 || n == 0 ) continue;
701         schi[n-1] = chi1;
702         for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
703         if( n != 3 ) continue;
704         // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
705         //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
706         for( k=1; k<(npeak*knParam+1); k++ ){
707             Float_t tmp0 = sprm[0][k];
708             Float_t tmp1 = sprm[1][k];
709             Float_t tmp2 = sprm[2][k];
710             a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
711             a += (schi[2]*(tmp0-tmp1));
712             b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
713             b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
714                                              (tmp0*tmp0-tmp1*tmp1)));
715             if ((double)a < 1.0E-6) prmin = 0;
716             else prmin = (float) (0.5*b/a);
717             dp = 5*(tmp2-tmp0);
718             if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
719             param[k] = prmin;
720             step[k]  = dp/10; // OPTIMIZE SEARCH STEP
721         } // end for k
722     } while( kTRUE );
723     delete [] prm0;
724     delete [] step;
725     delete [] schi; 
726     delete [] sprm[0];
727     delete [] sprm[1];
728     delete [] sprm[2];
729     delete [] speFit;
730     return( out );
731 }
732
733 //______________________________________________________________________
734 void AliITSClusterFinderSDD::ResolveClustersE(){
735     // The function to resolve clusters if the clusters overlapping exists
736     Int_t i;
737     static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
738     // get number of clusters for this module
739     Int_t nofClusters = fClusters->GetEntriesFast();
740     nofClusters -= fNclusters;
741     Int_t fNofMaps = fSegmentation->Npz();
742     Int_t fNofAnodes = fNofMaps/2;
743     Int_t fMaxNofSamples = fSegmentation->Npx();
744     Int_t dummy=0;
745     Double_t fTimeStep = fSegmentation->Dpx( dummy );
746     Double_t fSddLength = fSegmentation->Dx();
747     Double_t fDriftSpeed = fResponse->DriftSpeed();
748     Double_t anodePitch = fSegmentation->Dpz( dummy );
749     Float_t n, baseline;
750     fResponse->GetNoiseParam( n, baseline );
751     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
752
753     for( Int_t j=0; j<nofClusters; j++ ){ 
754         // get cluster information
755         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
756         Int_t astart = clusterJ->Astart();
757         Int_t astop = clusterJ->Astop();
758         Int_t tstart = clusterJ->Tstartf();
759         Int_t tstop = clusterJ->Tstopf();
760         Int_t wing = (Int_t)clusterJ->W();
761         if( wing == 2 ){
762             astart += fNofAnodes; 
763             astop  += fNofAnodes;
764         } // end if 
765         Int_t xdim = tstop-tstart+3;
766         Int_t zdim = astop-astart+3;
767         if(xdim > 50 || zdim > 30) { 
768           Warning("ResolveClustersE","xdim: %d , zdim: %d ",xdim,zdim);
769           continue;
770         }
771         Float_t *sp = new Float_t[ xdim*zdim+1 ];
772         memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
773         
774         // make a local map from cluster region
775         for( Int_t ianode=astart; ianode<=astop; ianode++ ){
776             for( Int_t itime=tstart; itime<=tstop; itime++ ){
777                 Float_t fadc = fMap->GetSignal( ianode, itime );
778                 if( fadc > baseline ) fadc -= (Double_t)baseline;
779                 else fadc = 0.;
780                 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
781                 sp[index] = fadc;
782             } // time loop
783         } // anode loop
784         
785         // search peaks on cluster
786         const Int_t kNp = 150;
787         Int_t peakX1[kNp];
788         Int_t peakZ1[kNp];
789         Float_t peakAmp1[kNp];
790         Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
791
792         // if multiple peaks, split cluster
793         if( npeak >= 1 )
794         {
795             //        cout << "npeak " << npeak << endl;
796             //        clusterJ->PrintInfo();
797             Float_t *par = new Float_t[npeak*5+1];
798             par[0] = (Float_t)npeak;                
799             // Initial parameters in cell dimentions
800             Int_t k1 = 1;
801             for( i=0; i<npeak; i++ ){
802                 par[k1] = peakAmp1[i];
803                 par[k1+1] = peakX1[i]; // local time pos. [timebin]
804                 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
805                 if( electronics == 1 ) 
806                     par[k1+3] = 2.; // PASCAL
807                 else if( electronics == 2 ) 
808                     par[k1+3] = 0.7; // tau [timebin]  OLA 
809                 par[k1+4] = .4;    // sigma        [anodepich]
810                 k1+=5;
811             } // end for i                        
812             Int_t niter;
813             Float_t chir;                        
814             NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
815             Float_t peakX[kNp];
816             Float_t peakZ[kNp];
817             Float_t sigma[kNp];
818             Float_t tau[kNp];
819             Float_t peakAmp[kNp];
820             Float_t integral[kNp];
821             //get integrals => charge for each peak
822             PeakFunc( xdim, zdim, par, sp, integral );
823             k1 = 1;
824             for( i=0; i<npeak; i++ ){
825                 peakAmp[i] = par[k1];
826                 peakX[i] = par[k1+1];
827                 peakZ[i] = par[k1+2];
828                 tau[i] = par[k1+3];
829                 sigma[i] = par[k1+4];
830                 k1+=5;
831             } // end for i
832             // calculate parameter for new clusters
833             for( i=0; i<npeak; i++ ){
834                 AliITSRawClusterSDD clusterI( *clusterJ );
835                 Int_t newAnode = peakZ1[i]-1 + astart;
836                 Int_t newiTime = peakX1[i]-1 + tstart;
837                 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
838                 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) 
839                     shift = 0;
840                 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
841                 clusterI.SetPeakPos( peakpos );
842                 clusterI.SetPeakAmpl( peakAmp1[i] );
843                 Float_t newAnodef = peakZ[i] - 0.5 + astart;
844                 Float_t newiTimef = peakX[i] - 1 + tstart;
845                 if( wing == 2 ) newAnodef -= fNofAnodes; 
846                 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
847                 newiTimef *= fTimeStep;
848                 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
849                 if( electronics == 1 ){
850                 //    newiTimef *= 0.999438;    // PASCAL
851                 //    newiTimef += (6./fDriftSpeed - newiTimef/3000.);
852                 }else if( electronics == 2 )
853                     newiTimef *= 0.99714;    // OLA
854                 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
855                 Float_t sign = ( wing == 1 ) ? -1. : 1.;
856                 clusterI.SetX( driftPath*sign * 0.0001 );        
857                 clusterI.SetZ( anodePath * 0.0001 );
858                 clusterI.SetAnode( newAnodef );
859                 clusterI.SetTime( newiTimef );
860                 clusterI.SetAsigma( sigma[i]*anodePitch );
861                 clusterI.SetTsigma( tau[i]*fTimeStep );
862                 clusterI.SetQ( integral[i] );
863                 //    clusterI.PrintInfo();
864                 iTS->AddCluster( 1, &clusterI );
865             } // end for i
866             fClusters->RemoveAt( j );
867             delete [] par;
868         } else {  // something odd
869           Warning("ResolveClustersE","--- Peak not found!!!!  minpeak=%d ,cluster peak= %f , module= %d",fMinPeak,clusterJ->PeakAmpl(),fModule); 
870           clusterJ->PrintInfo();
871           Warning("ResolveClustersE"," xdim= %d zdim= %d",xdim-2,zdim-2);
872         }
873         delete [] sp;
874     } // cluster loop
875     fClusters->Compress();
876 //    fMap->ClearMap(); 
877 }
878
879
880 //________________________________________________________________________
881 void  AliITSClusterFinderSDD::GroupClusters(){
882     // group clusters
883     Int_t dummy=0;
884     Float_t fTimeStep = fSegmentation->Dpx(dummy);
885     // get number of clusters for this module
886     Int_t nofClusters = fClusters->GetEntriesFast();
887     nofClusters -= fNclusters;
888     AliITSRawClusterSDD *clusterI;
889     AliITSRawClusterSDD *clusterJ;
890     Int_t *label = new Int_t [nofClusters];
891     Int_t i,j;
892     for(i=0; i<nofClusters; i++) label[i] = 0;
893     for(i=0; i<nofClusters; i++) { 
894         if(label[i] != 0) continue;
895         for(j=i+1; j<nofClusters; j++) { 
896             if(label[j] != 0) continue;
897             clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
898             clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
899             // 1.3 good
900             if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
901             if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
902             Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
903             if(!pair) continue;
904             //      clusterI->PrintInfo();
905             //      clusterJ->PrintInfo();
906             clusterI->Add(clusterJ);
907             label[j] = 1;
908             fClusters->RemoveAt(j);
909             j=i; // <- Ernesto
910         } // J clusters  
911         label[i] = 1;
912     } // I clusters
913     fClusters->Compress();
914
915     delete [] label;
916     return;
917 }
918 //________________________________________________________________________
919 void AliITSClusterFinderSDD::SelectClusters(){
920     // get number of clusters for this module
921     Int_t nofClusters = fClusters->GetEntriesFast();
922
923     nofClusters -= fNclusters;
924     Int_t i;
925     for(i=0; i<nofClusters; i++) { 
926         AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
927         Int_t rmflg = 0;
928         Float_t wy = 0.;
929         if(clusterI->Anodes() != 0.) {
930             wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
931         } // end if
932         Int_t amp = (Int_t) clusterI->PeakAmpl();
933         Int_t cha = (Int_t) clusterI->Q();
934         if(amp < fMinPeak) rmflg = 1;  
935         if(cha < fMinCharge) rmflg = 1;
936         if(wy < fMinNCells) rmflg = 1;
937         //if(wy > fMaxNCells) rmflg = 1;
938         if(rmflg) fClusters->RemoveAt(i);
939     } // I clusters
940     fClusters->Compress();
941     return;
942 }
943 //__________________________________________________________________________
944 void AliITSClusterFinderSDD::ResolveClusters(){
945     // The function to resolve clusters if the clusters overlapping exists
946 /*    AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
947     // get number of clusters for this module
948     Int_t nofClusters = fClusters->GetEntriesFast();
949     nofClusters -= fNclusters;
950     //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
951     // <<fNclusters<<endl;
952     Int_t fNofMaps = fSegmentation->Npz();
953     Int_t fNofAnodes = fNofMaps/2;
954     Int_t dummy=0;
955     Double_t fTimeStep = fSegmentation->Dpx(dummy);
956     Double_t fSddLength = fSegmentation->Dx();
957     Double_t fDriftSpeed = fResponse->DriftSpeed();
958     Double_t anodePitch = fSegmentation->Dpz(dummy);
959     Float_t n, baseline;
960     fResponse->GetNoiseParam(n,baseline);
961     Float_t dzz_1A = anodePitch * anodePitch / 12;
962     // fill Map of signals
963     fMap->FillMap(); 
964     Int_t j,i,ii,ianode,anode,itime;
965     Int_t wing,astart,astop,tstart,tstop,nanode;
966     Double_t fadc,ClusterTime;
967     Double_t q[400],x[400],z[400]; // digit charges and coordinates
968     for(j=0; j<nofClusters; j++) { 
969         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
970         Int_t ndigits = 0;
971         astart=clusterJ->Astart();
972         astop=clusterJ->Astop();
973         tstart=clusterJ->Tstartf();
974         tstop=clusterJ->Tstopf();
975         nanode=clusterJ->Anodes();  // <- Ernesto
976         wing=(Int_t)clusterJ->W();
977         if(wing == 2) {
978             astart += fNofAnodes; 
979             astop  += fNofAnodes;
980         }  // end if
981         // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
982         //      <<tstart<<","<<tstop<<endl;
983         // clear the digit arrays
984         for(ii=0; ii<400; ii++) { 
985             q[ii] = 0.; 
986             x[ii] = 0.;
987             z[ii] = 0.;
988         } // end for ii
989
990         for(ianode=astart; ianode<=astop; ianode++) { 
991             for(itime=tstart; itime<=tstop; itime++) { 
992                 fadc=fMap->GetSignal(ianode,itime);
993                 if(fadc>baseline) {
994                     fadc-=(Double_t)baseline;
995                     q[ndigits] = fadc*(fTimeStep/160);  // KeV
996                     anode = ianode;
997                     if(wing == 2) anode -= fNofAnodes;
998                     z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
999                     ClusterTime = itime*fTimeStep;
1000                     if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
1001                     x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
1002                     if(wing == 1) x[ndigits] *= (-1);
1003                     // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
1004                     //     <<fadc<<endl;
1005                     // cout<<"wing,anode,ndigits,charge ="<<wing<<","
1006                     //      <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
1007                     ndigits++;
1008                     continue;
1009                 } //  end if
1010                 fadc=0;
1011                 //              cout<<"fadc=0, ndigits ="<<ndigits<<endl;
1012             } // time loop
1013         } // anode loop
1014         //     cout<<"for new cluster ndigits ="<<ndigits<<endl;
1015         // Fit cluster to resolve for two separate ones --------------------
1016         Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
1017         Double_t dxx=0., dzz=0., dxz=0.;
1018         Double_t scl = 0., tmp, tga, elps = -1.;
1019         Double_t xfit[2], zfit[2], qfit[2];
1020         Double_t pitchz = anodePitch*1.e-4;             // cm
1021         Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4;  // cm
1022         Double_t sigma2;
1023         Int_t nfhits;
1024         Int_t nbins = ndigits;
1025         Int_t separate = 0;
1026         // now, all lengths are in microns
1027         for (ii=0; ii<nbins; ii++) {
1028             qq += q[ii];
1029             xm += x[ii]*q[ii];
1030             zm += z[ii]*q[ii];
1031             xx += x[ii]*x[ii]*q[ii];
1032             zz += z[ii]*z[ii]*q[ii];
1033             xz += x[ii]*z[ii]*q[ii];
1034         } // end for ii
1035         xm /= qq;
1036         zm /= qq;
1037         xx /= qq;
1038         zz /= qq;
1039         xz /= qq;
1040         dxx = xx - xm*xm;
1041         dzz = zz - zm*zm;
1042         dxz = xz - xm*zm;
1043
1044         // shrink the cluster in the time direction proportionaly to the 
1045         // dxx/dzz, which lineary depends from the drift path
1046         // new  Ernesto........         
1047         if( nanode == 1 ){
1048             dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1049             scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1050         } // end if
1051         if( nanode == 2 ){
1052             scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1053         } // end if
1054         if( nanode == 3 ){
1055             scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1056         } // end if
1057         if( nanode > 3 ){
1058             scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1059         } // end if
1060         //   cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1061         //  <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1062         //  old Boris.........
1063         //  tmp=29730. - 585.*fabs(xm/1000.); 
1064         //  scl=TMath::Sqrt(tmp/130000.);
1065    
1066         xm *= scl;
1067         xx *= scl*scl;
1068         xz *= scl;
1069
1070         dxx = xx - xm*xm;
1071         //   dzz = zz - zm*zm;
1072         dxz = xz - xm*zm;
1073         //   cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1074         // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1075         // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
1076   
1077         if (dxx < 0.) dxx=0.;
1078         // the data if no cluster overlapping (the coordunates are in cm) 
1079         nfhits = 1;
1080         xfit[0] = xm*1.e-4;
1081         zfit[0] = zm*1.e-4;
1082         qfit[0] = qq;
1083         //   if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
1084   
1085         if (nbins >= 7) {
1086             if (dxz==0.) tga=0.;
1087             else {
1088                 tmp=0.5*(dzz-dxx)/dxz;
1089                 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : 
1090                                                    tmp+TMath::Sqrt(tmp*tmp+1);
1091             } // end if dxz
1092             elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1093             // change from microns to cm
1094             xm *= 1.e-4; 
1095             zm *= 1.e-4; 
1096             zz *= 1.e-8;
1097             xx *= 1.e-8;
1098             xz *= 1.e-8;
1099             dxz *= 1.e-8;
1100             dxx *= 1.e-8;
1101             dzz *= 1.e-8;
1102             //   cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1103             //  <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1104             for (i=0; i<nbins; i++) {     
1105                 x[i] = x[i] *= scl;
1106                 x[i] = x[i] *= 1.e-4;
1107                 z[i] = z[i] *= 1.e-4;
1108             } // end for i
1109             //     cout<<"!!! elps ="<<elps<<endl;
1110             if (elps < 0.3) { // try to separate hits 
1111                 separate = 1;
1112                 tmp=atan(tga);
1113                 Double_t cosa=cos(tmp),sina=sin(tmp);
1114                 Double_t a1=0., x1=0., xxx=0.;
1115                 for (i=0; i<nbins; i++) {
1116                     tmp=x[i]*cosa + z[i]*sina;
1117                     if (q[i] > a1) {
1118                         a1=q[i];
1119                         x1=tmp;
1120                     } // end if
1121                     xxx += tmp*tmp*tmp*q[i];
1122                 } // end for i
1123                 xxx /= qq;
1124                 Double_t z12=-sina*xm + cosa*zm;
1125                 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1126                 xm=cosa*xm + sina*zm;
1127                 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1128                 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1129                 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1130                 for (i=0; i<33; i++) { // solve a system of equations
1131                     Double_t x1_old=x1, x2_old=x2, r_old=r;
1132                     Double_t c11=x1-x2;
1133                     Double_t c12=r;
1134                     Double_t c13=1-r;
1135                     Double_t c21=x1*x1 - x2*x2;
1136                     Double_t c22=2*r*x1;
1137                     Double_t c23=2*(1-r)*x2;
1138                     Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1139                     Double_t c32=3*r*(sigma2 + x1*x1);
1140                     Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1141                     Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1142                     Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1143                     Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1144                                                          (3*sigma2+x2*x2)-xxx);
1145                     Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1146                                        c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1147                     if (d==0.) {
1148                         cout<<"*********** d=0 ***********\n";
1149                         break;
1150                     } // end if
1151                     Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1152                         f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1153                     Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1154                         c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1155                     Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1156                         c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1157                     r  += dr/d;
1158                     x1 += d1/d;
1159                     x2 += d2/d;
1160                     if (fabs(x1-x1_old) > 0.0001) continue;
1161                     if (fabs(x2-x2_old) > 0.0001) continue;
1162                     if (fabs(r-r_old)/5 > 0.001) continue;
1163                     a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1164                     Double_t a2=a1*(1-r)/r;
1165                     qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + 
1166                                                                 z12*cosa;
1167                     qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + 
1168                                                                 z12*cosa;
1169                     nfhits=2;
1170                     break; // Ok !
1171                 } // end for i
1172                 if (i==33) cerr<<"No more iterations ! "<<endl;
1173             } // end of attempt to separate overlapped clusters
1174         } // end of nbins cut 
1175         if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1176         if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1177                                                      <<elps<<","<<nfhits<<endl;
1178         if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1179         for (i=0; i<nfhits; i++) {
1180             xfit[i] *= (1.e+4/scl);
1181             if(wing == 1) xfit[i] *= (-1);
1182             zfit[i] *= 1.e+4;
1183             //       cout<<" ---------  i,xfiti,zfiti,qfiti ="<<i<<","
1184             // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1185         } // end for i
1186         Int_t ncl = nfhits;
1187         if(nfhits == 1 && separate == 1) {
1188             cout<<"!!!!! no separate"<<endl;
1189             ncl = -2;
1190         }  // end if
1191         if(nfhits == 2) {
1192             cout << "Split cluster: " << endl;
1193             clusterJ->PrintInfo();
1194             cout << " in: " << endl;
1195             for (i=0; i<nfhits; i++) {
1196                 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
1197                                                -1,-1,(Float_t)qfit[i],ncl,0,0,
1198                                                (Float_t)xfit[i],
1199                                                (Float_t)zfit[i],0,0,0,0,
1200                                                 tstart,tstop,astart,astop);
1201             //        AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1202             //                                 -1,(Float_t)qfit[i],0,0,0,
1203             //                                  (Float_t)xfit[i],
1204             //                                  (Float_t)zfit[i],0,0,0,0,
1205             //                                  tstart,tstop,astart,astop,ncl);
1206             // ???????????
1207             // if(wing == 1) xfit[i] *= (-1);
1208             Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1209             Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1210             Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1211             Float_t peakpos = clusterJ->PeakPos();
1212             Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1213             Float_t clusterDriftPath = Time*fDriftSpeed;
1214             clusterDriftPath = fSddLength-clusterDriftPath;
1215             AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1216                                                                  Time,qfit[i],
1217                                                clusterPeakAmplitude,peakpos,
1218                                                0.,0.,clusterDriftPath,
1219                                          clusteranodePath,clusterJ->Samples()/2
1220                                     ,tstart,tstop,0,0,0,astart,astop);
1221             clust->PrintInfo();
1222             iTS->AddCluster(1,clust);
1223             //        cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1224             // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1225             // <<","<<ncl<<endl;
1226             delete clust;
1227         }// nfhits loop
1228         fClusters->RemoveAt(j);
1229     } // if nfhits = 2
1230 } // cluster loop
1231 fClusters->Compress();
1232 fMap->ClearMap(); 
1233 */
1234     return;
1235 }
1236 //______________________________________________________________________
1237 void AliITSClusterFinderSDD::GetRecPoints(){
1238     // get rec points
1239     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1240     // get number of clusters for this module
1241     Int_t nofClusters = fClusters->GetEntriesFast();
1242     nofClusters -= fNclusters;
1243     const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1244     const Float_t kconv = 1.0e-4; 
1245     const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1246     const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1247     Int_t i,j;
1248     Int_t ix, iz, idx=-1;
1249     AliITSdigitSDD *dig=0;
1250     Int_t ndigits=fDigits->GetEntriesFast();
1251     for(i=0; i<nofClusters; i++) { 
1252         AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1253         if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1254         if(clusterI) idx=clusterI->PeakPos();
1255         if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1256         // try peak neighbours - to be done 
1257         if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1258         //// debug
1259         //      cout<<"R.C. Anode = "<<clusterI->A()<<"; Time= "<<clusterI->T()<<endl;
1260         fSegmentation->LocalToDet(clusterI->X(),clusterI->Z(),ix,iz);
1261         //      cout<<"From R.C. coordinates- Anode: "<<iz<<" and time: "<<ix<<endl;
1262         // end debug
1263         Int_t trks[10];
1264         Int_t notr=-1;
1265         Int_t deger = 0;
1266         if(!dig) {
1267           Warning("GetRecPoints","Cannot assign the track number\n");
1268         }
1269         else {
1270           fSegmentation->LocalToDet(clusterI->X(),clusterI->Z(),ix,iz);
1271           Int_t signal[30];
1272           for(Int_t kk=0;kk<9;kk++)trks[kk]=-2;
1273           AliITSdigitSDD * pdig = 0;
1274           for(Int_t itime=ix-1;itime<=ix+1;itime++){
1275             if(itime<0 || itime>=fSegmentation->Npx())continue;
1276             for(Int_t ianod=iz-1;ianod<=iz+1;ianod++){
1277               if(ianod<0 || ianod>=fSegmentation->Npz())continue;
1278               if(iz==(fSegmentation->Npz())/2 && ianod<iz)continue;
1279               if(iz==(fSegmentation->Npz())/2-1 && ianod>iz)continue;
1280               pdig = (AliITSdigitSDD*)fMap->GetHit(ianod,itime);
1281               if(pdig){
1282                 for(Int_t kk=0;kk<3;kk++){
1283                   if(kk == 0 || (kk>0 && pdig->fTracks[kk]>=0)){
1284                     notr++;
1285                     trks[notr]=pdig->fTracks[kk];
1286                     signal[notr]=pdig->fSignal;
1287                   }
1288                 }
1289               }
1290             }
1291           } // for(itime....
1292           if((dig->fCoord1<(iz-1) || dig->fCoord1>(iz+1)) 
1293              && (dig->fCoord2<(ix-1) || dig->fCoord2>(ix+1)) 
1294              && dig->fTracks[0]>=-2){
1295             notr++;
1296             trks[notr]=dig->fTracks[0];
1297             signal[notr]=dig->fSignal;
1298           }
1299           for(Int_t ii=0; ii<notr;ii++){
1300             for(Int_t jj=ii+1; jj<=notr; jj++){
1301               if(trks[ii] == trks[jj]){
1302                 signal[ii]+=signal[jj];
1303                 signal[jj]=-100;
1304                 trks[jj]=-jj-100;
1305                 deger++;
1306               }
1307             }
1308           }
1309           Int_t ordtmp;
1310           for(Int_t ii=0; ii<notr;ii++){
1311             Int_t maxi = ii;
1312             for(Int_t jj=ii+1; jj<=notr; jj++){
1313               if(signal[jj]>signal[maxi])maxi=jj;
1314             }
1315             ordtmp = trks[ii];
1316             trks[ii]=trks[maxi];
1317             trks[maxi]=ordtmp;
1318             ordtmp = signal[ii];
1319             signal[ii]=signal[maxi];
1320             signal[maxi]=ordtmp;
1321           }
1322         }
1323         notr-=deger;
1324         notr++;
1325         /*
1326           if(!dig) {
1327             // try cog
1328             fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1329             dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1330             // if null try neighbours
1331             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix); 
1332             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1); 
1333             if (!dig) printf("SDD: cannot assign the track number!\n");
1334         } //  end if !dig
1335         */
1336         AliITSRecPoint rnew;
1337         rnew.SetX(clusterI->X());
1338         rnew.SetZ(clusterI->Z());
1339         rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
1340         //      cout<<"Cluster # "<<i<< " - X,Z,Q= "<<clusterI->X()<<" "<<clusterI->Z()<<" "<<clusterI->Q()<<"; Digit n= "<<idx<<endl;
1341         rnew.SetdEdX(kconvGeV*clusterI->Q());
1342         rnew.SetSigmaX2(kRMSx*kRMSx);
1343         rnew.SetSigmaZ2(kRMSz*kRMSz);
1344         if(notr>3)notr=3;
1345         if(notr>=0)for(j=0;j<notr;j++)rnew.fTracks[j]=trks[j];
1346         /*     
1347         if(dig){
1348           for(j=0;j<dig->GetNTracks();j++){
1349             if(j>0 && j%4==0)cout<<endl;
1350           }
1351           cout<<endl;
1352             rnew.fTracks[0] = dig->fTracks[0];
1353             cout<<"  "<<dig->fTracks[0]<<" assigned to rp 0 "<<rnew.fTracks[0]<<endl;
1354             rnew.fTracks[1] = -3;
1355             rnew.fTracks[2] = -3;
1356             j=1;
1357             while(rnew.fTracks[0]==dig->fTracks[j] &&
1358                   j<dig->GetNTracks()) j++;
1359             if(j<dig->GetNTracks()){
1360                 rnew.fTracks[1] = dig->fTracks[j];
1361                 cout<<"  Digit "<<j<<" "<<dig->fTracks[j]<<" assigned to rp 1 "<<rnew.fTracks[1]<<endl;
1362                 while((rnew.fTracks[0]==dig->fTracks[j] || 
1363                        rnew.fTracks[1]==dig->fTracks[j] )&& 
1364                       j<dig->GetNTracks()) j++;
1365                 if(j<dig->GetNTracks()) {
1366                   rnew.fTracks[2] = dig->fTracks[j];
1367                   cout<<"  Digit "<<j<<" "<<dig->fTracks[j]<<" assigned to rp 2 "<<rnew.fTracks[2]<<endl;
1368                 }
1369             } // end if
1370         } // end if
1371         */
1372
1373         iTS->AddRecPoint(rnew);
1374     } // I clusters
1375 //    fMap->ClearMap();
1376 }
1377 //______________________________________________________________________
1378 void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1379     // find raw clusters
1380     
1381     fModule = mod;
1382     
1383     Find1DClustersE();
1384     GroupClusters();
1385     SelectClusters();
1386     ResolveClustersE();
1387     GetRecPoints();
1388 }
1389 //_______________________________________________________________________
1390 void AliITSClusterFinderSDD::Print() const{
1391     // Print SDD cluster finder Parameters
1392
1393     cout << "**************************************************" << endl;
1394     cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1395     cout << "**************************************************" << endl;
1396     cout << "Number of Clusters: " << fNclusters << endl;
1397     cout << "Anode Tolerance: " << fDAnode << endl;
1398     cout << "Time  Tolerance: " << fDTime << endl;
1399     cout << "Time  correction (electronics): " << fTimeCorr << endl;
1400     cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1401     cout << "Minimum Amplitude: " << fMinPeak << endl;
1402     cout << "Minimum Charge: " << fMinCharge << endl;
1403     cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1404     cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1405     cout << "**************************************************" << endl;
1406 }