]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ITS/AliITSClusterFinderSDD.cxx
Added new creator which passes a pointer to type AliRun. Can now use either
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15 /*
16   $Id$
17   $Log$
18   Revision 1.25  2002/05/10 22:29:40  nilsen
19   Change my Massimo Masera in the default constructor to bring things into
20   compliance.
21
22   Revision 1.24  2002/04/24 22:02:31  nilsen
23   New SDigits and Digits routines, and related changes,  (including new
24   noise values).
25
26  */
27
28 #include <iostream.h>
29 #include <TFile.h>
30 #include <TMath.h>
31 #include <math.h>
32
33 #include "AliITSClusterFinderSDD.h"
34 #include "AliITSMapA1.h"
35 #include "AliITS.h"
36 #include "AliITSdigit.h"
37 #include "AliITSRawCluster.h"
38 #include "AliITSRecPoint.h"
39 #include "AliITSsegmentation.h"
40 #include "AliITSresponseSDD.h"
41 #include "AliRun.h"
42
43 ClassImp(AliITSClusterFinderSDD)
44
45 //______________________________________________________________________
46 AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
47                                                AliITSresponse *response,
48                                                TClonesArray *digits,
49                                                TClonesArray *recp){
50     // standard constructor
51
52     fSegmentation = seg;
53     fResponse     = response;
54     fDigits       = digits;
55     fClusters     = recp;
56     fNclusters    = fClusters->GetEntriesFast();
57     SetCutAmplitude();
58     SetDAnode();
59     SetDTime();
60     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
61     //    SetMinPeak();
62     SetMinNCells();
63     SetMaxNCells();
64     SetTimeCorr();
65     SetMinCharge();
66     fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
67 }
68 //______________________________________________________________________
69 AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
70     // default constructor
71
72     fSegmentation = 0;
73     fResponse     = 0;
74     fDigits       = 0;
75     fClusters     = 0;
76     fNclusters    = 0;
77     fMap          = 0;
78     fCutAmplitude = 0;
79     fDAnode = 0;
80     fDTime = 0;
81     fMinPeak = 0;
82     fMinNCells = 0;
83     fMaxNCells = 0;
84     fTimeCorr = 0;
85     fMinCharge = 0;
86     /*
87     SetDAnode();
88     SetDTime();
89     SetMinPeak((Int_t)(((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics()*5));
90     SetMinNCells();
91     SetMaxNCells();
92     SetTimeCorr();
93     SetMinCharge();
94     */
95 }
96 //____________________________________________________________________________
97 AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
98     // destructor
99
100     if(fMap) delete fMap;
101 }
102 //______________________________________________________________________
103 void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
104     // set the signal threshold for cluster finder
105     Float_t baseline,noise,noise_after_el;
106
107     fResponse->GetNoiseParam(noise,baseline);
108     noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
109     fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
110 }
111 //______________________________________________________________________
112 void AliITSClusterFinderSDD::Find1DClusters(){
113     // find 1D clusters
114     static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
115   
116     // retrieve the parameters 
117     Int_t fNofMaps       = fSegmentation->Npz();
118     Int_t fMaxNofSamples = fSegmentation->Npx();
119     Int_t fNofAnodes     = fNofMaps/2;
120     Int_t dummy          = 0;
121     Float_t fTimeStep    = fSegmentation->Dpx(dummy);
122     Float_t fSddLength   = fSegmentation->Dx();
123     Float_t fDriftSpeed  = fResponse->DriftSpeed();  
124     Float_t anodePitch   = fSegmentation->Dpz(dummy);
125
126     // map the signal
127     fMap->ClearMap();
128     fMap->SetThreshold(fCutAmplitude);
129     fMap->FillMap();
130   
131     Float_t noise;
132     Float_t baseline;
133     fResponse->GetNoiseParam(noise,baseline);
134   
135     Int_t nofFoundClusters = 0;
136     Int_t i;
137     Float_t **dfadc = new Float_t*[fNofAnodes];
138     for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
139     Float_t fadc  = 0.;
140     Float_t fadc1 = 0.;
141     Float_t fadc2 = 0.;
142     Int_t j,k,idx,l,m;
143     for(j=0;j<2;j++) {
144         for(k=0;k<fNofAnodes;k++) {
145             idx = j*fNofAnodes+k;
146             // signal (fadc) & derivative (dfadc)
147             dfadc[k][255]=0.;
148             for(l=0; l<fMaxNofSamples; l++) {
149                 fadc2=(Float_t)fMap->GetSignal(idx,l);
150                 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
151                 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
152             } // samples
153         } // anodes
154
155         for(k=0;k<fNofAnodes;k++) {
156         //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
157             idx = j*fNofAnodes+k;
158             Int_t imax  = 0;
159             Int_t imaxd = 0;
160             Int_t it    = 0;
161             while(it <= fMaxNofSamples-3) {
162                 imax  = it;
163                 imaxd = it;
164                 // maximum of signal          
165                 Float_t fadcmax  = 0.;
166                 Float_t dfadcmax = 0.;
167                 Int_t lthrmina   = 1;
168                 Int_t lthrmint   = 3;
169                 Int_t lthra      = 1;
170                 Int_t lthrt      = 0;
171                 for(m=0;m<20;m++) {
172                     Int_t id = it+m;
173                     if(id>=fMaxNofSamples) break;
174                     fadc=(float)fMap->GetSignal(idx,id);
175                     if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
176                     if(fadc > (float)fCutAmplitude) { 
177                         lthrt++; 
178                     } // end if
179                     if(dfadc[k][id] > dfadcmax) {
180                         dfadcmax = dfadc[k][id];
181                         imaxd    = id;
182                     } // end if
183                 } // end for m
184                 it = imaxd;
185                 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
186                 // cluster charge
187                 Int_t tstart = it-2;
188                 if(tstart < 0) tstart = 0;
189                 Bool_t ilcl = 0;
190                 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
191                 if(ilcl) {
192                     nofFoundClusters++;
193                     Int_t tstop      = tstart;
194                     Float_t dfadcmin = 10000.;
195                     Int_t ij;
196                     for(ij=0; ij<20; ij++) {
197                         if(tstart+ij > 255) { tstop = 255; break; }
198                         fadc=(float)fMap->GetSignal(idx,tstart+ij);
199                         if((dfadc[k][tstart+ij] < dfadcmin) && 
200                            (fadc > fCutAmplitude)) {
201                             tstop = tstart+ij+5;
202                             if(tstop > 255) tstop = 255;
203                             dfadcmin = dfadc[k][it+ij];
204                         } // end if
205                     } // end for ij
206
207                     Float_t clusterCharge = 0.;
208                     Float_t clusterAnode  = k+0.5;
209                     Float_t clusterTime   = 0.;
210                     Int_t   clusterMult   = 0;
211                     Float_t clusterPeakAmplitude = 0.;
212                     Int_t its,peakpos     = -1;
213                     Float_t n, baseline;
214                     fResponse->GetNoiseParam(n,baseline);
215                     for(its=tstart; its<=tstop; its++) {
216                         fadc=(float)fMap->GetSignal(idx,its);
217                         if(fadc>baseline) fadc -= baseline;
218                         else fadc = 0.;
219                         clusterCharge += fadc;
220                         // as a matter of fact we should take the peak
221                         // pos before FFT
222                         // to get the list of tracks !!!
223                         if(fadc > clusterPeakAmplitude) {
224                             clusterPeakAmplitude = fadc;
225                             //peakpos=fMap->GetHitIndex(idx,its);
226                             Int_t shift = (int)(fTimeCorr/fTimeStep);
227                             if(its>shift && its<(fMaxNofSamples-shift))
228                                 peakpos  = fMap->GetHitIndex(idx,its+shift);
229                             else peakpos = fMap->GetHitIndex(idx,its);
230                             if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
231                         } // end if
232                         clusterTime += fadc*its;
233                         if(fadc > 0) clusterMult++;
234                         if(its == tstop) {
235                             clusterTime /= (clusterCharge/fTimeStep);   // ns
236                             if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
237                             //ns
238                         } // end if
239                     } // end for its
240
241                     Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
242                                                anodePitch;
243                     Float_t clusterDriftPath = clusterTime*fDriftSpeed;
244                     clusterDriftPath = fSddLength-clusterDriftPath;
245                     if(clusterCharge <= 0.) break;
246                     AliITSRawClusterSDD clust(j+1,//i
247                                               clusterAnode,clusterTime,//ff
248                                               clusterCharge, //f
249                                               clusterPeakAmplitude, //f
250                                               peakpos, //i
251                                               0.,0.,clusterDriftPath,//fff
252                                               clusteranodePath, //f
253                                               clusterMult, //i
254                                               0,0,0,0,0,0,0);//7*i
255                     iTS->AddCluster(1,&clust);
256                     it = tstop;
257                 } // ilcl
258                 it++;
259             } // while (samples)
260         } // anodes
261     } // detectors (2)
262
263     for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
264     delete [] dfadc;
265
266     return;
267 }
268
269
270
271 //______________________________________________________________________
272 void AliITSClusterFinderSDD::Find1DClustersE(){
273     // find 1D clusters
274     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
275     // retrieve the parameters 
276     Int_t fNofMaps = fSegmentation->Npz();
277     Int_t fMaxNofSamples = fSegmentation->Npx();
278     Int_t fNofAnodes = fNofMaps/2;
279     Int_t dummy=0;
280     Float_t fTimeStep = fSegmentation->Dpx( dummy );
281     Float_t fSddLength = fSegmentation->Dx();
282     Float_t fDriftSpeed = fResponse->DriftSpeed();
283     Float_t anodePitch = fSegmentation->Dpz( dummy );
284     Float_t n, baseline;
285     fResponse->GetNoiseParam( n, baseline );
286     // map the signal
287     fMap->ClearMap();
288     fMap->SetThreshold( fCutAmplitude );
289     fMap->FillMap();
290     
291     Int_t nClu = 0;
292     //        cout << "Search  cluster... "<< endl;
293     for( Int_t j=0; j<2; j++ ){
294         for( Int_t k=0; k<fNofAnodes; k++ ){
295             Int_t idx = j*fNofAnodes+k;
296             Bool_t on = kFALSE;
297             Int_t start = 0;
298             Int_t nTsteps = 0;
299             Float_t fmax = 0.;
300             Int_t lmax = 0;
301             Float_t charge = 0.;
302             Float_t time = 0.;
303             Float_t anode = k+0.5;
304             Int_t peakpos = -1;
305             for( Int_t l=0; l<fMaxNofSamples; l++ ){
306                 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
307                 if( fadc > 0.0 ){
308                     if( on == kFALSE && l<fMaxNofSamples-4){
309                         // star RawCluster (reset var.)
310                         Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
311                         if( fadc1 < fadc ) continue;
312                         start = l;
313                         fmax = 0.;
314                         lmax = 0;
315                         time = 0.;
316                         charge = 0.; 
317                         on = kTRUE; 
318                         nTsteps = 0;
319                     } // end if on...
320                     nTsteps++ ;
321                     if( fadc > baseline ) fadc -= baseline;
322                     else fadc=0.;
323                     charge += fadc;
324                     time += fadc*l;
325                     if( fadc > fmax ){ 
326                         fmax = fadc; 
327                         lmax = l; 
328                         Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
329                         if( l > shift && l < (fMaxNofSamples-shift) )  
330                             peakpos = fMap->GetHitIndex( idx, l+shift );
331                         else
332                             peakpos = fMap->GetHitIndex( idx, l );
333                         if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
334                     } // end if fadc
335                 }else{ // end fadc>0
336                     if( on == kTRUE ){        
337                         if( nTsteps > 2 ){
338                             //  min # of timesteps for a RawCluster
339                             // Found a RawCluster...
340                             Int_t stop = l-1;
341                             time /= (charge/fTimeStep);   // ns
342                                 // time = lmax*fTimeStep;   // ns
343                             if( time > fTimeCorr ) time -= fTimeCorr;   // ns
344                             Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
345                             Float_t driftPath = time*fDriftSpeed;
346                             driftPath = fSddLength-driftPath;
347                             AliITSRawClusterSDD clust(j+1,anode,time,charge,
348                                                       fmax, peakpos,0.,0.,
349                                                       driftPath,anodePath,
350                                                       nTsteps,start,stop,
351                                                       start, stop, 1, k, k );
352                             iTS->AddCluster( 1, &clust );
353                             //        clust.PrintInfo();
354                             nClu++;
355                         } // end if nTsteps
356                         on = kFALSE;
357                     } // end if on==kTRUE
358                 } // end if fadc>0
359             } // samples
360         } // anodes
361     } // wings
362     //        cout << "# Rawclusters " << nClu << endl;         
363     return; 
364 }
365 //_______________________________________________________________________
366 Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
367                                          Int_t *peakX, Int_t *peakZ, 
368                                          Float_t *peakAmp, Float_t minpeak ){
369     // search peaks on a 2D cluster
370     Int_t npeak = 0;    // # peaks
371     Int_t i,j;
372     // search peaks
373     for( Int_t z=1; z<zdim-1; z++ ){
374         for( Int_t x=1; x<xdim-2; x++ ){
375             Float_t sxz = spect[x*zdim+z];
376             Float_t sxz1 = spect[(x+1)*zdim+z];
377             Float_t sxz2 = spect[(x-1)*zdim+z];
378             // search a local max. in s[x,z]
379             if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
380             if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
381                 sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
382                 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
383                 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
384                 // peak found
385                 peakX[npeak] = x;
386                 peakZ[npeak] = z;
387                 peakAmp[npeak] = sxz;
388                 npeak++;
389             } // end if ....
390         } // end for x
391     } // end for z
392     // search groups of peaks with same amplitude.
393     Int_t *flag = new Int_t[npeak];
394     for( i=0; i<npeak; i++ ) flag[i] = 0;
395     for( i=0; i<npeak; i++ ){
396         for( j=0; j<npeak; j++ ){
397             if( i==j) continue;
398             if( flag[j] > 0 ) continue;
399             if( peakAmp[i] == peakAmp[j] && 
400                 TMath::Abs(peakX[i]-peakX[j])<=1 && 
401                 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
402                 if( flag[i] == 0) flag[i] = i+1;
403                 flag[j] = flag[i];
404             } // end if ...
405         } // end for j
406     } // end for i
407     // make average of peak groups        
408     for( i=0; i<npeak; i++ ){
409         Int_t nFlag = 1;
410         if( flag[i] <= 0 ) continue;
411         for( j=0; j<npeak; j++ ){
412             if( i==j ) continue;
413             if( flag[j] != flag[i] ) continue;
414             peakX[i] += peakX[j];
415             peakZ[i] += peakZ[j];
416             nFlag++;
417             npeak--;
418             for( Int_t k=j; k<npeak; k++ ){
419                 peakX[k] = peakX[k+1];
420                 peakZ[k] = peakZ[k+1];
421                 peakAmp[k] = peakAmp[k+1];
422                 flag[k] = flag[k+1];
423             } // end for k        
424             j--;
425         } // end for j
426         if( nFlag > 1 ){
427             peakX[i] /= nFlag;
428             peakZ[i] /= nFlag;
429         } // end fi nFlag
430     } // end for i
431     delete [] flag;
432     return( npeak );
433 }
434 //______________________________________________________________________
435 void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
436                                        Float_t *spe, Float_t *integral){
437     // function used to fit the clusters
438     // par -> parameters..
439     // par[0]  number of peaks.
440     // for each peak i=1, ..., par[0]
441     //                 par[i] = Ampl.
442     //                 par[i+1] = xpos
443     //                 par[i+2] = zpos
444     //                 par[i+3] = tau
445     //                 par[i+4] = sigma.
446     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
447     const Int_t knParam = 5;
448     Int_t npeak = (Int_t)par[0];
449
450     memset( spe, 0, sizeof( Float_t )*zdim*xdim );
451
452     Int_t k = 1;
453     for( Int_t i=0; i<npeak; i++ ){
454         if( integral != 0 ) integral[i] = 0.;
455         Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
456         Float_t T2 = par[k+3];   // PASCAL
457         if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
458         for( Int_t z=0; z<zdim; z++ ){
459             for( Int_t x=0; x<xdim; x++ ){
460                 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
461                 Float_t x2 = 0.;
462                 Float_t signal = 0.;
463                 if( electronics == 1 ){ // PASCAL
464                     x2 = (x-par[k+1]+T2)/T2;
465                     signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
466                 //  signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
467                 }else if( electronics == 2 ) { // OLA
468                     x2 = (x-par[k+1])*(x-par[k+1])/T2;
469                     signal = par[k]  * exp( -x2 - z2 );
470                 } else {
471                     cout << "Wrong SDD Electronics =" << electronics << endl;
472                     // exit( 1 );
473                 } // end if electronicx
474                 spe[x*zdim+z] += signal;
475                 if( integral != 0 ) integral[i] += signal;
476             } // end for x
477         } // end for z
478         k += knParam;
479     } // end for i
480     return;
481 }
482 //__________________________________________________________________________
483 Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
484                                         Float_t *speFit ){
485     // EVALUATES UNNORMALIZED CHI-SQUARED
486     Float_t chi2 = 0.;
487     for( Int_t z=0; z<zdim; z++ ){
488         for( Int_t x=1; x<xdim-1; x++ ){
489             Int_t index = x*zdim+z;
490             Float_t tmp = spe[index] - speFit[index];
491             chi2 += tmp*tmp;
492         } // end for x
493     } // end for z
494     return( chi2 );
495 }
496 //_______________________________________________________________________
497 void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
498                                     Float_t *prm0,Float_t *steprm,
499                                     Float_t *chisqr,Float_t *spe,
500                                     Float_t *speFit ){
501     // 
502     Int_t   k, nnn, mmm, i;
503     Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
504     const Int_t knParam = 5;
505     Int_t npeak = (Int_t)param[0];
506     for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
507     for( k=1; k<(npeak*knParam+1); k++ ){
508         p1 = param[k];
509         delta = steprm[k];
510         d1 = delta;
511         // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
512         if( fabs( p1 ) > 1.0E-6 ) 
513             if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
514             else  delta = (Float_t)1.0E-4;
515         //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
516         PeakFunc( xdim, zdim, param, speFit );
517         chisq1 = ChiSqr( xdim, zdim, spe, speFit );
518         p2 = p1+delta;
519         param[k] = p2;
520         PeakFunc( xdim, zdim, param, speFit );
521         chisq2 = ChiSqr( xdim, zdim, spe, speFit );
522         if( chisq1 < chisq2 ){
523             // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
524             delta = -delta;
525             t = p1;
526             p1 = p2;
527             p2 = t;
528             t = chisq1;
529             chisq1 = chisq2;
530             chisq2 = t;
531         } // end if
532         i = 1; nnn = 0;
533         do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
534             nnn++;
535             p3 = p2 + delta;
536             mmm = nnn - (nnn/5)*5;  // multiplo de 5
537             if( mmm == 0 ){
538                 d1 = delta;
539                 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
540                 delta *= 5;
541             } // end if
542             param[k] = p3;
543             // Constrain paramiters
544             Int_t kpos = (k-1) % knParam;
545             switch( kpos ){
546             case 0 :
547                 if( param[k] <= 20 ) param[k] = fMinPeak;
548                 break;
549             case 1 :
550                 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
551                 break;
552             case 2 :
553                 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
554                 break;
555             case 3 :
556                 if( param[k] < .5 ) param[k] = .5;        
557                 break;
558             case 4 :
559                 if( param[k] < .288 ) param[k] = .288;        // 1/sqrt(12) = 0.288
560                 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
561                 break;
562             }; // end switch
563             PeakFunc( xdim, zdim, param, speFit );
564             chisq3 = ChiSqr( xdim, zdim, spe, speFit );
565             if( chisq3 < chisq2 && nnn < 50 ){
566                 p1 = p2;
567                 p2 = p3;
568                 chisq1 = chisq2;
569                 chisq2 = chisq3;
570             }else i=0;
571         } while( i );
572         // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
573         a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
574         b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
575         if( a!=0 ) p0 = (Float_t)(0.5*b/a);
576         else p0 = 10000;
577         //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
578         //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
579         //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
580         //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
581         //if( fabs( p2-p0 ) > dp ) p0 = p2;
582         param[k] = p0;
583         // Constrain paramiters
584         Int_t kpos = (k-1) % knParam;
585         switch( kpos ){
586         case 0 :
587             if( param[k] <= 20 ) param[k] = fMinPeak;   
588             break;
589         case 1 :
590             if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
591             break;
592         case 2 :
593             if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
594             break;
595         case 3 :
596             if( param[k] < .5 ) param[k] = .5;        
597             break;
598         case 4 :
599             if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
600             if( param[k] > zdim*.5 ) param[k] = zdim*.5;
601             break;
602         }; // end switch
603         PeakFunc( xdim, zdim, param, speFit );
604         chisqt = ChiSqr( xdim, zdim, spe, speFit );
605         // DO NOT ALLOW ERRONEOUS INTERPOLATION
606         if( chisqt <= *chisqr ) *chisqr = chisqt;
607         else param[k] = prm0[k];
608         // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
609         steprm[k] = (param[k]-prm0[k])/5;
610         if( steprm[k] >= d1 ) steprm[k] = d1/5;
611     } // end for k
612     // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
613     PeakFunc( xdim, zdim, param, speFit );
614     *chisqr = ChiSqr( xdim, zdim, spe, speFit );
615     return;
616 }
617 //_________________________________________________________________________
618 Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim, 
619                                            Float_t *param, Float_t *spe, 
620                                            Int_t *niter, Float_t *chir ){
621     // fit method from Comput. Phys. Commun 46(1987) 149
622     const Float_t kchilmt = 0.01;  //        relative accuracy           
623     const Int_t   knel = 3;        //        for parabolic minimization  
624     const Int_t   knstop = 50;     //        Max. iteration number          
625     const Int_t   knParam = 5;
626     Int_t npeak = (Int_t)param[0];
627     // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
628     if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
629     Float_t degFree = (xdim*zdim - npeak*knParam)-1;
630     Int_t   n, k, iterNum = 0;
631     Float_t *prm0 = new Float_t[npeak*knParam+1];
632     Float_t *step = new Float_t[npeak*knParam+1];
633     Float_t *schi = new Float_t[npeak*knParam+1]; 
634     Float_t *sprm[3];
635     sprm[0] = new Float_t[npeak*knParam+1];
636     sprm[1] = new Float_t[npeak*knParam+1];
637     sprm[2] = new Float_t[npeak*knParam+1];
638     Float_t  chi0, chi1, reldif, a, b, prmin, dp;
639     Float_t *speFit = new Float_t[ xdim*zdim ];
640     PeakFunc( xdim, zdim, param, speFit );
641     chi0 = ChiSqr( xdim, zdim, spe, speFit );
642     chi1 = chi0;
643     for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
644         for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
645             step[k] = param[k] / 20.0 ;
646             step[k+1] = param[k+1] / 50.0;
647             step[k+2] = param[k+2] / 50.0;                 
648             step[k+3] = param[k+3] / 20.0;                 
649             step[k+4] = param[k+4] / 20.0;                 
650         } // end for k
651     Int_t out = 0;
652     do{
653         iterNum++;
654             chi0 = chi1;
655             Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
656             reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
657         // EXIT conditions
658         if( reldif < (float) kchilmt ){
659             *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
660             *niter = iterNum;
661             out = 0;
662             break;
663         } // end if
664         if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
665             *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
666             *niter = iterNum;
667             out = 0;
668             break;
669         } // end if
670         if( iterNum > 5*knstop ){
671             *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
672             *niter = iterNum;
673             out = 1;
674             break;
675         } // end if
676         if( iterNum <= knel ) continue;
677         n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
678         if( n > 3 || n == 0 ) continue;
679         schi[n-1] = chi1;
680         for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
681         if( n != 3 ) continue;
682         // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
683         //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
684         for( k=1; k<(npeak*knParam+1); k++ ){
685             Float_t tmp0 = sprm[0][k];
686             Float_t tmp1 = sprm[1][k];
687             Float_t tmp2 = sprm[2][k];
688             a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
689             a += (schi[2]*(tmp0-tmp1));
690             b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
691             b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
692                                              (tmp0*tmp0-tmp1*tmp1)));
693             if ((double)a < 1.0E-6) prmin = 0;
694             else prmin = (float) (0.5*b/a);
695             dp = 5*(tmp2-tmp0);
696             if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
697             param[k] = prmin;
698             step[k]  = dp/10; // OPTIMIZE SEARCH STEP
699         } // end for k
700     } while( kTRUE );
701     delete [] prm0;
702     delete [] step;
703     delete [] schi; 
704     delete [] sprm[0];
705     delete [] sprm[1];
706     delete [] sprm[2];
707     delete [] speFit;
708     return( out );
709 }
710
711 //______________________________________________________________________
712 void AliITSClusterFinderSDD::ResolveClustersE(){
713     // The function to resolve clusters if the clusters overlapping exists
714     Int_t i;
715     static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
716     // get number of clusters for this module
717     Int_t nofClusters = fClusters->GetEntriesFast();
718     nofClusters -= fNclusters;
719     Int_t fNofMaps = fSegmentation->Npz();
720     Int_t fNofAnodes = fNofMaps/2;
721     Int_t fMaxNofSamples = fSegmentation->Npx();
722     Int_t dummy=0;
723     Double_t fTimeStep = fSegmentation->Dpx( dummy );
724     Double_t fSddLength = fSegmentation->Dx();
725     Double_t fDriftSpeed = fResponse->DriftSpeed();
726     Double_t anodePitch = fSegmentation->Dpz( dummy );
727     Float_t n, baseline;
728     fResponse->GetNoiseParam( n, baseline );
729     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
730
731     for( Int_t j=0; j<nofClusters; j++ ){ 
732         // get cluster information
733         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
734         Int_t astart = clusterJ->Astart();
735         Int_t astop = clusterJ->Astop();
736         Int_t tstart = clusterJ->Tstartf();
737         Int_t tstop = clusterJ->Tstopf();
738         Int_t wing = (Int_t)clusterJ->W();
739         if( wing == 2 ){
740             astart += fNofAnodes; 
741             astop  += fNofAnodes;
742         } // end if 
743         Int_t xdim = tstop-tstart+3;
744         Int_t zdim = astop-astart+3;
745         if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
746         Float_t *sp = new Float_t[ xdim*zdim+1 ];
747         memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
748         
749         // make a local map from cluster region
750         for( Int_t ianode=astart; ianode<=astop; ianode++ ){
751             for( Int_t itime=tstart; itime<=tstop; itime++ ){
752                 Float_t fadc = fMap->GetSignal( ianode, itime );
753                 if( fadc > baseline ) fadc -= (Double_t)baseline;
754                 else fadc = 0.;
755                 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
756                 sp[index] = fadc;
757             } // time loop
758         } // anode loop
759         
760         // search peaks on cluster
761         const Int_t kNp = 150;
762         Int_t peakX1[kNp];
763         Int_t peakZ1[kNp];
764         Float_t peakAmp1[kNp];
765         Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
766
767         // if multiple peaks, split cluster
768         if( npeak >= 1 )
769         {
770             //        cout << "npeak " << npeak << endl;
771             //        clusterJ->PrintInfo();
772             Float_t *par = new Float_t[npeak*5+1];
773             par[0] = (Float_t)npeak;                
774             // Initial parameters in cell dimentions
775             Int_t k1 = 1;
776             for( i=0; i<npeak; i++ ){
777                 par[k1] = peakAmp1[i];
778                 par[k1+1] = peakX1[i]; // local time pos. [timebin]
779                 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
780                 if( electronics == 1 ) 
781                     par[k1+3] = 2.; // PASCAL
782                 else if( electronics == 2 ) 
783                     par[k1+3] = 0.7; // tau [timebin]  OLA 
784                 par[k1+4] = .4;    // sigma        [anodepich]
785                 k1+=5;
786             } // end for i                        
787             Int_t niter;
788             Float_t chir;                        
789             NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
790             Float_t peakX[kNp];
791             Float_t peakZ[kNp];
792             Float_t sigma[kNp];
793             Float_t tau[kNp];
794             Float_t peakAmp[kNp];
795             Float_t integral[kNp];
796             //get integrals => charge for each peak
797             PeakFunc( xdim, zdim, par, sp, integral );
798             k1 = 1;
799             for( i=0; i<npeak; i++ ){
800                 peakAmp[i] = par[k1];
801                 peakX[i] = par[k1+1];
802                 peakZ[i] = par[k1+2];
803                 tau[i] = par[k1+3];
804                 sigma[i] = par[k1+4];
805                 k1+=5;
806             } // end for i
807             // calculate parameter for new clusters
808             for( i=0; i<npeak; i++ ){
809                 AliITSRawClusterSDD clusterI( *clusterJ );
810                 Int_t newAnode = peakZ1[i]-1 + astart;
811                 Int_t newiTime = peakX1[i]-1 + tstart;
812                 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
813                 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) 
814                     shift = 0;
815                 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
816                 clusterI.SetPeakPos( peakpos );
817                 clusterI.SetPeakAmpl( peakAmp1[i] );
818                 Float_t newAnodef = peakZ[i] - 0.5 + astart;
819                 Float_t newiTimef = peakX[i] - 1 + tstart;
820                 if( wing == 2 ) newAnodef -= fNofAnodes; 
821                 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
822                 newiTimef *= fTimeStep;
823                 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
824                 if( electronics == 1 ){
825                 //    newiTimef *= 0.999438;    // PASCAL
826                 //    newiTimef += (6./fDriftSpeed - newiTimef/3000.);
827                 }else if( electronics == 2 )
828                     newiTimef *= 0.99714;    // OLA
829                 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
830                 Float_t sign = ( wing == 1 ) ? -1. : 1.;
831                 clusterI.SetX( driftPath*sign * 0.0001 );        
832                 clusterI.SetZ( anodePath * 0.0001 );
833                 clusterI.SetAnode( newAnodef );
834                 clusterI.SetTime( newiTimef );
835                 clusterI.SetAsigma( sigma[i]*anodePitch );
836                 clusterI.SetTsigma( tau[i]*fTimeStep );
837                 clusterI.SetQ( integral[i] );
838                 //    clusterI.PrintInfo();
839                 iTS->AddCluster( 1, &clusterI );
840             } // end for i
841             fClusters->RemoveAt( j );
842             delete [] par;
843         } else {  // something odd
844             cout << " --- Peak not found!!!!  minpeak=" << fMinPeak<< 
845                     " cluster peak=" << clusterJ->PeakAmpl() << 
846                     " module=" << fModule << endl; 
847             clusterJ->PrintInfo(); 
848             cout << " xdim=" << xdim-2 << " zdim=" << zdim-2 << endl << endl;
849         }
850         delete [] sp;
851     } // cluster loop
852     fClusters->Compress();
853 //    fMap->ClearMap(); 
854 }
855
856
857 //________________________________________________________________________
858 void  AliITSClusterFinderSDD::GroupClusters(){
859     // group clusters
860     Int_t dummy=0;
861     Float_t fTimeStep = fSegmentation->Dpx(dummy);
862     // get number of clusters for this module
863     Int_t nofClusters = fClusters->GetEntriesFast();
864     nofClusters -= fNclusters;
865     AliITSRawClusterSDD *clusterI;
866     AliITSRawClusterSDD *clusterJ;
867     Int_t *label = new Int_t [nofClusters];
868     Int_t i,j;
869     for(i=0; i<nofClusters; i++) label[i] = 0;
870     for(i=0; i<nofClusters; i++) { 
871         if(label[i] != 0) continue;
872         for(j=i+1; j<nofClusters; j++) { 
873             if(label[j] != 0) continue;
874             clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
875             clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
876             // 1.3 good
877             if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
878             if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
879             Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
880             if(!pair) continue;
881             //      clusterI->PrintInfo();
882             //      clusterJ->PrintInfo();
883             clusterI->Add(clusterJ);
884             label[j] = 1;
885             fClusters->RemoveAt(j);
886             j=i; // <- Ernesto
887         } // J clusters  
888         label[i] = 1;
889     } // I clusters
890     fClusters->Compress();
891
892     delete [] label;
893     return;
894 }
895 //________________________________________________________________________
896 void AliITSClusterFinderSDD::SelectClusters(){
897     // get number of clusters for this module
898     Int_t nofClusters = fClusters->GetEntriesFast();
899
900     nofClusters -= fNclusters;
901     Int_t i;
902     for(i=0; i<nofClusters; i++) { 
903         AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
904         Int_t rmflg = 0;
905         Float_t wy = 0.;
906         if(clusterI->Anodes() != 0.) {
907             wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
908         } // end if
909         Int_t amp = (Int_t) clusterI->PeakAmpl();
910         Int_t cha = (Int_t) clusterI->Q();
911         if(amp < fMinPeak) rmflg = 1;  
912         if(cha < fMinCharge) rmflg = 1;
913         if(wy < fMinNCells) rmflg = 1;
914         //if(wy > fMaxNCells) rmflg = 1;
915         if(rmflg) fClusters->RemoveAt(i);
916     } // I clusters
917     fClusters->Compress();
918     return;
919 }
920 //__________________________________________________________________________
921 void AliITSClusterFinderSDD::ResolveClusters(){
922     // The function to resolve clusters if the clusters overlapping exists
923 /*    AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
924     // get number of clusters for this module
925     Int_t nofClusters = fClusters->GetEntriesFast();
926     nofClusters -= fNclusters;
927     //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
928     // <<fNclusters<<endl;
929     Int_t fNofMaps = fSegmentation->Npz();
930     Int_t fNofAnodes = fNofMaps/2;
931     Int_t dummy=0;
932     Double_t fTimeStep = fSegmentation->Dpx(dummy);
933     Double_t fSddLength = fSegmentation->Dx();
934     Double_t fDriftSpeed = fResponse->DriftSpeed();
935     Double_t anodePitch = fSegmentation->Dpz(dummy);
936     Float_t n, baseline;
937     fResponse->GetNoiseParam(n,baseline);
938     Float_t dzz_1A = anodePitch * anodePitch / 12;
939     // fill Map of signals
940     fMap->FillMap(); 
941     Int_t j,i,ii,ianode,anode,itime;
942     Int_t wing,astart,astop,tstart,tstop,nanode;
943     Double_t fadc,ClusterTime;
944     Double_t q[400],x[400],z[400]; // digit charges and coordinates
945     for(j=0; j<nofClusters; j++) { 
946         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
947         Int_t ndigits = 0;
948         astart=clusterJ->Astart();
949         astop=clusterJ->Astop();
950         tstart=clusterJ->Tstartf();
951         tstop=clusterJ->Tstopf();
952         nanode=clusterJ->Anodes();  // <- Ernesto
953         wing=(Int_t)clusterJ->W();
954         if(wing == 2) {
955             astart += fNofAnodes; 
956             astop  += fNofAnodes;
957         }  // end if
958         // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
959         //      <<tstart<<","<<tstop<<endl;
960         // clear the digit arrays
961         for(ii=0; ii<400; ii++) { 
962             q[ii] = 0.; 
963             x[ii] = 0.;
964             z[ii] = 0.;
965         } // end for ii
966
967         for(ianode=astart; ianode<=astop; ianode++) { 
968             for(itime=tstart; itime<=tstop; itime++) { 
969                 fadc=fMap->GetSignal(ianode,itime);
970                 if(fadc>baseline) {
971                     fadc-=(Double_t)baseline;
972                     q[ndigits] = fadc*(fTimeStep/160);  // KeV
973                     anode = ianode;
974                     if(wing == 2) anode -= fNofAnodes;
975                     z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
976                     ClusterTime = itime*fTimeStep;
977                     if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
978                     x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
979                     if(wing == 1) x[ndigits] *= (-1);
980                     // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
981                     //     <<fadc<<endl;
982                     // cout<<"wing,anode,ndigits,charge ="<<wing<<","
983                     //      <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
984                     ndigits++;
985                     continue;
986                 } //  end if
987                 fadc=0;
988                 //              cout<<"fadc=0, ndigits ="<<ndigits<<endl;
989             } // time loop
990         } // anode loop
991         //     cout<<"for new cluster ndigits ="<<ndigits<<endl;
992         // Fit cluster to resolve for two separate ones --------------------
993         Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
994         Double_t dxx=0., dzz=0., dxz=0.;
995         Double_t scl = 0., tmp, tga, elps = -1.;
996         Double_t xfit[2], zfit[2], qfit[2];
997         Double_t pitchz = anodePitch*1.e-4;             // cm
998         Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4;  // cm
999         Double_t sigma2;
1000         Int_t nfhits;
1001         Int_t nbins = ndigits;
1002         Int_t separate = 0;
1003         // now, all lengths are in microns
1004         for (ii=0; ii<nbins; ii++) {
1005             qq += q[ii];
1006             xm += x[ii]*q[ii];
1007             zm += z[ii]*q[ii];
1008             xx += x[ii]*x[ii]*q[ii];
1009             zz += z[ii]*z[ii]*q[ii];
1010             xz += x[ii]*z[ii]*q[ii];
1011         } // end for ii
1012         xm /= qq;
1013         zm /= qq;
1014         xx /= qq;
1015         zz /= qq;
1016         xz /= qq;
1017         dxx = xx - xm*xm;
1018         dzz = zz - zm*zm;
1019         dxz = xz - xm*zm;
1020
1021         // shrink the cluster in the time direction proportionaly to the 
1022         // dxx/dzz, which lineary depends from the drift path
1023         // new  Ernesto........         
1024         if( nanode == 1 ){
1025             dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1026             scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1027         } // end if
1028         if( nanode == 2 ){
1029             scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1030         } // end if
1031         if( nanode == 3 ){
1032             scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1033         } // end if
1034         if( nanode > 3 ){
1035             scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1036         } // end if
1037         //   cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1038         //  <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1039         //  old Boris.........
1040         //  tmp=29730. - 585.*fabs(xm/1000.); 
1041         //  scl=TMath::Sqrt(tmp/130000.);
1042    
1043         xm *= scl;
1044         xx *= scl*scl;
1045         xz *= scl;
1046
1047         dxx = xx - xm*xm;
1048         //   dzz = zz - zm*zm;
1049         dxz = xz - xm*zm;
1050         //   cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1051         // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1052         // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
1053   
1054         if (dxx < 0.) dxx=0.;
1055         // the data if no cluster overlapping (the coordunates are in cm) 
1056         nfhits = 1;
1057         xfit[0] = xm*1.e-4;
1058         zfit[0] = zm*1.e-4;
1059         qfit[0] = qq;
1060         //   if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
1061   
1062         if (nbins >= 7) {
1063             if (dxz==0.) tga=0.;
1064             else {
1065                 tmp=0.5*(dzz-dxx)/dxz;
1066                 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : 
1067                                                    tmp+TMath::Sqrt(tmp*tmp+1);
1068             } // end if dxz
1069             elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1070             // change from microns to cm
1071             xm *= 1.e-4; 
1072             zm *= 1.e-4; 
1073             zz *= 1.e-8;
1074             xx *= 1.e-8;
1075             xz *= 1.e-8;
1076             dxz *= 1.e-8;
1077             dxx *= 1.e-8;
1078             dzz *= 1.e-8;
1079             //   cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1080             //  <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1081             for (i=0; i<nbins; i++) {     
1082                 x[i] = x[i] *= scl;
1083                 x[i] = x[i] *= 1.e-4;
1084                 z[i] = z[i] *= 1.e-4;
1085             } // end for i
1086             //     cout<<"!!! elps ="<<elps<<endl;
1087             if (elps < 0.3) { // try to separate hits 
1088                 separate = 1;
1089                 tmp=atan(tga);
1090                 Double_t cosa=cos(tmp),sina=sin(tmp);
1091                 Double_t a1=0., x1=0., xxx=0.;
1092                 for (i=0; i<nbins; i++) {
1093                     tmp=x[i]*cosa + z[i]*sina;
1094                     if (q[i] > a1) {
1095                         a1=q[i];
1096                         x1=tmp;
1097                     } // end if
1098                     xxx += tmp*tmp*tmp*q[i];
1099                 } // end for i
1100                 xxx /= qq;
1101                 Double_t z12=-sina*xm + cosa*zm;
1102                 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1103                 xm=cosa*xm + sina*zm;
1104                 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1105                 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1106                 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1107                 for (i=0; i<33; i++) { // solve a system of equations
1108                     Double_t x1_old=x1, x2_old=x2, r_old=r;
1109                     Double_t c11=x1-x2;
1110                     Double_t c12=r;
1111                     Double_t c13=1-r;
1112                     Double_t c21=x1*x1 - x2*x2;
1113                     Double_t c22=2*r*x1;
1114                     Double_t c23=2*(1-r)*x2;
1115                     Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1116                     Double_t c32=3*r*(sigma2 + x1*x1);
1117                     Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1118                     Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1119                     Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1120                     Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1121                                                          (3*sigma2+x2*x2)-xxx);
1122                     Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1123                                        c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1124                     if (d==0.) {
1125                         cout<<"*********** d=0 ***********\n";
1126                         break;
1127                     } // end if
1128                     Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1129                         f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1130                     Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1131                         c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1132                     Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1133                         c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1134                     r  += dr/d;
1135                     x1 += d1/d;
1136                     x2 += d2/d;
1137                     if (fabs(x1-x1_old) > 0.0001) continue;
1138                     if (fabs(x2-x2_old) > 0.0001) continue;
1139                     if (fabs(r-r_old)/5 > 0.001) continue;
1140                     a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1141                     Double_t a2=a1*(1-r)/r;
1142                     qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + 
1143                                                                 z12*cosa;
1144                     qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + 
1145                                                                 z12*cosa;
1146                     nfhits=2;
1147                     break; // Ok !
1148                 } // end for i
1149                 if (i==33) cerr<<"No more iterations ! "<<endl;
1150             } // end of attempt to separate overlapped clusters
1151         } // end of nbins cut 
1152         if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1153         if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1154                                                      <<elps<<","<<nfhits<<endl;
1155         if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1156         for (i=0; i<nfhits; i++) {
1157             xfit[i] *= (1.e+4/scl);
1158             if(wing == 1) xfit[i] *= (-1);
1159             zfit[i] *= 1.e+4;
1160             //       cout<<" ---------  i,xfiti,zfiti,qfiti ="<<i<<","
1161             // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1162         } // end for i
1163         Int_t ncl = nfhits;
1164         if(nfhits == 1 && separate == 1) {
1165             cout<<"!!!!! no separate"<<endl;
1166             ncl = -2;
1167         }  // end if
1168         if(nfhits == 2) {
1169             cout << "Split cluster: " << endl;
1170             clusterJ->PrintInfo();
1171             cout << " in: " << endl;
1172             for (i=0; i<nfhits; i++) {
1173                 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
1174                                                -1,-1,(Float_t)qfit[i],ncl,0,0,
1175                                                (Float_t)xfit[i],
1176                                                (Float_t)zfit[i],0,0,0,0,
1177                                                 tstart,tstop,astart,astop);
1178             //        AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1179             //                                 -1,(Float_t)qfit[i],0,0,0,
1180             //                                  (Float_t)xfit[i],
1181             //                                  (Float_t)zfit[i],0,0,0,0,
1182             //                                  tstart,tstop,astart,astop,ncl);
1183             // ???????????
1184             // if(wing == 1) xfit[i] *= (-1);
1185             Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1186             Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1187             Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1188             Float_t peakpos = clusterJ->PeakPos();
1189             Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1190             Float_t clusterDriftPath = Time*fDriftSpeed;
1191             clusterDriftPath = fSddLength-clusterDriftPath;
1192             AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1193                                                                  Time,qfit[i],
1194                                                clusterPeakAmplitude,peakpos,
1195                                                0.,0.,clusterDriftPath,
1196                                          clusteranodePath,clusterJ->Samples()/2
1197                                     ,tstart,tstop,0,0,0,astart,astop);
1198             clust->PrintInfo();
1199             iTS->AddCluster(1,clust);
1200             //        cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1201             // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1202             // <<","<<ncl<<endl;
1203             delete clust;
1204         }// nfhits loop
1205         fClusters->RemoveAt(j);
1206     } // if nfhits = 2
1207 } // cluster loop
1208 fClusters->Compress();
1209 fMap->ClearMap(); 
1210 */
1211     return;
1212 }
1213 //______________________________________________________________________
1214 void AliITSClusterFinderSDD::GetRecPoints(){
1215     // get rec points
1216     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1217     // get number of clusters for this module
1218     Int_t nofClusters = fClusters->GetEntriesFast();
1219     nofClusters -= fNclusters;
1220     const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1221     const Float_t kconv = 1.0e-4; 
1222     const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1223     const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1224     Int_t i,j;
1225     Int_t ix, iz, idx=-1;
1226     AliITSdigitSDD *dig=0;
1227     Int_t ndigits=fDigits->GetEntriesFast();
1228     for(i=0; i<nofClusters; i++) { 
1229         AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1230         if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1231         if(clusterI) idx=clusterI->PeakPos();
1232         if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1233         // try peak neighbours - to be done 
1234         if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1235         if(!dig) {
1236             // try cog
1237             fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1238             dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1239             // if null try neighbours
1240             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix); 
1241             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1); 
1242             if (!dig) printf("SDD: cannot assign the track number!\n");
1243         } //  end if !dig
1244         AliITSRecPoint rnew;
1245         rnew.SetX(clusterI->X());
1246         rnew.SetZ(clusterI->Z());
1247         rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
1248         rnew.SetdEdX(kconvGeV*clusterI->Q());
1249         rnew.SetSigmaX2(kRMSx*kRMSx);
1250         rnew.SetSigmaZ2(kRMSz*kRMSz);
1251         if(dig){
1252             rnew.fTracks[0] = dig->fTracks[0];
1253             rnew.fTracks[1] = -3;
1254             rnew.fTracks[2] = -3;
1255             j=1;
1256             while(rnew.fTracks[0]==dig->fTracks[j] &&
1257                   j<dig->GetNTracks()) j++;
1258             if(j<dig->GetNTracks()){
1259                 rnew.fTracks[1] = dig->fTracks[j];
1260                 while(rnew.fTracks[1]==dig->fTracks[j] && 
1261                       j<dig->GetNTracks()) j++;
1262                 if(j<dig->GetNTracks()) rnew.fTracks[2] = dig->fTracks[j];
1263             } // end if
1264         } // end if
1265         //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1266         //         i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1267         //         lusterI->X(),clusterI->Z());
1268         iTS->AddRecPoint(rnew);
1269     } // I clusters
1270 //    fMap->ClearMap();
1271 }
1272 //______________________________________________________________________
1273 void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1274     // find raw clusters
1275     
1276     fModule = mod;
1277     
1278     Find1DClustersE();
1279     GroupClusters();
1280     SelectClusters();
1281     ResolveClustersE();
1282     GetRecPoints();
1283 }
1284 //_______________________________________________________________________
1285 void AliITSClusterFinderSDD::Print(){
1286     // Print SDD cluster finder Parameters
1287
1288     cout << "**************************************************" << endl;
1289     cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1290     cout << "**************************************************" << endl;
1291     cout << "Number of Clusters: " << fNclusters << endl;
1292     cout << "Anode Tolerance: " << fDAnode << endl;
1293     cout << "Time  Tolerance: " << fDTime << endl;
1294     cout << "Time  correction (electronics): " << fTimeCorr << endl;
1295     cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1296     cout << "Minimum Amplitude: " << fMinPeak << endl;
1297     cout << "Minimum Charge: " << fMinCharge << endl;
1298     cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1299     cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1300     cout << "**************************************************" << endl;
1301 }