Updated version from B. Batyunya and E. Fragiacomo
[u/mrichter/AliRoot.git] / ITS / SSDrecpointTest.C
1 void SSDrecpointTest (Int_t evNumber1=0,Int_t evNumber2=0)
2   //void SSDrecpointTest (Int_t evNumber1=0,Int_t evNumber2=999)
3 {
4 /////////////////////////////////////////////////////////////////////////
5 //   This macro is a small example of a ROOT macro
6 //   illustrating how to read the output of GALICE
7 //   and fill some histograms.
8 //   
9 //     Root > .L anal.C   //this loads the macro in memory
10 //     Root > anal();     //by default process first event   
11 //     Root > anal(2);    //process third event
12 //Begin_Html
13 /*
14 <img src="gif/anal.gif">
15 */
16 //End_Html
17 /////////////////////////////////////////////////////////////////////////
18     
19 // Dynamically link some shared libs
20
21    if (gClassTable->GetID("AliRun") < 0) {
22       gROOT->LoadMacro("loadlibs.C");
23       loadlibs();
24    }
25
26 // Connect the Root Galice file containing Geometry, Kine and Hits
27    TString *str = new TString("galice.root");
28    TFile *file = (TFile*)gROOT->GetListOfFiles()->FindObject(str->Data());
29    if (!file) file = new TFile(str->Data(),"UPDATE");
30
31 // Get AliRun object from file or create it if not on file
32    //   if (!gAlice) {
33      gAlice = (AliRun*)file->Get("gAlice");
34      if (gAlice) printf("AliRun object found on file\n");
35      if (!gAlice) gAlice = new AliRun("gAlice","Alice test program");
36      //}
37
38
39      // -------------- Create ntuples --------------------
40
41      //  ntuple structures:
42
43
44           struct {
45             Int_t lay;
46             Int_t nxP;
47             Int_t nxN;
48             Int_t hitprim;
49             Int_t partcode;
50             Int_t ntrover;
51             Float_t x;
52             Float_t z;
53             Float_t dx;
54             Float_t dz;
55             Float_t pmod;
56           } ntuple_st;
57
58           struct {
59             Int_t lay;
60             Int_t lad;
61             Int_t det;
62             Int_t nxP;
63             Int_t nxN;
64             Int_t noverlaps;
65             Int_t noverprim;
66             Int_t ntrover;
67             Float_t qclP;
68             Float_t qclN;
69             Float_t qrec;
70             Float_t dx;
71             Float_t dz;
72           } ntuple1_st;
73
74           struct {
75             Int_t nxP;
76             Int_t nxN;
77             Float_t x;
78             Float_t z;
79           } ntuple2_st;
80
81           ntuple = new TTree("ntuple","Demo ntuple");
82           ntuple->Branch("lay",&ntuple_st.lay,"lay/I");
83           ntuple->Branch("nxP",&ntuple_st.nxP,"nxP/I");
84           ntuple->Branch("nxN",&ntuple_st.nxN,"nxN/I");
85           ntuple->Branch("hitprim",&ntuple_st.hitprim,"hitprim/I");
86           ntuple->Branch("partcode",&ntuple_st.partcode,"partcode/I");
87           ntuple->Branch("ntrover",&ntuple_st.ntrover,"ntrover/I");
88           ntuple->Branch("x",&ntuple_st.x,"x/F");
89           ntuple->Branch("z",&ntuple_st.z,"z/F");
90           ntuple->Branch("dx",&ntuple_st.dx,"dx/F");
91           ntuple->Branch("dz",&ntuple_st.dz,"dz/F");
92           ntuple->Branch("pmod",&ntuple_st.pmod,"pmod/F");
93
94           ntuple1 = new TTree("ntuple1","Demo ntuple1");
95           ntuple1->Branch("lay",&ntuple1_st.lay,"lay/I");
96           ntuple1->Branch("lad",&ntuple1_st.lad,"lad/I");
97           ntuple1->Branch("det",&ntuple1_st.det,"det/I");
98           ntuple1->Branch("nxP",&ntuple1_st.nxP,"nxP/I");
99           ntuple1->Branch("nxN",&ntuple1_st.nxN,"nxN/I");
100           ntuple1->Branch("qclP",&ntuple1_st.qclP,"qclP/F");
101           ntuple1->Branch("qclN",&ntuple1_st.qclN,"qclN/F");
102           ntuple1->Branch("qrec",&ntuple1_st.qrec,"qrec/F");
103           ntuple1->Branch("dx",&ntuple1_st.dx,"dx/F");
104           ntuple1->Branch("dz",&ntuple1_st.dz,"dz/F");
105           ntuple1->Branch("noverlaps",&ntuple1_st.noverlaps,"noverlaps/I");
106           ntuple1->Branch("noverprim",&ntuple1_st.noverprim,"noverprim/I");
107           ntuple1->Branch("ntrover",&ntuple1_st.ntrover,"ntrover/I");
108
109           ntuple2 = new TTree("ntuple2","Demo ntuple2");
110           ntuple2->Branch("nxP",&ntuple2_st.nxP,"nxP/I");
111           ntuple2->Branch("nxN",&ntuple2_st.nxN,"nxN/I");
112           ntuple2->Branch("x",&ntuple2_st.x,"x/F");
113           ntuple2->Branch("z",&ntuple2_st.z,"z/F");
114
115
116           // Create Histogramms
117
118           TH1F *NxP5 = new TH1F("NxP5","P cluster size for layer 5",20,0.,20.);
119           TH1F *NxN5 = new TH1F("NxN5","N cluster size for layer 5",20,0.,20.);
120           TH1F *NxP6 = new TH1F("NxP6","P cluster size for layer 6",20,0.,20.);
121           TH1F *NxN6 = new TH1F("NxN6","N cluster size for layer 6",20,0.,20.);
122
123           TH1F *Xres5 = new TH1F("Xres5","Xrec and Xgen difference (micr) for layers 5",100,-200.,200.);
124           TH1F *Xres6 = new TH1F("Xres6","Xrec and Xgen difference (micr) for layers 6",100,-200.,200.);
125           TH1F *Zres5 = new TH1F("Zres5","Zrec and Zgen difference (micr) for layers 5",100,-8000.,8000.);
126           TH1F *Zres6 = new TH1F("Zres6","Zrec and Zgen difference (micr) for layers 6",100,-8000.,8000.);
127           TH1F *Path5 = new TH1F("Path5","Path length in Si",100,0.,600.);
128           TH1F *Path6 = new TH1F("Path6","Path length in Si",100,0.,600.);
129           TH1F *dEdX = new TH1F("dEdX","dEdX  (KeV)",100,0.,500.);
130           TH2F *adcPadcN5all = new TH2F("adcPadcN5all","adcP/N correlation for lay5",100,0.,200.,100,0.,200.);
131           TH2F *adcPadcN6all = new TH2F("adcPadcN6all","adcP/N correlation for lay6",100,0.,200.,100,0.,200.);
132           TH2F *adcPadcN5cut = new TH2F("adcPadcN5cut","adcP/N correlation for lay5 and cut of P-N signas",100,0.,200.,100,0.,200.);
133           TH2F *adcPadcN6cut = new TH2F("adcPadcN6cut","adcP/N correlation for lay6 and cut of P-N signals",100,0.,200.,100,0.,200.);
134
135
136    AliITS *ITS  = (AliITS*) gAlice->GetModule("ITS");
137    if (!ITS) { cout << "no ITS" << endl; return; }
138    
139    //AliITSgeom *aliitsgeo = ITS->GetITSgeom();
140    AliITSgeom *geom = ITS->GetITSgeom();
141
142    //Int_t cp[8]={0,0,0,0,0,0,0,0};
143
144    cout << "SSD" << endl;
145
146    AliITSDetType *iDetType=ITS->DetType(2);
147    AliITSsegmentationSSD *seg2=(AliITSsegmentationSSD*)iDetType->GetSegmentationModel();
148    AliITSresponseSSD *res2 = (AliITSresponseSSD*)iDetType->GetResponseModel();
149    //res2->SetSigmaSpread(3.,2.);
150    AliITSsimulationSSD *sim2=new AliITSsimulationSSD(seg2,res2);
151    ITS->SetSimulationModel(2,sim2);
152
153    TClonesArray *dig2  = ITS->DigitsAddress(2);
154    TClonesArray *recp2  = ITS->ClustersAddress(2);
155    //   AliITSClusterFinderSSD *rec2=new AliITSClusterFinderSSD(seg2,dig2,recp2);
156    AliITSClusterFinderSSD *rec2=new AliITSClusterFinderSSD(seg2,dig2);
157    ITS->SetReconstructionModel(2,rec2);
158    // test
159    printf("SSD dimensions %f %f \n",seg2->Dx(),seg2->Dz());
160    printf("SSD nstrips %d %d \n",seg2->Npz(),seg2->Npx());
161
162    
163 //
164 //   Loop over events
165 //
166
167
168    Int_t Nh=0;
169    Int_t Nh1=0;
170    for (int nev=0; nev<= evNumber2; nev++) {
171      Int_t nparticles = 0;
172      nparticles = gAlice->GetEvent(nev);
173      cout << "nev         " << nev <<endl;
174      cout << "nparticles  " << nparticles <<endl;
175      if (nev < evNumber1) continue;
176      if (nparticles <= 0) return;
177      
178      AliITShit *itsHit;
179      AliITSRecPoint *itsPnt = 0;
180      AliITSRawClusterSSD *itsClu = 0;
181      
182      // Get Hit, Cluster & Recpoints Tree Pointers
183
184      TTree *TH = gAlice->TreeH();
185      Int_t nenthit=TH->GetEntries();
186      printf("Found %d entries in the Hit tree (must be one per track per event!)\n",nenthit);
187
188      ITS->GetTreeC(nev);
189      TTree *TC=ITS->TreeC();
190      Int_t nentclu=TC->GetEntries();
191      printf("Found %d entries in the Cluster tree (must be one per module per event!)\n",nentclu);
192
193      TTree *TR = gAlice->TreeR();
194      Int_t nentrec=TR->GetEntries();
195      printf("Found %d entries in the RecPoints tree\n",nentrec);
196
197      // Get Pointers to Clusters & Recpoints TClonesArrays
198
199      TClonesArray *ITSclu  = ITS->ClustersAddress(2); 
200      printf ("ITSclu %p \n",ITSclu);
201      TClonesArray *ITSrec  = ITS->RecPoints(); 
202      printf ("ITSrec %p \n",ITSrec);
203
204      // check recpoints
205
206      //Int_t nbytes = 0;
207      Int_t totpoints = 0;
208      Int_t totclust = 0;
209
210      // check hits
211      
212      Int_t nmodules=0;
213      Int_t mod;
214      
215      ITS->InitModules(-1,nmodules); 
216      ITS->FillModules(nev,0,nmodules,"","");
217      
218      TObjArray *fITSmodules = ITS->GetModules();
219      
220      Int_t first0 = geom->GetStartDet(0);  // SPD
221      Int_t last0 = geom->GetLastDet(0);    // SPD
222      Int_t first1 = geom->GetStartDet(1);  // SDD
223      Int_t last1 = geom->GetLastDet(1);    // SDD
224      Int_t first2 = geom->GetStartDet(2);  // SSD
225      Int_t last2 = geom->GetLastDet(2);    // SSD
226
227      //  For the SPD: first0 = 0, last0 = 239     (240 modules);  
228      //  for the SDD: first1 = 240, last1 = 499   (260 modules);  
229      //  for the SSD: first2 = 500, last2 = 2269  (1770 modules).  
230
231      printf("det type %d first0, last0 %d %d \n",0,first0,last0);
232      printf("det type %d first1, last1 %d %d \n",1,first1,last1);
233      printf("det type %d first2, last2 %d %d \n",2,first2,last2);
234
235      // module loop for the SSD
236      //for (mod=first2; mod<last2+1; mod++) {  // for the "ALL" option
237      for (mod=0; mod<last2-first2+1; mod++) { //for the "SSD" option
238
239        TTree *TR = gAlice->TreeR();
240        Int_t nentrec=TR->GetEntries();
241        //printf("Found %d entries in the RecPoints tree\n",nentrec);
242       
243               //cout << "CLUSTERS: reset" << endl;
244        ITS->ResetClusters();
245        //cout << "CLUSTERS: get" << endl;
246        TC->GetEvent(mod);
247        //cout << "RECPOINTS: reset" << endl;
248        ITS->ResetRecPoints();
249        //cout << "RECPOINTS: get" << endl;
250        //TR->GetEvent(mod+1);   // for the V3.04 AliRoot
251        TR->GetEvent(mod);       // for the V3.05 AliRoot
252
253        Int_t nrecp = ITSrec->GetEntries();
254        totpoints += nrecp;
255        if (nrecp) printf("Found %d rec points for module %d\n",nrecp,mod);
256        //if (!nrecp) continue;
257        Int_t nclusters = ITSclu->GetEntries();
258        totclust += nclusters;
259        //if (nclusters) printf("Found %d clusters for module %d\n",nrecc,mod);
260        
261        AliITSmodule *Mod = (AliITSmodule *)fITSmodules->At(mod+first2);
262        // for the "SSD" option
263
264        //AliITSmodule *Mod = (AliITSmodule *)fITSmodules->At(mod);
265        // for the "ALL" option
266
267        //       printf("Mod: %X\n",Mod);
268        Int_t nhits = Mod->GetNhits();
269        Float_t epart = 0;
270        //cout <<" module,nrecp,nclusters,nhits ="<<mod<<","<<nrecp<<","<<nclusters<<","<<nhits<< endl;
271
272        // ---------------- cluster/hit analysis ---------------------
273
274
275      Float_t pathInSSD = 300.;
276
277        // ---- Recpoint loop
278        for (Int_t pnt=0;pnt<nrecp;pnt++) {
279          itsPnt  = (AliITSRecPoint*)ITSrec->At(pnt);
280          if(!itsPnt) continue;
281          itsClu  = (AliITSRawClusterSSD*)ITSclu->At(pnt);
282          if(!itsClu) continue;
283
284          Int_t nxP = itsClu->fMultiplicity;
285          Int_t nxN = itsClu->fMultiplicityN;
286          Int_t ntrover = itsClu->fNtracks;
287          Float_t qclP = itsClu->fSignalP;     // in ADC
288          Float_t qclN = itsClu->fSignalN;     // in ADC
289          //Float_t dq = qclP - qclN;
290          Float_t qcut = itsClu->fQErr;        // abs(dq)/signal,
291                                               // where signal is
292                                               // max of qclP,qclN        
293          Float_t xrec = 10000*itsPnt->GetX();
294          Float_t zrec = 10000*itsPnt->GetZ();
295          Float_t qrec = itsPnt->GetQ();      // in ADC, maximum from fSignalP/N
296          //Float_t dedx = itsPnt->GetdEdX();   // in KeV (ADC * 2.16)
297          Float_t dedx = itsPnt->fdEdX;   // in KeV (ADC * 2.16)
298          Int_t ii = 0;
299          Int_t tr1 = itsPnt->GetLabel(ii);
300          Int_t ii = 1;
301          Int_t tr2 = itsPnt->GetLabel(ii);
302          Int_t ii = 2;
303          Int_t tr3 = itsPnt->GetLabel(ii);
304          //cout<<"pnt,ntrover,tr1,tr2,tr3 ="<<pnt<<","<<ntrover<<","<<tr1<<","<<tr2<<","<<tr3<<endl;
305          // fill ntuple2
306              ntuple2_st.nxP = nxP;
307              ntuple2_st.nxN = nxN;
308              ntuple2_st.x = xrec/1000;
309              ntuple2_st.z = zrec/1000;
310
311              if(qcut < 0.18) ntuple2->Fill();
312
313
314           Int_t noverlaps = 0;
315           Int_t noverprim = 0;
316           Int_t flaghit = 0;
317           Float_t xhit0 = 1e+7;
318           Float_t yhit0 = 1e+7;
319           Float_t zhit0 = 1e+7;
320
321        // Hit loop
322         for (Int_t hit=0;hit<nhits;hit++) {
323
324          itsHit   = (AliITShit*)Mod->GetHit(hit);
325
326          Int_t flagtrack = 0;
327          Int_t hitlayer = itsHit->GetLayer();
328          Int_t hitladder= itsHit->GetLadder();
329          Int_t hitdet= itsHit->GetDetector();
330
331          Int_t track = itsHit->GetTrack();
332          Int_t dray = 0;
333          Int_t hitstat = itsHit->GetTrackStatus();
334
335           Float_t zhit = 10000*itsHit->GetZL();
336           Float_t xhit = 10000*itsHit->GetXL();
337           Float_t yhit = 10000*itsHit->GetYL();
338           Float_t ehit = 1.0e+6*itsHit->GetIonization(); // hit energy, KeV 
339
340            Int_t parent = itsHit->GetParticle()->GetFirstMother();
341            Int_t partcode = itsHit->GetParticle()->GetPdgCode();
342
343    //  partcode (pdgCode): 11 - e-, 13 - mu-, 22 - gamma, 111 - pi0, 211 - i+
344    //  310 - K0s, 321 - K+, 2112 - n, 2212 - p, 3122 - lambda
345
346            //cout<<"hit,hitstat,track,partcode,parent ="<<hit<<","<<hitstat<<","<<track<<","<<partcode<<","<<parent<<endl;
347            Float_t pmod = itsHit->GetParticle()->P(); // the momentum at the
348                                                       // vertex
349            pmod *= 1.0e+3;
350
351           if(hitstat == 66 && yhit < -146.) {  // entering hit
352             xhit0 = xhit;
353             yhit0 = yhit;
354             zhit0 = zhit;
355           }
356
357           if(hitstat == 66) continue; // Take the not entering hits only 
358
359           if(xhit0 > 9e+6 || zhit0 > 9e+6 || yhit0 > 9e+6) {
360             //cout<<"default xhit0,zhit0,yhit0 ="<<xhit0<<","<<zhit0<<","<<yhit0<<endl;
361             continue;
362           }
363
364
365
366           // Consider the hits only with the track number equaled to one
367           // of the recpoint
368           if((track == tr1) || (track == tr2) || (track == tr3)) flagtrack = 1;
369           //cout<<"!!Ok: track,tr1,tr2,tr3 ="<<track<<","<<tr1<<","<<tr2<<","<<tr3<<endl;
370
371          if(flagtrack == 1) {     // the hit corresponds to the recpoint
372
373            flaghit = 1;
374
375            //Float_t px = itsHit->GetPXL(); // the momenta at this GEANT point
376            //Float_t py = itsHit->GetPYL();
377            //Float_t pz = itsHit->GetPZL();
378
379          Int_t hitprim = 0;
380
381          if(partcode == 11 && pmod < 6) dray = 1; // delta ray is e-
382                                                   // at p < 6 MeV/c
383
384          if((hitstat == 68 || hitstat == 33) && dray == 0)  noverlaps=noverlaps + 1;
385                                                   // overlapps for all hits but
386                                                   // not for delta ray which
387                                                   // also went out from the
388                                                   // detector and returned
389                                                   // again
390
391
392           // x,z resolution colculation
393           if((hitstat == 68 || hitsat == 33) && dray == 0) {
394              Float_t xmed = (xhit + xhit0)/2;
395              Float_t zmed = (zhit + zhit0)/2;
396              Float_t xdif = xmed - xrec;
397              Float_t zdif = zmed - zrec;
398
399             if(parent < 0)  {
400               hitprim = 1; // hitprim=1 for the primery particles
401               noverprim += 1;
402             }
403              pathInSSD = TMath::Sqrt((xhit0-xhit)*(xhit0-xhit)+(yhit0-yhit)*(yhit0-yhit)+(zhit0-zhit)*(zhit0-zhit));
404
405              //cout<<"lay,pnt,hit,xmed,xrec,xdif,zmed,zrec,zdif ="<<hitlayer<<","<<pnt<<","<<hit<<","<<xmed<<","<<xrec<<","<<xdif<<","<<zmed<<","<<zrec<<","<<zdif<<endl;
406
407          // fill ntuple
408              ntuple_st.lay = hitlayer;
409              ntuple_st.nxP = nxP;
410              ntuple_st.nxN = nxN;
411              ntuple_st.hitprim = hitprim;
412              ntuple_st.partcode = partcode;
413              ntuple_st.ntrover = ntrover;
414              ntuple_st.x = xrec/1000;
415              ntuple_st.z = zrec/1000;
416              ntuple_st.dx = xdif;
417              ntuple_st.dz = zdif;
418              ntuple_st.pmod = pmod;
419
420              //if(qcut < 0.18) ntuple->Fill();
421              ntuple->Fill();
422
423              //if(hitlayer == 5 && qcut < 0.18) {
424             if(hitlayer == 5 ) {
425              Xres5->Fill(xdif);
426              Zres5->Fill(zdif);
427              Path5->Fill(pathInSSD);
428             }
429             //if(hitlayer == 6 && qcut < 0.18) {
430             if(hitlayer == 6) {
431              Xres6->Fill(xdif);
432              Zres6->Fill(zdif);
433              Path6->Fill(pathInSSD);
434             }
435           } // hitstat 68/33
436          } else {       // non correspondent hit
437           xhit0 = 1e+7;
438           zhit0 = 1e+7;
439          } // end of hit-recpoint correspondence
440         } // hit loop       
441
442         if(flaghit == 1) {
443
444           if(noverlaps == 0) noverlaps = 1; // cluster contains one or more
445           // delta rays only
446
447           // fill ntuple1
448           ntuple1_st.lay = hitlayer;
449           ntuple1_st.lad = hitladder;
450           ntuple1_st.det = hitdet;
451           ntuple1_st.nxP = nxP;
452           ntuple1_st.nxN = nxN;
453           ntuple1_st.qclP = qclP*300/pathInSSD; 
454           ntuple1_st.qclN = qclN*300/pathInSSD; 
455           ntuple1_st.qrec = qrec*300/pathInSSD; 
456           ntuple1_st.dx = xdif;
457           ntuple1_st.dz = zdif;
458           noverlaps -= 1;
459           noverprim -= 1;
460           ntuple1_st.noverlaps = noverlaps;
461           ntuple1_st.noverprim = noverprim;
462           ntuple1_st.ntrover = ntrover;
463
464           //if(qcut < 0.18) ntuple1->Fill();
465           ntuple1->Fill();
466
467           Float_t de = dedx*300./pathInSSD;
468           dEdX->Fill(de);
469             if(hitlayer == 5 ) {
470              adcPadcN5all->Fill(qclP,qclN);
471             }
472             if(hitlayer == 6 ) {
473              adcPadcN6all->Fill(qclP,qclN);
474             }
475             if(hitlayer == 5 && qcut < 0.18) {
476              adcPadcN5cut->Fill(qclP,qclN);
477              NxP5->Fill(nxP);
478              NxN5->Fill(nxN);
479             }
480             if(hitlayer == 6 && qcut < 0.18) {
481              adcPadcN6cut->Fill(qclP,qclN);
482              NxP6->Fill(nxP);
483              NxN6->Fill(nxN);
484             }
485         } // flaghit = 1
486        } //b.b. recpoint loop
487      } //b.b. module loop
488    } //b.b. evnt loop
489
490    TFile fhistos("SSD_his.root","RECREATE");
491
492    ntuple->Write();
493    ntuple1->Write();
494    ntuple2->Write();
495    NxP5->Write();
496    NxN5->Write();
497    NxP6->Write();
498    NxN6->Write();
499    Xres5->Write();
500    Zres5->Write();
501    Xres6->Write();
502    Zres6->Write();
503    Path5->Write();
504    Path6->Write();
505    adcPadcN5all->Write();
506    adcPadcN6all->Write();
507    adcPadcN5cut->Write();
508    adcPadcN6cut->Write();
509    dEdX->Write();
510
511    fhistos.Close();
512
513    cout<<"!!! Histogramms and ntuples were written"<<endl;
514
515    TCanvas *c1 = new TCanvas("c1","ITS clusters",400,10,600,700);
516    c1->Divide(2,2);
517    c1->cd(1);
518    gPad->SetFillColor(33);
519          Xres5->SetFillColor(42);
520          Xres5->Draw();
521    c1->cd(2);
522    gPad->SetFillColor(33);
523          Zres5->SetFillColor(46);
524          Zres5->Draw();
525    c1->cd(3);
526    gPad->SetFillColor(33);
527          Xres6->SetFillColor(42);
528          Xres6->Draw();
529    c1->cd(4);
530    gPad->SetFillColor(33);
531          Zres6->SetFillColor(46);
532          Zres6->Draw();
533
534    cout<<"END  test for clusters and hits "<<endl;
535
536 }
537
538
539
540
541
542