]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ITS/AliITSNeuralTracker.h
Macro to calculate the resolution and the efficiency of chamber(s) (Nicolas)
[u/mrichter/AliRoot.git] / ITS / AliITSNeuralTracker.h
1 ///////////////////////////////////////////////////////////////////////
2 //
3 // AliITSneuralTracker:
4 //
5 // neural network MFT algorithm
6 // for track finding in ITS stand alone
7 // according to the Denby-Peterson model with adaptments to the
8 // ALICE multiplicity
9 //
10 ///////////////////////////////////////////////////////////////////////
11
12 #ifndef ALIITSNEURALTRACKER_H
13 #define ALIITSNEURALTRACKER_H
14
15 class TObjArray;
16 class TCanvas;
17
18 #include "AliITSNeuralPoint.h"
19
20 class AliITSNeuralTracker : public TObject {
21
22 public:
23
24         AliITSNeuralTracker();
25         virtual ~AliITSNeuralTracker();
26
27         // ******************************************************************************
28         // * Embedded utility class --> >>> NODE <<<
29         // ******************************************************************************
30         // * This class inherits from AliITSNeuralPoint and adds some
31         // * utility pointers for quick path-finding among neurons.
32         // ******************************************************************************
33         class AliITSNode : public AliITSNeuralPoint {
34         public:
35                 AliITSNode():fPosInTree(0),fInnerOf(0),fOuterOf(0),fMatches(0),fNext(0),fPrev(0){}
36                 
37                 AliITSNode(AliITSNeuralPoint *p, Bool_t init = kTRUE): AliITSNeuralPoint(p),fPosInTree(0),fInnerOf(0),fOuterOf(0),fMatches(0),fNext(0),fPrev(0) {
38                         if (init) { fInnerOf = new TObjArray; fOuterOf = new TObjArray; fMatches = new TObjArray;}}
39                 AliITSNode(AliITSRecPoint *p, AliITSgeomMatrix *gm)
40                         : AliITSNeuralPoint(p,gm),fPosInTree(0),fInnerOf(0),fOuterOf(0),fMatches(0),fNext(0),fPrev(0) {}
41
42                 virtual  ~AliITSNode() 
43                         {fInnerOf = fOuterOf = fMatches = 0; fNext = fPrev = 0;}
44                         
45         
46                 
47                 Double_t  ThetaDeg()                    {return GetTheta()*180.0/TMath::Pi();}
48
49                 Int_t     GetSector(Double_t secwidth) const {return (Int_t)(GetPhi()/secwidth);}
50                 Int_t     GetThetaCell()                {return (Int_t)(ThetaDeg());}
51                 
52                 Int_t&     PosInTree() {return fPosInTree;}
53                 
54                 TObjArray*&  InnerOf() {return fInnerOf;}
55                 TObjArray*&  OuterOf() {return fOuterOf;}
56                 TObjArray*&  Matches() {return fMatches;}
57                 
58                 AliITSNode*& Next() {return fNext;}
59                 AliITSNode*& Prev() {return fPrev;}
60                 
61         private:
62                 AliITSNode(const AliITSNode &t);
63                 AliITSNode& operator=(const AliITSNode& t);
64                 Int_t        fPosInTree;  // position in tree of converted points
65                 TObjArray   *fInnerOf; //!
66                 TObjArray   *fOuterOf; //! 
67                 TObjArray   *fMatches; //!
68
69                 AliITSNode  *fNext; //!
70                 AliITSNode  *fPrev; //!
71         };
72         // ******************************************************************************
73
74
75
76         // ******************************************************************************
77         // * Embedded utility class --> >>> NEURON <<<
78         // ******************************************************************************
79         // * Simple class implementing the neural unit.
80         // * Contains the activation and some other pointers
81         // * for purposes similar to the ones in AliITSnode.
82         // ******************************************************************************
83         class AliITSneuron : public TObject {
84         public:
85                 AliITSneuron():fUsed(0),fActivation(0.),fInner(0),fOuter(0),fGain(0) { }
86                 
87                 virtual    ~AliITSneuron() {fInner=fOuter=0;fGain=0;}
88                 
89                 
90
91                 Double_t    Weight(AliITSneuron *n);
92                 void        Add2Gain(AliITSneuron *n, Double_t multconst, Double_t exponent);
93                 
94                 Int_t&       Used() {return fUsed;}
95                 Double_t&    Activation() {return fActivation;}
96                 AliITSNode*& Inner() {return fInner;}
97                 AliITSNode*& Outer() {return fOuter;}
98                 TObjArray*&  Gain()  {return fGain;}
99                 
100         private:
101
102                 AliITSneuron(const AliITSneuron &t); 
103                 AliITSneuron& operator=(const AliITSneuron& t);
104
105                 Int_t             fUsed;        //  utility flag
106                 Double_t          fActivation;  //  Activation value
107                 AliITSNode       *fInner;       //! inner point
108                 AliITSNode       *fOuter;       //! outer point
109                 TObjArray        *fGain;        //! list of sequenced units
110         };
111         // ******************************************************************************
112
113
114
115         // ******************************************************************************
116         // * Embedded utility class --> >>> CONNECTION <<<
117         // ******************************************************************************
118         // * Used to implement the neural weighted connection
119         // * in such a way to speed up the retrieval of the
120         // * links among neuron, for a fast update procedure.
121         // ******************************************************************************
122         class AliITSlink : public TObject {
123         public:
124                 AliITSlink() : fWeight(0.), fLinked(0) { }
125                 
126                 virtual ~AliITSlink()   {fLinked = 0;}
127                                 
128                 
129                 Double_t& Weight() {return fWeight;}
130                 AliITSneuron*& Linked() {return fLinked;}
131                 
132         private:
133                 
134                 AliITSlink(const AliITSlink &t);
135                 AliITSlink& operator=(const AliITSlink& t);
136
137                 Double_t      fWeight;  //  Weight value
138                 AliITSneuron *fLinked;  //! the connected neuron
139         };
140         // ******************************************************************************
141
142
143         // Cut related setters
144
145         void     SetHelixMatchCuts(Double_t *min, Double_t *max);
146         void     SetThetaCuts2D(Double_t *min, Double_t *max);
147         void     SetThetaCuts3D(Double_t *min, Double_t *max);
148         void     SetCurvatureCuts(Int_t n, Double_t *cuts);
149         void     SetVertex(Double_t x, Double_t y, Double_t z)  {fVX=x; fVY=y; fVZ=z;}
150         void     SetPolarInterval(Double_t dtheta) {fPolarInterval=dtheta;}
151
152         // Neural work-flow related setters
153
154         void     SetActThreshold(Double_t val)            {fActMinimum = val;}
155         void     SetWeightExponent(Double_t a)            {fAlignExponent = a;}
156         void     SetGainToCostRatio(Double_t a)           {fGain2CostRatio = a;}
157         void     SetInitInterval(Double_t a, Double_t b)  {fEdge1 = a; fEdge2 = b;}
158         void     SetTemperature(Double_t a)               {fTemperature = a;}
159         void     SetVariationLimit(Double_t a)            {fStabThreshold = a;}
160
161         // Points array arrangement & control
162
163         void     CreateArrayStructure(Int_t nsecs);
164         Int_t    ArrangePoints(TTree *ptstree);
165         void     StoreAbsoluteMatches();
166         Bool_t   PassCurvCut(AliITSNode *p1, AliITSNode *p2, Int_t curvidx, Double_t vx, Double_t vy, Double_t vz);
167         Int_t    PassAllCuts(AliITSNode *p1, AliITSNode *p2, Int_t curvidx, Double_t vx, Double_t vy, Double_t vz);
168         void     PrintPoints();
169         void     PrintMatches(Bool_t stop = kTRUE);
170
171         // Neural tracker work-flow
172
173         void     NeuralTracking(const char* filesave, TCanvas*& display);
174         void     Display(TCanvas*& canvas) const;
175         void     ResetNodes(Int_t isector);
176         Int_t    CreateNeurons(Int_t sector, Int_t curv);  // create neurons
177         Int_t    LinkNeurons() const;          // create neural connections
178         Double_t Activate(AliITSneuron* &n);   // calculates the new neural activation
179         Bool_t   Update();                     // an updating cycle
180         void     CleanNetwork();               // removes deactivated units and resolves competitions
181         Int_t    Save(Int_t sectoridx);        // save found tracks for # sector
182         TTree*   GetChains()                   {return fChains;}
183         void     WriteChains()                 {fChains->Write();}
184
185 private:
186
187         AliITSNeuralTracker(const AliITSNeuralTracker &n);
188         AliITSNeuralTracker& operator=(const AliITSNeuralTracker& t);
189
190         Bool_t       CheckOccupation() const; 
191
192         Int_t        fSectorNum;            //  number of azymuthal sectors
193         Double_t     fSectorWidth;          //  width of an azymuthal sector (in RADIANS) [used internally]
194         Double_t     fPolarInterval;        //  width of a polar sector (in DEGREES)
195
196         Double_t     fThetaCut2DMin[5];     //  lower edge of theta cut range (in DEGREES)
197         Double_t     fThetaCut2DMax[5];     //  upper edge of theta cut range (in DEGREES)
198         Double_t     fThetaCut3DMin[5];     //  lower edge of theta cut range (in DEGREES)
199         Double_t     fThetaCut3DMax[5];     //  upper edge of theta cut range (in DEGREES)
200         Double_t     fHelixMatchCutMin[5];  //  lower edge of helix matching cut range
201         Double_t     fHelixMatchCutMax[5];  //  lower edge of helix matching cut range
202         Int_t        fCurvNum;              //  # of curvature cut steps
203         Double_t    *fCurvCut;              //! value of all curvature cuts
204
205         Bool_t       fStructureOK;          // flag to avoid MANY segfault errors
206
207         Double_t     fVX, fVY, fVZ;         //  estimated vertex coords (for helix matching cut)
208
209         Double_t     fActMinimum;           //  minimum activation to turn 'on' the unit at the end
210         Double_t     fEdge1, fEdge2;        //  initialization interval for activations
211
212         Double_t     fTemperature;          //  logistic function temperature parameter
213         Double_t     fStabThreshold;        //  stability threshold
214         Double_t     fGain2CostRatio;       //  ratio between inhibitory and excitory contributions
215         Double_t     fAlignExponent;        //  alignment-dependent weight term
216
217         Int_t        fPoint[6];             //  Track point in layers
218         TTree       *fChains;               //! Output tree
219
220         TObjArray   *fPoints[6][180];       //! recpoints arranged into sectors for processing
221         TObjArray   *fNeurons;              //! neurons
222
223         ClassDef(AliITSNeuralTracker, 1)
224 };
225
226
227 ////////////////////////////////////////////////////////////////////////////////
228
229 #endif