Geometry framework classes were made independent from the rest of MUON and linked...
[u/mrichter/AliRoot.git] / MUON / AliMUONSlatGeometryBuilder.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 // $Id$
17 //
18 // Class AliMUONSlatGeometryBuilder
19 // -------------------------------
20 // Abstract base class for geometry construction per chamber.
21 //
22 // Author: Eric Dumonteil (dumontei@cea.fr)
23
24
25 // This Builder is designed according to the enveloppe methode. The basic idea is to be able to allow moves 
26 // of the slats on the support panels. 
27 // Those moves can be described with a simple set of parameters. The next step should be now to describe all 
28 // the slats and their places by a unique 
29 // class, which would make the SlatBuilder far more compact since now only three parameters can define a slat 
30 // and its position, like:
31 //   * Bool_t rounded_shape_slat
32 //   * Float_t slat_length
33 //   * Float_t slat_number or Float_t slat_position
34
35 #include <TVirtualMC.h>
36 #include <TGeoMatrix.h>
37 #include <Riostream.h>
38
39 #include "AliRun.h"
40 #include "AliLog.h"
41
42 #include "AliMUONSlatGeometryBuilder.h"
43 #include "AliMUON.h"
44 #include "AliMUONChamber.h"
45 #include "AliMUONGeometryModule.h"
46 #include "AliMUONGeometryEnvelopeStore.h"
47 #include "AliMUONConstants.h"
48
49 ClassImp(AliMUONSlatGeometryBuilder)
50
51
52 //______________________________________________________________________________
53 AliMUONSlatGeometryBuilder::AliMUONSlatGeometryBuilder(AliMUON* muon)
54  : AliMUONVGeometryBuilder("slat.dat",
55                            muon->Chamber(4).GetGeometry(), 
56                            muon->Chamber(5).GetGeometry(), 
57                            muon->Chamber(6).GetGeometry(), 
58                            muon->Chamber(7).GetGeometry(), 
59                            muon->Chamber(8).GetGeometry(), 
60                            muon->Chamber(9).GetGeometry()),
61    fMUON(muon)
62 {
63 // Standard constructor
64
65 }
66
67 //______________________________________________________________________________
68 AliMUONSlatGeometryBuilder::AliMUONSlatGeometryBuilder() 
69  : AliMUONVGeometryBuilder(),
70    fMUON(0)
71 {
72 // Default constructor
73 }
74
75
76 //______________________________________________________________________________
77 AliMUONSlatGeometryBuilder::AliMUONSlatGeometryBuilder(const AliMUONSlatGeometryBuilder& rhs)
78   : AliMUONVGeometryBuilder(rhs)
79 {
80   AliFatal("Copy constructor is not implemented.");
81 }
82
83 //______________________________________________________________________________
84 AliMUONSlatGeometryBuilder::~AliMUONSlatGeometryBuilder() {
85 //
86 }
87
88 //______________________________________________________________________________
89 AliMUONSlatGeometryBuilder& 
90 AliMUONSlatGeometryBuilder::operator = (const AliMUONSlatGeometryBuilder& rhs) 
91 {
92   // check assignement to self
93   if (this == &rhs) return *this;
94
95   AliFatal("Assignment operator is not implemented.");
96     
97   return *this;  
98 }
99
100 //
101 // public methods
102 //
103
104 //______________________________________________________________________________
105 void AliMUONSlatGeometryBuilder::CreateGeometry()
106 {
107   // CreateGeometry is the method containing all the informations concerning Stations 345 geometry.
108   // It includes description and placements of support panels and slats.
109   // The code comes directly from what was written in AliMUONv1.cxx before, with modifications concerning 
110   // the use of Enveloppe method to place the Geant volumes.
111   // Now, few changes would allow the creation of a Slat methode where slat could be described by few parameters, 
112   // and this builder would then be dedicated only to the
113   // placements of the slats. Those modifications could shorten the Station 345 geometry by a non-negligeable factor...
114  
115   Int_t *idtmed = fMUON->GetIdtmed()->GetArray()-1099;
116
117   Float_t angle;
118   Float_t *dum=0;
119
120   // define the id of tracking media:
121   Int_t idAir    = idtmed[1100]; // medium 1
122   Int_t idGas    = idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
123   Int_t idCopper = idtmed[1110];
124   Int_t idG10    = idtmed[1111];
125   Int_t idCarbon = idtmed[1112];
126   Int_t idRoha   = idtmed[1113];
127   Int_t idNomex  = idtmed[1114]; // honey comb
128   Int_t idNoryl  = idtmed[1115]; 
129   Int_t idNomexB = idtmed[1116]; // bulk material 
130
131   // sensitive area: 40*40 cm**2
132   const Float_t kSensLength = 40.; 
133   const Float_t kSensHeight = 40.; 
134   const Float_t kSensWidth  = 0.5; // according to TDR fig 2.120 
135   const Int_t kSensMaterial = idGas;
136   //     const Float_t kYoverlap   = 1.5; 
137
138   // PCB dimensions in cm; width: 30 mum copper   
139   const Float_t kPcbLength  = kSensLength; 
140   const Float_t kPcbHeight  = 58.; // updated Ch. Finck 
141   const Float_t kPcbWidth   = 0.003; 
142   const Int_t kPcbMaterial  = idCopper;
143
144   // Insulating material: 220 mum G10 fiber  glued to pcb  
145   const Float_t kInsuLength = kPcbLength; 
146   const Float_t kInsuHeight = kPcbHeight; 
147   const Float_t kInsuWidth  = 0.022;  // updated Ch. Finck 
148   const Int_t kInsuMaterial = idG10;
149
150   // Carbon fiber panels: 200mum carbon/epoxy skin   
151   const Float_t kCarbonWidth  = 0.020;      
152   const Int_t kCarbonMaterial = idCarbon;
153
154   // Nomex (honey comb) between the two panel carbon skins    
155   const Float_t kNomexLength = kSensLength; 
156   const Float_t kNomexHeight = kSensHeight; 
157   const Float_t kNomexWidth  = 0.8; // updated Ch. Finck 
158   const Int_t kNomexMaterial = idNomex;
159  
160   // Bulk Nomex under panel sandwich Ch. Finck    
161   const Float_t kNomexBWidth  = 0.025; 
162   const Int_t kNomexBMaterial = idNomexB;
163
164   // Panel sandwich 0.02 carbon*2 + 0.8 nomex     
165   const Float_t kPanelLength = kSensLength; 
166   const Float_t kPanelHeight = kSensHeight; 
167   const Float_t kPanelWidth  = 2 * kCarbonWidth + kNomexWidth;
168
169   // spacer around the slat: 2 sticks along length,2 along height  
170   // H: the horizontal ones 
171   const Float_t kHframeLength = kPcbLength; 
172   const Float_t kHframeHeight = 1.95; // updated Ch. Finck 
173   const Float_t kHframeWidth  = kSensWidth; 
174   const Int_t kHframeMaterial = idNoryl;
175
176   // V: the vertical ones; vertical spacers 
177   const Float_t kVframeLength = 2.5; 
178   const Float_t kVframeHeight = kSensHeight + kHframeHeight; 
179   const Float_t kVframeWidth  = kSensWidth;
180   const Int_t kVframeMaterial = idNoryl;
181
182   // B: the horizontal border filled with rohacell: ok Ch. Finck
183   const Float_t kBframeLength = kHframeLength; 
184   const Float_t kBframeHeight = (kPcbHeight - kSensHeight)/2. - kHframeHeight; 
185   const Float_t kBframeWidth  = kHframeWidth;
186   const Int_t kBframeMaterial = idRoha;
187
188   // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper) for electronics
189   const Float_t kNulocLength   = 2.5; 
190   const Float_t kNulocHeight   = kBframeHeight;
191   const Float_t kNulocWidth    = 0.0030 + 0.0014; // equivalent copper width of vetronite; 
192   const Int_t   kNulocMaterial = idCopper;
193
194   // Slat parameters
195   const Float_t kSlatHeight = kPcbHeight; 
196   const Float_t kSlatWidth  = kSensWidth + 2.*(kPcbWidth + kInsuWidth + kPanelWidth 
197                                                + kNomexBWidth); //replaced rohacell with Nomex Ch. Finck 
198   const Int_t   kSlatMaterial = idAir;
199   const Float_t kDslatLength  = -1.25; // position of the slat respect to the beam plane (half vertical spacer) Ch. Finck
200   Float_t zSlat               = AliMUONConstants::DzSlat();// implemented Ch. Finck
201   Float_t dzCh                = AliMUONConstants::DzCh();
202
203   Float_t spar[3];  
204   Int_t i, j;
205   Int_t detElemId;
206
207   // the panel volume contains the nomex
208   Float_t panelpar[3] = { kPanelLength/2., kPanelHeight/2., kPanelWidth/2. }; 
209   Float_t nomexpar[3] = { kNomexLength/2., kNomexHeight/2., kNomexWidth/2. }; 
210   Float_t twidth =  kPanelWidth +  kNomexBWidth; 
211   Float_t nomexbpar[3] = {kNomexLength/2., kNomexHeight/2.,twidth/2. };// bulk nomex 
212
213   // insulating material contains PCB-> gas   
214   twidth = 2*(kInsuWidth + kPcbWidth) + kSensWidth ; 
215   Float_t insupar[3] = {kInsuLength/2., kInsuHeight/2., twidth/2. }; 
216   twidth -= 2 * kInsuWidth; 
217   Float_t pcbpar[3]  = {kPcbLength/2., kPcbHeight/2., twidth/2. }; 
218   Float_t senspar[3] = {kSensLength/2., kSensHeight/2., kSensWidth/2. }; 
219   Float_t theight    = 2 * kHframeHeight + kSensHeight;
220   Float_t hFramepar[3] = {kHframeLength/2., theight/2., kHframeWidth/2.}; 
221   Float_t bFramepar[3] = {kBframeLength/2., kBframeHeight/2., kBframeWidth/2.}; 
222   Float_t vFramepar[3] = {kVframeLength/2., kVframeHeight/2., kVframeWidth/2.};
223   Float_t nulocpar[3]  = {kNulocLength/2.,  kNulocHeight/2.,  kNulocWidth/2.}; 
224
225   Float_t xx;
226   Float_t xxmax = (kBframeLength - kNulocLength)/2.; 
227   Int_t index=0;
228       
229   AliMUONChamber *iChamber, *iChamber1, *iChamber2;
230
231   Int_t* fStations = new Int_t[5];
232   for (Int_t i=0; i<5; i++) fStations[i] = 1;
233   fStations[2] = 1;
234      
235   if (fStations[2])
236     {
237       //********************************************************************
238       //                            Station 3                             **
239       //********************************************************************
240       // indices 1 and 2 for first and second chambers in the station
241       // iChamber (first chamber) kept for other quanties than Z,
242       // assumed to be the same in both chambers
243
244       iChamber = &fMUON->Chamber(4);
245       iChamber1 = iChamber;
246       iChamber2 = &fMUON->Chamber(5);
247      
248       //iChamber1->GetGeometry()->SetDebug(kTRUE);
249       //iChamber2->GetGeometry()->SetDebug(kTRUE);
250  
251       if (gAlice->GetModule("DIPO")) {
252         // if DIPO is preset, the whole station will be placed in DDIP volume
253         iChamber1->GetGeometry()->SetMotherVolume("DDIP");
254         iChamber2->GetGeometry()->SetMotherVolume("DDIP");
255       }
256
257
258       // volumes for slat geometry (xx=5,..,10 chamber id): 
259       // Sxx0 Sxx1 Sxx2 Sxx3  -->   Slat Mother volumes 
260       // SxxG                          -->   Sensitive volume (gas)
261       // SxxP                          -->   PCB (copper) 
262       // SxxI                          -->   Insulator (G10) 
263       // SxxC                          -->   Carbon panel 
264       // SxxN                          -->   Nomex comb
265       // SxxX                          -->   Nomex bulk
266       // SxxH, SxxV                    -->   Horizontal and Vertical frames (Noryl)
267       // SB5x                          -->   Volumes for the 35 cm long PCB
268       // slat dimensions: slat is a MOTHER volume!!! made of air
269
270       // only for chamber 5: slat 1 has a PCB shorter by 5cm!
271
272       Float_t tlength = 35.;
273       Float_t panelpar2[3]  = { tlength/2., panelpar[1],  panelpar[2]}; 
274       Float_t nomexpar2[3]  = { tlength/2., nomexpar[1],  nomexpar[2]}; 
275       Float_t nomexbpar2[3] = { tlength/2., nomexbpar[1],  nomexbpar[2]}; 
276       Float_t insupar2[3]   = { tlength/2., insupar[1],   insupar[2]}; 
277       Float_t pcbpar2[3]    = { tlength/2., pcbpar[1],    pcbpar[2]}; 
278       Float_t senspar2[3]   = { tlength/2., senspar[1],   senspar[2]}; 
279       Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]}; 
280       Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]}; 
281       Float_t *dum=0;
282       Float_t pcbDLength3   = (kPcbLength - tlength);
283
284       const Int_t   kNslats3         = 5;  // number of slats per quadrant
285       const Int_t   kNPCB3[kNslats3] = {4, 4, 4, 3, 2}; // n PCB per slat
286       const Float_t kXpos3[kNslats3] = {0., 0., 0., 0., 0.};//{31., 0., 0., 0., 0.};
287       const Float_t kYpos3[kNslats3] = {0, 37.8, 37.7, 37.3, 33.7};
288       Float_t slatLength3[kNslats3]; 
289
290       // create and position the slat (mother) volumes 
291
292       char idSlatCh5[5];
293       char idSlatCh6[5];
294       Float_t xSlat3;
295       Float_t ySlat3 = 0;
296       Float_t angle = 0.;
297       Float_t spar2[3];
298       for (i = 0; i < kNslats3; i++){
299
300         slatLength3[i] = kPcbLength * kNPCB3[i] + 2.* kVframeLength; 
301         xSlat3 = slatLength3[i]/2. +  kDslatLength + kXpos3[i]; 
302         ySlat3 += kYpos3[i];
303
304         spar[0] = slatLength3[i]/2.; 
305         spar[1] = kSlatHeight/2.;
306         spar[2] = kSlatWidth/2.; 
307         // take away 5 cm from the first slat in chamber 5
308         if (i == 0 || i == 1 || i == 2) { // 1 pcb is shortened by 5cm
309           spar2[0] = spar[0] - pcbDLength3/2.;
310         } else {
311           spar2[0] = spar[0];
312         }
313         spar2[1] = spar[1];
314         spar2[2] = spar[2]; 
315         Float_t dzCh3 = dzCh; 
316         Float_t zSlat3 = (i%2 ==0)? -zSlat : zSlat; // seems not that zSlat3 = zSlat4 & 5 refering to plan PQ7EN345-6 ?
317
318         sprintf(idSlatCh5,"LA%d",kNslats3-1+i);
319         gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
320         detElemId = 500 + i + kNslats3-1;
321         GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(xSlat3, ySlat3, -zSlat3 + dzCh3),
322                                      TGeoRotation("rot1",90,angle,90,90+angle,0,0) );
323
324         sprintf(idSlatCh5,"LA%d",3*kNslats3-2+i);
325         gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
326         detElemId = 550 + i + kNslats3-1;
327         GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(-xSlat3, ySlat3, zSlat3 - dzCh3),
328                                      TGeoRotation("rot2",90,180+angle,90,90+angle,180,0) );
329
330         if (i > 0) { 
331           sprintf(idSlatCh5,"LA%d",kNslats3-1-i);
332           gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
333           detElemId = 500 - i + kNslats3-1;
334           GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(xSlat3, -ySlat3, -zSlat3 + dzCh3), 
335                                        TGeoRotation("rot3",90,angle,90,270+angle,180,0) );
336
337           sprintf(idSlatCh5,"LA%d",3*kNslats3-2-i);
338           gMC->Gsvolu(idSlatCh5,"BOX",kSlatMaterial,spar2,3);
339           detElemId = 550 - i + kNslats3-1;
340           GetEnvelopes(4)->AddEnvelope(idSlatCh5, detElemId, true, TGeoTranslation(-xSlat3, -ySlat3, zSlat3 - dzCh3),
341                                        TGeoRotation("rot4",90,180+angle,90,270+angle,0,0) );
342         }
343
344         sprintf(idSlatCh6,"LB%d",kNslats3-1+i);  
345         gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
346         detElemId = 600 + i  + kNslats3-1;
347         GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(xSlat3, ySlat3, -zSlat3 + dzCh3),
348                                      TGeoRotation("rot5",90,angle,90,90+angle,0,0) );
349         sprintf(idSlatCh6,"LB%d",3*kNslats3-2+i);
350         gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
351         detElemId = 650 + i + kNslats3-1;
352         GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(-xSlat3, ySlat3, zSlat3 - dzCh3),
353                                      TGeoRotation("rot6",90,180+angle,90,90+angle,180,0) );
354
355         if (i > 0) { 
356           sprintf(idSlatCh6,"LB%d",kNslats3-1-i);
357           gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
358           detElemId = 600 - i + kNslats3-1;
359           GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(xSlat3, -ySlat3, -zSlat3 + dzCh3),
360                                        TGeoRotation("rot7",90,angle,90,270+angle,180,0) );
361
362           sprintf(idSlatCh6,"LB%d",3*kNslats3-2-i);
363           gMC->Gsvolu(idSlatCh6,"BOX",kSlatMaterial,spar,3);
364           detElemId = 650 - i + kNslats3-1;
365           GetEnvelopes(5)->AddEnvelope(idSlatCh6, detElemId, true, TGeoTranslation(-xSlat3, -ySlat3, zSlat3 - dzCh3),
366                                        TGeoRotation("rot8",90,180+angle,90,270+angle,0,0) );
367         }
368       }
369      
370       // create the panel volume 
371  
372       gMC->Gsvolu("S05C","BOX",kCarbonMaterial,panelpar,3);
373       gMC->Gsvolu("SB5C","BOX",kCarbonMaterial,panelpar2,3);
374       gMC->Gsvolu("S06C","BOX",kCarbonMaterial,panelpar,3);
375  
376       // create the nomex volume (honey comb)
377
378       gMC->Gsvolu("S05N","BOX",kNomexMaterial,nomexpar,3);
379       gMC->Gsvolu("SB5N","BOX",kNomexMaterial,nomexpar2,3);
380       gMC->Gsvolu("S06N","BOX",kNomexMaterial,nomexpar,3);
381  
382       // create the nomex volume (bulk)
383
384       gMC->Gsvolu("S05X","BOX",kNomexBMaterial,nomexbpar,3);
385       gMC->Gsvolu("SB5X","BOX",kNomexBMaterial,nomexbpar2,3);
386       gMC->Gsvolu("S06X","BOX",kNomexBMaterial,nomexbpar,3);
387
388       // create the insulating material volume 
389
390       gMC->Gsvolu("S05I","BOX",kInsuMaterial,insupar,3);
391       gMC->Gsvolu("SB5I","BOX",kInsuMaterial,insupar2,3);
392       gMC->Gsvolu("S06I","BOX",kInsuMaterial,insupar,3);
393  
394       // create the PCB volume 
395
396       gMC->Gsvolu("S05P","BOX",kPcbMaterial,pcbpar,3);
397       gMC->Gsvolu("SB5P","BOX",kPcbMaterial,pcbpar2,3);
398       gMC->Gsvolu("S06P","BOX",kPcbMaterial,pcbpar,3);
399  
400       // create the sensitive volumes,
401
402       gMC->Gsvolu("S05G","BOX",kSensMaterial,dum,0);
403       gMC->Gsvolu("S06G","BOX",kSensMaterial,dum,0);
404
405       // create the vertical frame volume 
406
407       gMC->Gsvolu("S05V","BOX",kVframeMaterial,vFramepar,3);
408       gMC->Gsvolu("S06V","BOX",kVframeMaterial,vFramepar,3);
409
410       // create the horizontal frame volume 
411
412       gMC->Gsvolu("S05H","BOX",kHframeMaterial,hFramepar,3);
413       gMC->Gsvolu("SB5H","BOX",kHframeMaterial,hFramepar2,3);
414       gMC->Gsvolu("S06H","BOX",kHframeMaterial,hFramepar,3);
415  
416       // create the horizontal border volume 
417
418       gMC->Gsvolu("S05B","BOX",kBframeMaterial,bFramepar,3);
419       gMC->Gsvolu("SB5B","BOX",kBframeMaterial,bFramepar2,3);
420       gMC->Gsvolu("S06B","BOX",kBframeMaterial,bFramepar,3);
421  
422       index = 0; 
423       for (i = 0; i<kNslats3; i++){
424         for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
425
426           if (i == 0 && quadrant == 2) continue;
427           if (i == 0 && quadrant == 4) continue;
428
429           sprintf(idSlatCh5,"LA%d",ConvertSlatNum(i,quadrant,kNslats3-1));
430           sprintf(idSlatCh6,"LB%d",ConvertSlatNum(i,quadrant,kNslats3-1));
431           Float_t xvFrame  = (slatLength3[i] - kVframeLength)/2.;
432           Float_t xvFrame2  = xvFrame;
433
434           if (i == 0 || i == 1 || i == 2) xvFrame2 -= pcbDLength3/2.;
435
436           // position the vertical frames 
437           if ( i > 2) { 
438             GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5, 
439                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
440             GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5, 
441                                                     (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
442             GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6, 
443                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
444             GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6, 
445                                                     (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));   
446           } 
447
448           if (i == 2) {
449             GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5, 
450                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame2,0.,0.));
451             GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5, 
452                                                     (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
453             GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6, 
454                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
455             GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6, 
456                                                     (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
457           }
458
459           if (i == 0 || i == 1) { // no rounded spacer for the moment (Ch. Finck)
460             GetEnvelopes(4)->AddEnvelopeConstituent("S05V", idSlatCh5, 
461                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame2,0.,0.));
462             GetEnvelopes(5)->AddEnvelopeConstituent("S06V", idSlatCh6, 
463                                                     (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
464           }
465
466           // position the panels and the insulating material 
467           for (j = 0; j < kNPCB3[i]; j++){
468             if (i == 1 && j == 0) continue;
469             if (i == 0 && j == 0) continue;
470             index++;
471             Float_t xx = kSensLength * (-kNPCB3[i]/2. + j + 0.5); 
472             Float_t xx2 = xx - pcbDLength3/2.; 
473          
474             Float_t zPanel = spar[2] - nomexbpar[2]; 
475
476             if ( (i == 0 || i == 1 || i == 2) && j == kNPCB3[i]-1) { // 1 pcb is shortened by 5cm 
477               GetEnvelopes(4)->AddEnvelopeConstituent("SB5X", idSlatCh5, 2*index-1,TGeoTranslation(xx2,0.,zPanel));
478               GetEnvelopes(4)->AddEnvelopeConstituent("SB5X", idSlatCh5, 2*index,TGeoTranslation(xx2,0.,-zPanel));
479               GetEnvelopes(4)->AddEnvelopeConstituent("SB5I", idSlatCh5, index,TGeoTranslation(xx2,0.,0.));
480             } else {
481               GetEnvelopes(4)->AddEnvelopeConstituent("S05X", idSlatCh5, 2*index-1,TGeoTranslation(xx,0.,zPanel));
482               GetEnvelopes(4)->AddEnvelopeConstituent("S05X", idSlatCh5, 2*index,TGeoTranslation(xx,0.,-zPanel));
483               GetEnvelopes(4)->AddEnvelopeConstituent("S05I", idSlatCh5, index,TGeoTranslation(xx,0.,0.));
484             }
485             GetEnvelopes(5)->AddEnvelopeConstituent("S06X", idSlatCh6, 2*index-1,TGeoTranslation(xx,0.,zPanel));
486             GetEnvelopes(5)->AddEnvelopeConstituent("S06X", idSlatCh6, 2*index,TGeoTranslation(xx,0.,-zPanel));
487             GetEnvelopes(5)->AddEnvelopeConstituent("S06I", idSlatCh6, index,TGeoTranslation(xx,0.,0.));
488  
489           } 
490         }
491       }
492
493       // position the nomex volume inside the panel volume
494       gMC->Gspos("S05N",1,"S05C",0.,0.,0.,0,"ONLY"); 
495       gMC->Gspos("SB5N",1,"SB5C",0.,0.,0.,0,"ONLY"); 
496       gMC->Gspos("S06N",1,"S06C",0.,0.,0.,0,"ONLY"); 
497   
498       // position panel volume inside the bulk nomex material volume
499       gMC->Gspos("S05C",1,"S05X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
500       gMC->Gspos("SB5C",1,"SB5X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
501       gMC->Gspos("S06C",1,"S06X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
502
503       // position the PCB volume inside the insulating material volume
504       gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY"); 
505       gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY"); 
506       gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY"); 
507   
508       // position the horizontal frame volume inside the PCB volume
509       gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY"); 
510       gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY"); 
511       gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY"); 
512   
513       // position the sensitive volume inside the horizontal frame volume
514       gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3); 
515       gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3); 
516       gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3); 
517   
518  
519       // position the border volumes inside the PCB volume
520       Float_t yborder = ( kPcbHeight - kBframeHeight ) / 2.; 
521       gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY"); 
522       gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY"); 
523       gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY"); 
524       gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY"); 
525
526       gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY"); 
527       gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY"); 
528   
529       // create the NULOC volume and position it in the horizontal frame
530       gMC->Gsvolu("S05E","BOX",kNulocMaterial,nulocpar,3);
531       gMC->Gsvolu("S06E","BOX",kNulocMaterial,nulocpar,3);
532       index = 0;
533       Float_t xxmax2 = xxmax - pcbDLength3/2.;
534       for (xx = -xxmax; xx <= xxmax; xx += 2*kNulocLength) { 
535         index++; 
536         gMC->Gspos("S05E",2*index-1,"S05B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
537         gMC->Gspos("S05E",2*index  ,"S05B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
538         gMC->Gspos("S06E",2*index-1,"S06B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
539         gMC->Gspos("S06E",2*index  ,"S06B", xx, 0., kBframeWidth/2.-  kNulocWidth/2, 0, "ONLY");
540         if (xx > -xxmax2 && xx< xxmax2) {
541           gMC->Gspos("S05E",2*index-1,"SB5B", xx, 0.,-kBframeWidth/2.+ kNulocWidth/2, 0, "ONLY");
542           gMC->Gspos("S05E",2*index  ,"SB5B", xx, 0., kBframeWidth/2.- kNulocWidth/2, 0, "ONLY");
543         }
544       }
545
546       // position the volumes approximating the circular section of the pipe
547       Float_t epsilon = 0.001; 
548       Int_t ndiv = 6;
549       Int_t imax = 1;
550       Double_t divpar[3];
551       Double_t dydiv = kSensHeight/ndiv;
552       Double_t ydiv  = (kSensHeight - dydiv)/2.;
553       Double_t rmin  = 31.5;  // Corrected in sep04 from PQ-LAT-SR2 de CEA-DSM-DAPNIA-SIS/BE ph HARDY 19-Oct-2002 slat 
554       Double_t xdiv  = 0.;
555       Float_t xvol;
556       Float_t yvol;
557
558       for (Int_t idiv = 0; idiv < ndiv; idiv++){ 
559         ydiv += dydiv;
560         xdiv = 0.; 
561         if (ydiv < rmin) xdiv = rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
562         divpar[0] = (kPcbLength - xdiv)/2.; 
563         divpar[1] = dydiv/2. - epsilon;
564         divpar[2] = kSensWidth/2.; 
565         xvol = (kPcbLength + xdiv)/2.;
566         yvol = ydiv; 
567
568         // Volumes close to the beam pipe for slat i=1 so 4 slats per chamber
569         for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
570           sprintf(idSlatCh5,"LA%d",ConvertSlatNum(1,quadrant,kNslats3-1));
571           sprintf(idSlatCh6,"LB%d",ConvertSlatNum(1,quadrant,kNslats3-1));
572
573           GetEnvelopes(4)->AddEnvelopeConstituentParam("S05G", idSlatCh5, quadrant*100+imax+4*idiv+1,
574                                                        TGeoTranslation(xvol-(kPcbLength * kNPCB3[1]/2.),yvol-kPcbLength,0.),3,divpar);
575
576           GetEnvelopes(5)->AddEnvelopeConstituentParam("S06G", idSlatCh6,  quadrant*100+imax+4*idiv+1,
577                                                        TGeoTranslation(xvol-(kPcbLength * kNPCB3[1]/2.),yvol-kPcbLength,0.),3,divpar);
578         }
579       }
580
581       // Volumes close to the beam pipe for slat i=0 so 2 slats per chamber (central slat for station 3)
582       //      Gines Martinez, Subatech sep 04
583       // 9 box volumes are used to define the PCB closed to the beam pipe of the slat 122000SR1 of chamber 5 and 6 of St3
584       // Accordingly to plan PQ-LAT-SR1 of CEA-DSM-DAPNIA-SIS/BE ph HARDY 8-Oct-2002
585       // Rmin = 31.5 cm
586       rmin = 31.5; //in cm  
587       ndiv  = 9; 
588       dydiv = kSensHeight/ndiv;           // Vertical size of the box volume approximating the rounded PCB
589       ydiv  = -kSensHeight/2 + dydiv/2.;   // Initializing vertical position of the volume from bottom
590       xdiv  = 0.;                         // Initializing horizontal position of the box volumes
591
592       for (Int_t idiv = 0; idiv < ndiv; idiv++){ 
593         xdiv = TMath::Abs( rmin * TMath::Sin( TMath::ACos(ydiv/rmin) ) );
594         divpar[0] = (kPcbLength - xdiv)/2.; // Dimension of the box volume
595         divpar[1] = dydiv/2. - epsilon;
596         divpar[2] = kSensWidth/2.; 
597         xvol = (kPcbLength + xdiv)/2.; //2D traslition for positionning of box volume
598         yvol =  ydiv;
599         Int_t side;
600         for (side = 1; side <= 2; side++) {
601           sprintf(idSlatCh5,"LA%d",4);     
602           sprintf(idSlatCh6,"LB%d",4);
603           if(side == 2) {
604             sprintf(idSlatCh5,"LA%d",13);          
605             sprintf(idSlatCh6,"LB%d",13);
606           }        
607           GetEnvelopes(4)->AddEnvelopeConstituentParam("S05G", idSlatCh5,500+side*100+imax+4*idiv+1,
608                                                        TGeoTranslation(xvol-(kPcbLength * kNPCB3[0]/2.),yvol,0.),3,divpar);
609
610           GetEnvelopes(5)->AddEnvelopeConstituentParam("S06G", idSlatCh6,500+side*100+imax+4*idiv+1,
611                                                        TGeoTranslation(xvol-(kPcbLength * kNPCB3[0]/2.),yvol,0.),3,divpar);
612         }
613         ydiv += dydiv; // Going from bottom to top
614       }
615       // cout << "Geometry for Station 3...... done" << endl;   
616     }
617     
618   if (fStations[3]) {
619
620
621     // //********************************************************************
622     // //                            Station 4                             **
623     // //********************************************************************
624     //      // indices 1 and 2 for first and second chambers in the station
625     //      // iChamber (first chamber) kept for other quanties than Z,
626     //      // assumed to be the same in both chambers
627     //      corrected geometry (JP. Cussonneau, Ch. Finck)
628  
629     iChamber = &fMUON->Chamber(6);
630     iChamber1 = iChamber;
631     iChamber2 = &fMUON->Chamber(7);
632
633     const Int_t   kNslats4          = 7;  // number of slats per quadrant
634     const Int_t   kNPCB4[kNslats4]  = {5, 6, 5, 5, 4, 3, 2}; // n PCB per slat
635     const Float_t kXpos4[kNslats4]  = {38.2, 0., 0., 0., 0., 0., 0.};
636     const Float_t kYpos41[kNslats4] = {0., 38.2, 34.40, 36.60, 29.3, 37.0, 28.6};
637     const Float_t kYpos42[kNslats4] = {0., 38.2, 37.85, 37.55, 29.4, 37.0, 28.6};
638
639     Float_t slatLength4[kNslats4];     
640
641     // create and position the slat (mother) volumes 
642
643     char idSlatCh7[5];
644     char idSlatCh8[5];
645     Float_t xSlat4;
646     Float_t ySlat41 = 0;
647     Float_t ySlat42 = 0;
648
649     angle = 0.;
650
651     for (i = 0; i<kNslats4; i++){
652       slatLength4[i] = kPcbLength * kNPCB4[i] + 2. * kVframeLength; 
653       xSlat4 = slatLength4[i]/2. + kDslatLength + kXpos4[i]; 
654       ySlat41 += kYpos41[i];
655       ySlat42 += kYpos42[i];
656
657       spar[0] = slatLength4[i]/2.; 
658       spar[1] = kSlatHeight/2.;
659       spar[2] = kSlatWidth/2.; 
660       Float_t dzCh4 = dzCh;
661       Float_t zSlat4 = (i%2 ==0)? -zSlat : zSlat; 
662
663       sprintf(idSlatCh7,"LC%d",kNslats4-1+i);
664       gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
665       detElemId = 700 + i + kNslats4-1;
666       GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true, TGeoTranslation(xSlat4, ySlat41, -zSlat4 + dzCh4),
667                                    TGeoRotation("rot1",90,angle,90,90+angle,0,0) );
668
669       sprintf(idSlatCh7,"LC%d",3*kNslats4-2+i);
670       gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
671       detElemId = 750 + i + kNslats4-1;
672       GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true, TGeoTranslation(-xSlat4, ySlat41, zSlat4 - dzCh4),
673                                    TGeoRotation("rot2",90,180+angle,90,90+angle,180,0) );
674  
675       if (i > 0) { 
676         sprintf(idSlatCh7,"LC%d",kNslats4-1-i);
677         gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
678         detElemId = 700 - i + kNslats4-1;
679         GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true, TGeoTranslation(xSlat4, -ySlat41, -zSlat4 + dzCh4),
680                                      TGeoRotation("rot3",90,angle,90,270+angle,180,0) );
681
682         sprintf(idSlatCh7,"LC%d",3*kNslats4-2-i);
683         detElemId = 750 - i + kNslats4-1;
684         gMC->Gsvolu(idSlatCh7,"BOX",kSlatMaterial,spar,3);
685         GetEnvelopes(6)->AddEnvelope(idSlatCh7, detElemId, true, 
686                                      TGeoTranslation(-xSlat4, -ySlat41, zSlat4 - dzCh4),
687                                      TGeoRotation("rot4",90,180+angle,90,270+angle,0,0) );
688       }
689
690       sprintf(idSlatCh8,"LD%d",kNslats4-1+i);
691       gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
692       detElemId = 800 + i + kNslats4-1;
693       GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(xSlat4, ySlat42, -zSlat4 + dzCh4),
694                                    TGeoRotation("rot5",90,angle,90,90+angle,0,0) );
695
696       sprintf(idSlatCh8,"LD%d",3*kNslats4-2+i);
697       detElemId = 850 + i + kNslats4-1;
698       gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
699       GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(-xSlat4, ySlat42, zSlat4 - dzCh4),
700                                    TGeoRotation("rot6",90,180+angle,90,90+angle,180,0) );
701       if (i > 0) { 
702         sprintf(idSlatCh8,"LD%d",kNslats4-1-i);
703         detElemId = 800 - i + kNslats4-1;
704         gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
705         GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(xSlat4, -ySlat42, -zSlat4 + dzCh4),
706                                      TGeoRotation("rot7",90,angle,90,270+angle,180,0) );
707         sprintf(idSlatCh8,"LD%d",3*kNslats4-2-i);
708         detElemId = 850 - i + kNslats4-1;
709         gMC->Gsvolu(idSlatCh8,"BOX",kSlatMaterial,spar,3);
710         GetEnvelopes(7)->AddEnvelope(idSlatCh8, detElemId, true, TGeoTranslation(-xSlat4, -ySlat42, zSlat4 - dzCh4),
711                                      TGeoRotation("rot8",90,180+angle,90,270+angle,0,0) );
712       }
713     }
714      
715     // create the panel volume 
716  
717     gMC->Gsvolu("S07C","BOX",kCarbonMaterial,panelpar,3);
718     gMC->Gsvolu("S08C","BOX",kCarbonMaterial,panelpar,3);
719
720     // create the nomex volume 
721
722     gMC->Gsvolu("S07N","BOX",kNomexMaterial,nomexpar,3);
723     gMC->Gsvolu("S08N","BOX",kNomexMaterial,nomexpar,3);
724
725
726     // create the nomex volume (bulk)
727
728     gMC->Gsvolu("S07X","BOX",kNomexBMaterial,nomexbpar,3);
729     gMC->Gsvolu("S08X","BOX",kNomexBMaterial,nomexbpar,3);
730
731     // create the insulating material volume 
732
733     gMC->Gsvolu("S07I","BOX",kInsuMaterial,insupar,3);
734     gMC->Gsvolu("S08I","BOX",kInsuMaterial,insupar,3);
735
736     // create the PCB volume 
737
738     gMC->Gsvolu("S07P","BOX",kPcbMaterial,pcbpar,3);
739     gMC->Gsvolu("S08P","BOX",kPcbMaterial,pcbpar,3);
740  
741     // create the sensitive volumes,
742
743     gMC->Gsvolu("S07G","BOX",kSensMaterial,dum,0);
744     gMC->Gsvolu("S08G","BOX",kSensMaterial,dum,0);
745
746     // create the vertical frame volume 
747
748     gMC->Gsvolu("S07V","BOX",kVframeMaterial,vFramepar,3);
749     gMC->Gsvolu("S08V","BOX",kVframeMaterial,vFramepar,3);
750
751     // create the horizontal frame volume 
752
753     gMC->Gsvolu("S07H","BOX",kHframeMaterial,hFramepar,3);
754     gMC->Gsvolu("S08H","BOX",kHframeMaterial,hFramepar,3);
755
756     // create the horizontal border volume 
757
758     gMC->Gsvolu("S07B","BOX",kBframeMaterial,bFramepar,3);
759     gMC->Gsvolu("S08B","BOX",kBframeMaterial,bFramepar,3);
760
761     index = 0; 
762     for (i = 0; i < kNslats4; i++){
763       for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
764
765         if (i == 0 && quadrant == 2) continue;
766         if (i == 0 && quadrant == 4) continue;
767
768         sprintf(idSlatCh7,"LC%d",ConvertSlatNum(i,quadrant,kNslats4-1));
769         sprintf(idSlatCh8,"LD%d",ConvertSlatNum(i,quadrant,kNslats4-1));
770         Float_t xvFrame  = (slatLength4[i] - kVframeLength)/2.;
771
772         // position the vertical frames 
773         if (i != 1) { 
774           GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
775           GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
776           GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
777           GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
778         } else { // no rounded spacer yet
779           GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
780           // GetEnvelopes(6)->AddEnvelopeConstituent("S07V", idSlatCh7, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
781           GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
782           // GetEnvelopes(7)->AddEnvelopeConstituent("S08V", idSlatCh8, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
783         }
784         // position the panels and the insulating material 
785         for (j = 0; j < kNPCB4[i]; j++){
786           if (i == 1 && j == 0) continue;
787           index++;
788           Float_t xx = kSensLength * (-kNPCB4[i]/2.+j+.5); 
789
790           Float_t zPanel = spar[2] - nomexbpar[2]; 
791           GetEnvelopes(6)->AddEnvelopeConstituent("S07X", idSlatCh7, 2*index-1,TGeoTranslation(xx,0.,zPanel));
792           GetEnvelopes(6)->AddEnvelopeConstituent("S07X", idSlatCh7, 2*index,TGeoTranslation(xx,0.,-zPanel));
793           GetEnvelopes(6)->AddEnvelopeConstituent("S07I", idSlatCh7, index,TGeoTranslation(xx,0.,0.));
794           GetEnvelopes(7)->AddEnvelopeConstituent("S08X", idSlatCh8, 2*index-1,TGeoTranslation(xx,0.,zPanel));
795           GetEnvelopes(7)->AddEnvelopeConstituent("S08X", idSlatCh8, 2*index,TGeoTranslation(xx,0.,-zPanel));
796           GetEnvelopes(7)->AddEnvelopeConstituent("S08I", idSlatCh8, index,TGeoTranslation(xx,0.,0.));
797         }
798       } 
799     }
800
801     // position the nomex volume inside the panel volume
802     gMC->Gspos("S07N",1,"S07C",0.,0.,0.,0,"ONLY"); 
803     gMC->Gspos("S08N",1,"S08C",0.,0.,0.,0,"ONLY"); 
804
805     // position panel volume inside the bulk nomex material volume
806     gMC->Gspos("S07C",1,"S07X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
807     gMC->Gspos("S08C",1,"S08X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
808
809     // position the PCB volume inside the insulating material volume
810     gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY"); 
811     gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY"); 
812
813     // position the horizontal frame volume inside the PCB volume
814     gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY"); 
815     gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY"); 
816
817     // position the sensitive volume inside the horizontal frame volume
818     gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3); 
819     gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3); 
820
821     // position the border volumes inside the PCB volume
822     Float_t yborder = ( kPcbHeight - kBframeHeight ) / 2.; 
823     gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY"); 
824     gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY"); 
825     gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY"); 
826     gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY"); 
827
828     // create the NULOC volume and position it in the horizontal frame
829
830     gMC->Gsvolu("S07E","BOX",kNulocMaterial,nulocpar,3);
831     gMC->Gsvolu("S08E","BOX",kNulocMaterial,nulocpar,3);
832     index = 0;
833     for (xx = -xxmax; xx <= xxmax; xx += 2*kNulocLength) { 
834       index++; 
835       gMC->Gspos("S07E",2*index-1,"S07B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
836       gMC->Gspos("S07E",2*index  ,"S07B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
837       gMC->Gspos("S08E",2*index-1,"S08B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
838       gMC->Gspos("S08E",2*index  ,"S08B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
839     }
840
841     // position the volumes approximating the circular section of the pipe
842
843     Float_t epsilon = 0.001; 
844     Int_t ndiv = 10;
845     Int_t imax = 1; 
846     Double_t divpar[3];
847     Double_t dydiv = kSensHeight/ndiv;
848     Double_t ydiv  = (kSensHeight - dydiv)/2.;
849     Float_t rmin   = 39.5;// Corrected in sep04 from PQ-LAT-NR3 de CEA-DSM-DAPNIA-SIS/BE ph HARDY 19-Oct-2002 slat 
850     Float_t xdiv   = 0.; 
851     Float_t xvol;
852     Float_t yvol;
853
854     for (Int_t idiv = 0; idiv < ndiv; idiv++){ 
855       ydiv += dydiv;
856       xdiv = 0.; 
857       if (ydiv < rmin) xdiv = rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
858       divpar[0] = (kPcbLength - xdiv)/2.; 
859       divpar[1] = dydiv/2. - epsilon;
860       divpar[2] = kSensWidth/2.; 
861       xvol = (kPcbLength + xdiv)/2.;
862       yvol = ydiv ;
863        
864       for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
865         sprintf(idSlatCh7,"LC%d",ConvertSlatNum(1,quadrant,kNslats4-1));
866         sprintf(idSlatCh8,"LD%d",ConvertSlatNum(1,quadrant,kNslats4-1));
867          
868         GetEnvelopes(6)->AddEnvelopeConstituentParam("S07G",idSlatCh7, quadrant*100+imax+4*idiv+1,
869                                                      TGeoTranslation(xvol-kPcbLength * kNPCB4[1]/2.,yvol-kPcbLength,0.),3,divpar);
870          
871         GetEnvelopes(7)->AddEnvelopeConstituentParam("S08G", idSlatCh8, quadrant*100+imax+4*idiv+1,
872                                                      TGeoTranslation(xvol-kPcbLength * kNPCB4[1]/2.,yvol-kPcbLength,0.),3,divpar);
873       }
874     }
875     // cout << "Geometry for Station 4...... done" << endl;
876
877   }
878     
879   if (fStations[4]) {
880       
881
882     // //********************************************************************
883     // //                            Station 5                             **
884     // //********************************************************************
885     //      // indices 1 and 2 for first and second chambers in the station
886     //      // iChamber (first chamber) kept for other quanties than Z,
887     //      // assumed to be the same in both chambers
888     //      corrected geometry (JP. Cussonneau, Ch. Finck)
889
890     iChamber = &fMUON->Chamber(8);
891     iChamber1 = iChamber;
892     iChamber2 = &fMUON->Chamber(9);
893  
894     const Int_t   kNslats5         = 7;  // number of slats per quadrant
895     const Int_t   kNPCB5[kNslats5] = {5, 6, 6, 6, 5, 4, 3}; // n PCB per slat
896     const Float_t kXpos5[kNslats5] = {38.2, 0., 0., 0., 0., 0., 0.};
897     const Float_t kYpos5[kNslats5] = {0., 38.2, 37.9, 37.6, 37.3, 37.05, 36.75};
898     Float_t slatLength5[kNslats5]; 
899
900     // create and position the slat (mother) volumes 
901
902     char idSlatCh9[5];
903     char idSlatCh10[5];
904     Float_t xSlat5;
905     Float_t ySlat5 = 0;
906     angle = 0.;
907
908     for (i = 0; i < kNslats5; i++){
909
910       slatLength5[i] = kPcbLength * kNPCB5[i] + 2.* kVframeLength; 
911       xSlat5 = slatLength5[i]/2. + kDslatLength + kXpos5[i]; 
912       ySlat5 += kYpos5[i];
913
914       spar[0] = slatLength5[i]/2.; 
915       spar[1] = kSlatHeight/2.;
916       spar[2] = kSlatWidth/2.; 
917
918       Float_t dzCh5  = dzCh;
919       Float_t zSlat5 = (i%2 ==0)? -zSlat : zSlat; 
920
921       sprintf(idSlatCh9,"LE%d",kNslats5-1+i);
922       detElemId = 900 + i + kNslats5-1;
923       gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
924       GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(xSlat5, ySlat5, -zSlat5 + dzCh5),
925                                    TGeoRotation("rot1",90,angle,90,90+angle,0,0) );
926
927       sprintf(idSlatCh9,"LE%d",3*kNslats5-2+i);
928       detElemId = 950 + i + kNslats5-1;
929       gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
930       GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(-xSlat5, ySlat5, zSlat5 - dzCh5),
931                                    TGeoRotation("rot2",90,180+angle,90,90+angle,180,0) );
932  
933       if (i > 0) { 
934         sprintf(idSlatCh9,"LE%d",kNslats5-1-i);
935         detElemId = 900 - i + kNslats5-1;
936         gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
937         GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(xSlat5, -ySlat5, -zSlat5 + dzCh5),
938                                      TGeoRotation("rot3",90,angle,90,270+angle,180,0) );
939
940         sprintf(idSlatCh9,"LE%d",3*kNslats5-2-i);
941         detElemId = 950 - i + kNslats5-1;
942         gMC->Gsvolu(idSlatCh9,"BOX",kSlatMaterial,spar,3);
943         GetEnvelopes(8)->AddEnvelope(idSlatCh9, detElemId, true, TGeoTranslation(-xSlat5, -ySlat5, zSlat5 - dzCh5),
944                                      TGeoRotation("rot4",90,180+angle,90,270+angle,0,0)  );
945       }
946
947       sprintf(idSlatCh10,"LF%d",kNslats5-1+i);
948       detElemId = 1000 + i + kNslats5-1;
949       gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
950       GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(xSlat5, ySlat5, -zSlat5 + dzCh5),
951                                    TGeoRotation("rot5",90,angle,90,90+angle,0,0) );
952
953       sprintf(idSlatCh10,"LF%d",3*kNslats5-2+i);
954       detElemId = 1050 + i + kNslats5-1;
955       gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
956       GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(-xSlat5, ySlat5, zSlat5 - dzCh5),
957                                    TGeoRotation("rot6",90,180+angle,90,90+angle,180,0) );
958
959       if (i > 0) { 
960         sprintf(idSlatCh10,"LF%d",kNslats5-1-i);
961         detElemId = 1000 - i + kNslats5-1;
962         gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
963         GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(xSlat5, -ySlat5, -zSlat5 + dzCh5),
964                                      TGeoRotation("rot7",90,angle,90,270+angle,180,0) );
965         sprintf(idSlatCh10,"LF%d",3*kNslats5-2-i);
966         detElemId = 1050 - i + kNslats5-1;
967         gMC->Gsvolu(idSlatCh10,"BOX",kSlatMaterial,spar,3);
968         GetEnvelopes(9)->AddEnvelope(idSlatCh10, detElemId, true, TGeoTranslation(-xSlat5, -ySlat5, zSlat5 - dzCh5),
969                                      TGeoRotation("rot8",90,180+angle,90,270+angle,0,0) );
970       }
971     }
972
973     // create the panel volume 
974  
975     gMC->Gsvolu("S09C","BOX",kCarbonMaterial,panelpar,3);
976     gMC->Gsvolu("S10C","BOX",kCarbonMaterial,panelpar,3);
977
978     // create the nomex volume 
979
980     gMC->Gsvolu("S09N","BOX",kNomexMaterial,nomexpar,3);
981     gMC->Gsvolu("S10N","BOX",kNomexMaterial,nomexpar,3);
982
983
984     // create the nomex volume (bulk)
985
986     gMC->Gsvolu("S09X","BOX",kNomexBMaterial,nomexbpar,3);
987     gMC->Gsvolu("S10X","BOX",kNomexBMaterial,nomexbpar,3);
988
989     // create the insulating material volume 
990
991     gMC->Gsvolu("S09I","BOX",kInsuMaterial,insupar,3);
992     gMC->Gsvolu("S10I","BOX",kInsuMaterial,insupar,3);
993
994     // create the PCB volume 
995
996     gMC->Gsvolu("S09P","BOX",kPcbMaterial,pcbpar,3);
997     gMC->Gsvolu("S10P","BOX",kPcbMaterial,pcbpar,3);
998  
999     // create the sensitive volumes,
1000
1001     gMC->Gsvolu("S09G","BOX",kSensMaterial,dum,0);
1002     gMC->Gsvolu("S10G","BOX",kSensMaterial,dum,0);
1003
1004     // create the vertical frame volume 
1005
1006     gMC->Gsvolu("S09V","BOX",kVframeMaterial,vFramepar,3);
1007     gMC->Gsvolu("S10V","BOX",kVframeMaterial,vFramepar,3);
1008
1009     // create the horizontal frame volume 
1010
1011     gMC->Gsvolu("S09H","BOX",kHframeMaterial,hFramepar,3);
1012     gMC->Gsvolu("S10H","BOX",kHframeMaterial,hFramepar,3);
1013
1014     // create the horizontal border volume 
1015
1016     gMC->Gsvolu("S09B","BOX",kBframeMaterial,bFramepar,3);
1017     gMC->Gsvolu("S10B","BOX",kBframeMaterial,bFramepar,3);
1018
1019     index = 0; 
1020     for (i = 0; i < kNslats5; i++){
1021       for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
1022
1023         if (i == 0 && quadrant == 2) continue;
1024         if (i == 0 && quadrant == 4) continue;
1025
1026         sprintf(idSlatCh9,"LE%d",ConvertSlatNum(i,quadrant,kNslats5-1));
1027         sprintf(idSlatCh10,"LF%d",ConvertSlatNum(i,quadrant,kNslats5-1));
1028         Float_t xvFrame  = (slatLength5[i] - kVframeLength)/2.; // ok
1029
1030         // position the vertical frames (spacers)
1031         if (i != 1) { 
1032           GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1033           GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1034           GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1035           GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1036         } else {  // no rounded spacer yet
1037           GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1038           //       GetEnvelopes(8)->AddEnvelopeConstituent("S09V", idSlatCh9, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1039           GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i-1)*10+quadrant,TGeoTranslation(xvFrame,0.,0.));
1040           //       GetEnvelopes(9)->AddEnvelopeConstituent("S10V", idSlatCh10, (2*i)*10+quadrant,TGeoTranslation(-xvFrame,0.,0.));
1041         }
1042
1043         // position the panels and the insulating material 
1044         for (j = 0; j < kNPCB5[i]; j++){
1045           if (i == 1 && j == 0) continue;
1046           index++;
1047           Float_t xx = kSensLength * (-kNPCB5[i]/2.+j+.5); 
1048
1049           Float_t zPanel = spar[2] - nomexbpar[2]; 
1050           GetEnvelopes(8)->AddEnvelopeConstituent("S09X", idSlatCh9, 2*index-1,TGeoTranslation(xx,0.,zPanel));
1051           GetEnvelopes(8)->AddEnvelopeConstituent("S09X", idSlatCh9, 2*index,TGeoTranslation(xx,0.,-zPanel));
1052           GetEnvelopes(8)->AddEnvelopeConstituent("S09I", idSlatCh9, index,TGeoTranslation(xx,0.,0.));
1053
1054           GetEnvelopes(9)->AddEnvelopeConstituent("S10X", idSlatCh10, 2*index-1,TGeoTranslation(xx,0.,zPanel));
1055           GetEnvelopes(9)->AddEnvelopeConstituent("S10X", idSlatCh10, 2*index,TGeoTranslation(xx,0.,-zPanel));
1056           GetEnvelopes(9)->AddEnvelopeConstituent("S10I", idSlatCh10, index,TGeoTranslation(xx,0.,0.));
1057         }
1058       } 
1059     }
1060
1061     // position the nomex volume inside the panel volume
1062     gMC->Gspos("S09N",1,"S09C",0.,0.,0.,0,"ONLY"); 
1063     gMC->Gspos("S10N",1,"S10C",0.,0.,0.,0,"ONLY"); 
1064
1065     // position panel  volume inside the bulk nomex material volume
1066     gMC->Gspos("S09C",1,"S09X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
1067     gMC->Gspos("S10C",1,"S10X",0.,0.,kNomexBWidth/2.,0,"ONLY"); 
1068
1069     // position the PCB volume inside the insulating material volume
1070     gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY"); 
1071     gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY"); 
1072
1073     // position the horizontal frame volume inside the PCB volume
1074     gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY"); 
1075     gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY"); 
1076
1077     // position the sensitive volume inside the horizontal frame volume
1078     gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3); 
1079     gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3); 
1080
1081     // position the border volumes inside the PCB volume
1082     Float_t yborder = ( kPcbHeight - kBframeHeight ) / 2.; 
1083     gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY"); 
1084     gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY"); 
1085     gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY"); 
1086     gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY"); 
1087
1088     //      // create the NULOC volume and position it in the horizontal frame
1089
1090     gMC->Gsvolu("S09E","BOX",kNulocMaterial,nulocpar,3);
1091     gMC->Gsvolu("S10E","BOX",kNulocMaterial,nulocpar,3);
1092     index = 0;
1093     for (xx = -xxmax; xx <= xxmax; xx += 2*kNulocLength) { 
1094       index++; 
1095       gMC->Gspos("S09E",2*index-1,"S09B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
1096       gMC->Gspos("S09E",2*index  ,"S09B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
1097       gMC->Gspos("S10E",2*index-1,"S10B", xx, 0.,-kBframeWidth/2. + kNulocWidth/2, 0, "ONLY");
1098       gMC->Gspos("S10E",2*index  ,"S10B", xx, 0., kBframeWidth/2. - kNulocWidth/2, 0, "ONLY");
1099     }
1100
1101
1102     // position the volumes approximating the circular section of the pipe
1103     Float_t epsilon = 0.001; 
1104     Int_t ndiv = 10;
1105     Int_t imax = 1; 
1106     Double_t divpar[3];
1107     Double_t dydiv = kSensHeight/ndiv;
1108     Double_t ydiv  = (kSensHeight - dydiv)/2.;
1109     Float_t rmin   = 39.5;
1110     Float_t xdiv   = 0.; 
1111     Float_t xvol;
1112     Float_t yvol; 
1113
1114     for (Int_t idiv = 0; idiv < ndiv; idiv++){ 
1115       ydiv += dydiv;
1116       xdiv = 0.; 
1117       if (ydiv < rmin) xdiv = rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1118       divpar[0] = (kPcbLength - xdiv)/2.; 
1119       divpar[1] = dydiv/2. - epsilon;
1120       divpar[2] = kSensWidth/2.; 
1121       xvol = (kPcbLength + xdiv)/2.;
1122       yvol = ydiv;
1123
1124       for (Int_t quadrant = 1; quadrant <= 4; quadrant++) {
1125         sprintf(idSlatCh9,"LE%d",ConvertSlatNum(1,quadrant,kNslats5-1));
1126         sprintf(idSlatCh10,"LF%d",ConvertSlatNum(1,quadrant,kNslats5-1));
1127
1128         GetEnvelopes(8)->AddEnvelopeConstituentParam("S09G", idSlatCh9, quadrant*100+imax+4*idiv+1,
1129                                                      TGeoTranslation(xvol-kPcbLength * kNPCB5[1]/2.,yvol-kPcbLength,0.),3,divpar);
1130         GetEnvelopes(9)->AddEnvelopeConstituentParam("S10G", idSlatCh10,  quadrant*100+imax+4*idiv+1,
1131                                                      TGeoTranslation(xvol-kPcbLength * kNPCB5[1]/2.,yvol-kPcbLength,0.),3,divpar);
1132       }
1133     }
1134     // cout << "Geometry for Station 5...... done" << endl;
1135
1136   }
1137 }
1138
1139
1140 //______________________________________________________________________________
1141 void AliMUONSlatGeometryBuilder::SetTransformations()
1142 {
1143 // Defines the transformations for the station2 chambers.
1144 // ---
1145
1146   AliMUONChamber* iChamber1 = &fMUON->Chamber(4);
1147   Double_t zpos1 = - iChamber1->Z(); 
1148   iChamber1->GetGeometry()
1149     ->SetTranslation(TGeoTranslation(0., 0., zpos1));
1150
1151   AliMUONChamber* iChamber2 = &fMUON->Chamber(5);
1152   Double_t zpos2 = - iChamber2->Z(); 
1153   iChamber2->GetGeometry()
1154     ->SetTranslation(TGeoTranslation(0., 0., zpos2));
1155
1156  iChamber1 = &fMUON->Chamber(6);
1157   zpos1 = - iChamber1->Z(); 
1158   iChamber1->GetGeometry()
1159     ->SetTranslation(TGeoTranslation(0., 0., zpos1));
1160
1161   iChamber2 = &fMUON->Chamber(7);
1162   zpos2 = - iChamber2->Z(); 
1163   iChamber2->GetGeometry()
1164     ->SetTranslation(TGeoTranslation(0., 0., zpos2));
1165
1166  iChamber1 = &fMUON->Chamber(8);
1167   zpos1 = - iChamber1->Z(); 
1168   iChamber1->GetGeometry()
1169     ->SetTranslation(TGeoTranslation(0., 0., zpos1));
1170
1171   iChamber2 = &fMUON->Chamber(9);
1172   zpos2 = - iChamber2->Z(); 
1173   iChamber2->GetGeometry()
1174     ->SetTranslation(TGeoTranslation(0., 0., zpos2));
1175
1176 }
1177
1178 //______________________________________________________________________________
1179 void AliMUONSlatGeometryBuilder::SetSensitiveVolumes()
1180 {
1181 // Defines the sensitive volumes for slat stations chambers.
1182 // ---
1183
1184   GetGeometry(4)->SetSensitiveVolume("S05G");
1185   GetGeometry(5)->SetSensitiveVolume("S06G");
1186   GetGeometry(6)->SetSensitiveVolume("S07G");
1187   GetGeometry(7)->SetSensitiveVolume("S08G");
1188   GetGeometry(8)->SetSensitiveVolume("S09G");
1189   GetGeometry(9)->SetSensitiveVolume("S10G");
1190 }
1191
1192 //______________________________________________________________________________
1193 Int_t  AliMUONSlatGeometryBuilder::ConvertSlatNum(Int_t numslat, Int_t quadnum, Int_t fspq) const
1194 {
1195 // On-line function establishing the correspondance between numslat (the slat number on a particular quadrant (numslat->0....4 for St3))
1196 // and slatnum (the slat number on the whole panel (slatnum->1...18 for St3)
1197   numslat += 1;
1198   if (quadnum==2 || quadnum==3) 
1199     numslat += fspq;
1200   else
1201     numslat = fspq + 2-numslat;
1202   numslat -= 1;
1203               
1204   if (quadnum==3 || quadnum==4) numslat += 2*fspq+1;
1205
1206   return numslat;
1207 }