New plots for trending injector efficiencies (Melinda)
[u/mrichter/AliRoot.git] / ITS / AliITStrackMI.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 //-------------------------------------------------------------------------
17 //                Implementation of the ITS track class
18 //
19 //          Origin: Marian Ivanov, CERN, Marian.Ivanov@cern.ch
20 //     dEdx analysis by: Boris Batyunya, JINR, Boris.Batiounia@cern.ch
21 //-------------------------------------------------------------------------
22
23 /* $Id$ */
24
25 #include <TMatrixD.h>
26
27 #include <TMath.h>
28
29 #include "AliCluster.h"
30 #include "AliESDtrack.h"
31 #include "AliITSgeomTGeo.h"
32 #include "AliITStrackMI.h"
33
34 ClassImp(AliITStrackMI)
35
36 const Int_t kWARN=5;
37
38 //____________________________________________________________________________
39 AliITStrackMI::AliITStrackMI():AliITStrackV2(),
40 fNUsed(0),
41 fNSkipped(0),
42 fNDeadZone(0),                         
43 fReconstructed(kFALSE),
44 fExpQ(40),
45 fChi22(0),
46 fdEdxMismatch(0),
47 fConstrain(kFALSE),
48 fWinner(0),
49 fGoldV0(kFALSE)
50
51 {
52   //constructor
53     for(Int_t i=0; i<AliITSgeomTGeo::GetNLayers(); i++) fClIndex[i]=-1;
54     for(Int_t i=0; i<6; i++) { fNy[i]=0; fNz[i]=0; fNormQ[i]=0; fNormChi2[i]=1000; fDeadZoneProbability[i]=0;}
55     for(Int_t i=0; i<12; i++) {fDy[i]=0; fDz[i]=0; fSigmaY[i]=0; fSigmaZ[i]=0; fSigmaYZ[i]=0; fChi2MIP[i]=0;}
56     fD[0]=0; fD[1]=0;
57     fDnorm[0]=0; fDnorm[1]=0;
58 }
59
60 //____________________________________________________________________________
61 AliITStrackMI::AliITStrackMI(AliESDtrack& t,Bool_t c):
62 AliITStrackV2(t,c),
63 fNUsed(0),
64 fNSkipped(0),
65 fNDeadZone(0),
66 fReconstructed(kFALSE),
67 fExpQ(40),
68 fChi22(0),
69 fdEdxMismatch(0),
70 fConstrain(kFALSE),
71 fWinner(0),
72 fGoldV0(kFALSE) {
73   //------------------------------------------------------------------
74   // Conversion ESD track -> ITS track.
75   // If c==kTRUE, create the ITS track out of the constrained params.
76   //------------------------------------------------------------------
77   for(Int_t i=0; i<6; i++) {fClIndex[i]=-1; fNy[i]=0; fNz[i]=0; fNormQ[i]=0; fNormChi2[i]=1000; fDeadZoneProbability[i]=0;}
78   for(Int_t i=0; i<12; i++) {fDy[i]=0; fDz[i]=0; fSigmaY[i]=0; fSigmaZ[i]=0; fSigmaYZ[i]=0; fChi2MIP[i]=0;}
79   fD[0]=0; fD[1]=0;
80   fDnorm[0]=0; fDnorm[1]=0;
81
82 }
83
84 //____________________________________________________________________________
85 AliITStrackMI::AliITStrackMI(const AliITStrackMI& t) : AliITStrackV2(t),
86 fNUsed(t.fNUsed),
87 fNSkipped(t.fNSkipped),
88 fNDeadZone(t.fNDeadZone),
89 fReconstructed(t.fReconstructed),
90 fExpQ(t.fExpQ),
91 fChi22(t.fChi22),
92 fdEdxMismatch(t.fdEdxMismatch),
93 fConstrain(t.fConstrain),
94 fWinner(t.fWinner),
95 fGoldV0(t.fGoldV0) {
96   //------------------------------------------------------------------
97   //Copy constructor
98   //------------------------------------------------------------------
99   fLab = t.fLab;
100   fFakeRatio = t.fFakeRatio;
101
102   fD[0]=t.fD[0]; fD[1]=t.fD[1];
103   fDnorm[0] = t.fDnorm[0]; fDnorm[1]=t.fDnorm[1];
104   for(Int_t i=0; i<6; i++) {
105     fClIndex[i]= t.fClIndex[i]; fNy[i]=t.fNy[i]; fNz[i]=t.fNz[i]; fNormQ[i]=t.fNormQ[i]; fNormChi2[i] = t.fNormChi2[i];  fDeadZoneProbability[i]=t.fDeadZoneProbability[i];
106   }
107   for(Int_t i=0; i<12; i++) {fDy[i]=t.fDy[i]; fDz[i]=t.fDz[i]; 
108     fSigmaY[i]=t.fSigmaY[i]; fSigmaZ[i]=t.fSigmaZ[i]; fSigmaYZ[i]=t.fSigmaYZ[i]; fChi2MIP[i]=t.fChi2MIP[i];}
109   //memcpy(fDy,t.fDy,6*sizeof(Float_t));
110   //memcpy(fDz,t.fDz,6*sizeof(Float_t));
111   //memcpy(fSigmaY,t.fSigmaY,6*sizeof(Float_t));
112   //memcpy(fSigmaZ,t.fSigmaZ,6*sizeof(Float_t));
113   //memcpy(fChi2MIP,t.fChi2MIP,12*sizeof(Float_t));  
114 }
115
116 //_____________________________________________________________________________
117 Int_t AliITStrackMI::Compare(const TObject *o) const {
118   //-----------------------------------------------------------------
119   // This function compares tracks according to the their curvature
120   //-----------------------------------------------------------------
121   AliITStrackMI *t=(AliITStrackMI*)o;
122   //Double_t co=TMath::Abs(t->Get1Pt());
123   //Double_t c =TMath::Abs(Get1Pt());
124   Double_t co=t->GetSigmaY2()*t->GetSigmaZ2()*(0.5+TMath::Sqrt(0.5*t->fD[0]*t->fD[0]+t->fD[1]*t->fD[1]));
125   Double_t c =GetSigmaY2()*GetSigmaZ2()*(0.5+TMath::Sqrt(0.5*fD[0]*fD[0]+fD[1]*fD[1]));
126   if (c>co) return 1;
127   else if (c<co) return -1;
128   return 0;
129 }
130
131
132 Double_t AliITStrackMI::GetPredictedChi2MI(Double_t cy, Double_t cz, Double_t cerry, Double_t cerrz, Double_t covyz) const
133 {
134   //-----------------------------------------------------------------
135   // This function calculates a predicted chi2 increment.
136   //-----------------------------------------------------------------
137   Double_t p[2]={cy, cz};
138   Double_t cov[3]={cerry*cerry, covyz, cerrz*cerrz};
139   return AliExternalTrackParam::GetPredictedChi2(p,cov);
140 }
141
142 //____________________________________________________________________________
143 Bool_t AliITStrackMI::UpdateMI(const AliCluster *c, Double_t chi2, Int_t index) {
144   //------------------------------------------------------------------
145   //This function updates track parameters
146   //------------------------------------------------------------------
147   Double_t dy=c->GetY() - GetY(), dz=c->GetZ() - GetZ();
148   Int_t layer = (index & 0xf0000000) >> 28;
149   fDy[layer] = dy;
150   fDz[layer] = dz;
151   fSigmaY[layer] = TMath::Sqrt(c->GetSigmaY2()+GetSigmaY2());
152   fSigmaZ[layer] = TMath::Sqrt(c->GetSigmaZ2()+GetSigmaZ2());
153   fSigmaYZ[layer] = c->GetSigmaYZ()+GetSigmaZY();
154
155
156   return Update(c,chi2,index);
157 }
158
159 Int_t AliITStrackMI::GetProlongationFast(Double_t alp, Double_t xk,Double_t &y, Double_t &z)
160 {
161   //-----------------------------------------------------------------------------
162   //get fast prolongation 
163   //-----------------------------------------------------------------------------
164   Double_t ca=TMath::Cos(alp-GetAlpha()), sa=TMath::Sin(alp-GetAlpha());
165   Double_t cf=TMath::Sqrt((1.-GetSnp())*(1.+GetSnp()));  
166   // **** rotation **********************  
167   y= -GetX()*sa + GetY()*ca;
168   // **** translation ******************  
169   Double_t dx = xk- GetX()*ca - GetY()*sa;
170   Double_t f1=GetSnp()*ca - cf*sa, f2=f1 + GetC()*dx;
171   if (TMath::Abs(f2) >= 0.9999) {
172     return 0;
173   }
174   Double_t r1=TMath::Sqrt((1.-f1)*(1.+f1)), r2=TMath::Sqrt((1.-f2)*(1.+f2));  
175   y += dx*(f1+f2)/(r1+r2);
176   z  = GetZ()+dx*(f1+f2)/(f1*r2 + f2*r1)*GetTgl();  
177   return 1;
178 }
179
180
181 Bool_t AliITStrackMI::IsGoldPrimary()
182 {
183   //
184   // Indicates gold pimary track
185   //
186   Bool_t isGold=kTRUE;
187   if (!fConstrain) return kFALSE;                // 
188   if (fNDeadZone+fNDeadZone<5.5) isGold =  kFALSE; // short track
189   //
190   if (fChi2MIP[0]*fChi2MIP[3]>2) isGold = kFALSE; // RS: cut on chi2*interpolated_chi2
191   if (fChi2/Float_t(fN)>2.){
192     if (fChi2MIP[0]+fNUsed>3.5) isGold = kFALSE;    
193   }
194   if (fChi2MIP[2]>4.5) isGold = kFALSE;         //back propagation chi2
195   //
196   if (fDnorm[0]>0&&fDnorm[1]>0){
197     const Float_t distcut2 =2.5*2.5;  //normalize distance  cut 
198     Float_t dist2 = fD[0]*fD[0]/(fDnorm[0]*fDnorm[0])+fD[1]*fD[1]/(fDnorm[1]*fDnorm[1]);  //normalize distance to the vertex (pools)
199     if (dist2>distcut2) isGold = kFALSE;
200   }
201   return isGold;
202 }