1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * SigmaEffect_thetadegrees *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpeateose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 /////////////////////////////////////////////////////////
19 // Manager and hits classes for set:MUON version 0 //
20 /////////////////////////////////////////////////////////
23 #include <TClonesArray.h>
24 #include <TLorentzVector.h>
25 #include <TVirtualMC.h>
26 #include <TParticle.h>
29 #include "AliMUONChamber.h"
30 #include "AliMUONConstants.h"
31 #include "AliMUONFactory.h"
32 #include "AliMUONHit.h"
33 #include "AliMUONTriggerCircuit.h"
34 #include "AliMUONv1.h"
41 //___________________________________________
42 AliMUONv1::AliMUONv1() : AliMUON()
43 ,fTrackMomentum(), fTrackPosition()
48 fStepManagerVersionOld = kFALSE;
50 fStepMaxInActiveGas = 0.6;
55 fAngleEffectNorma= 0x0;
57 //___________________________________________
58 AliMUONv1::AliMUONv1(const char *name, const char *title)
59 : AliMUON(name,title), fTrackMomentum(), fTrackPosition()
62 // By default include all stations
63 fStations = new Int_t[5];
64 for (Int_t i=0; i<5; i++) fStations[i] = 1;
66 AliMUONFactory factory;
67 factory.Build(this, title);
69 fStepManagerVersionOld = kFALSE;
71 fStepMaxInActiveGas = 0.6;
73 fStepSum = new Float_t [AliMUONConstants::NCh()];
74 fDestepSum = new Float_t [AliMUONConstants::NCh()];
75 for (Int_t i=0; i<AliMUONConstants::NCh(); i++) {
79 // Ratio of particle mean eloss with respect MIP's Khalil Boudjemline, sep 2003, PhD.Thesis and Particle Data Book
80 fElossRatio = new TF1("ElossRatio","[0]+[1]*x+[2]*x*x+[3]*x*x*x+[4]*x*x*x*x",0.5,5.);
81 fElossRatio->SetParameter(0,1.02138);
82 fElossRatio->SetParameter(1,-9.54149e-02);
83 fElossRatio->SetParameter(2,+7.83433e-02);
84 fElossRatio->SetParameter(3,-9.98208e-03);
85 fElossRatio->SetParameter(4,+3.83279e-04);
87 // Angle effect in tracking chambers at theta =10 degres as a function of ElossRatio (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) (in micrometers)
88 fAngleEffect10 = new TF1("AngleEffect10","[0]+[1]*x+[2]*x*x",0.5,3.0);
89 fAngleEffect10->SetParameter(0, 1.90691e+02);
90 fAngleEffect10->SetParameter(1,-6.62258e+01);
91 fAngleEffect10->SetParameter(2,+1.28247e+01);
92 // Angle effect: Normalisation form theta=10 degres to theta between 0 and 10 (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis)
93 // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
94 fAngleEffectNorma = new TF1("AngleEffectNorma","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.0,10.0);
95 fAngleEffectNorma->SetParameter(0,4.148);
96 fAngleEffectNorma->SetParameter(1,-6.809e-01);
97 fAngleEffectNorma->SetParameter(2,5.151e-02);
98 fAngleEffectNorma->SetParameter(3,-1.490e-03);
101 //___________________________________________
102 void AliMUONv1::CreateGeometry()
105 // Note: all chambers have the same structure, which could be
106 // easily parameterised. This was intentionally not done in order
107 // to give a starting point for the implementation of the actual
108 // design of each station.
109 Int_t *idtmed = fIdtmed->GetArray()-1099;
111 // Distance between Stations
115 // Float_t pgpar[10];
116 Float_t zpos1, zpos2, zfpos;
117 // Outer excess and inner recess for mother volume radius
118 // with respect to ROuter and RInner
119 Float_t dframep=.001; // Value for station 3 should be 6 ...
120 // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm)
121 // Float_t dframep1=.001;
122 Float_t dframep1 = 11.0;
123 // Bool_t frameCrosses=kFALSE;
124 Bool_t frameCrosses=kTRUE;
127 // Float_t dframez=0.9;
128 // Half of the total thickness of frame crosses (including DAlu)
129 // for each chamber in stations 1 and 2:
130 // 3% of X0 of composite material,
131 // but taken as Aluminium here, with same thickness in number of X0
132 Float_t dframez = 3. * 8.9 / 100;
137 // Rotation matrices in the x-y plane
140 AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.);
142 AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.);
144 AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.);
146 AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.);
148 Float_t phi=2*TMath::Pi()/12/2;
151 // pointer to the current chamber
152 // pointer to the current chamber
153 Int_t idAlu1=idtmed[1103]; // medium 4
154 Int_t idAlu2=idtmed[1104]; // medium 5
155 // Int_t idAlu1=idtmed[1100];
156 // Int_t idAlu2=idtmed[1100];
157 Int_t idAir=idtmed[1100]; // medium 1
158 // Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas
159 Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
162 AliMUONChamber *iChamber, *iChamber1, *iChamber2;
166 //********************************************************************
168 //********************************************************************
170 // indices 1 and 2 for first and second chambers in the station
171 // iChamber (first chamber) kept for other quanties than Z,
172 // assumed to be the same in both chambers
173 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
174 iChamber2 =(AliMUONChamber*) (*fChambers)[1];
175 zpos1=iChamber1->Z();
176 zpos2=iChamber2->Z();
177 dstation = TMath::Abs(zpos2 - zpos1);
178 // DGas decreased from standard one (0.5)
179 iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4);
180 // DAlu increased from standard one (3% of X0),
181 // because more electronics with smaller pads
182 iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.);
183 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
187 tpar[0] = iChamber->RInner()-dframep;
188 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
189 tpar[2] = dstation/5;
191 gMC->Gsvolu("S01M", "TUBE", idAir, tpar, 3);
192 gMC->Gsvolu("S02M", "TUBE", idAir, tpar, 3);
193 gMC->Gspos("S01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
194 gMC->Gspos("S02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
195 // // Aluminium frames
197 // pgpar[0] = 360/12/2;
201 // pgpar[4] = -dframez/2;
202 // pgpar[5] = iChamber->ROuter();
203 // pgpar[6] = pgpar[5]+dframep1;
204 // pgpar[7] = +dframez/2;
205 // pgpar[8] = pgpar[5];
206 // pgpar[9] = pgpar[6];
207 // gMC->Gsvolu("S01O", "PGON", idAlu1, pgpar, 10);
208 // gMC->Gsvolu("S02O", "PGON", idAlu1, pgpar, 10);
209 // gMC->Gspos("S01O",1,"S01M", 0.,0.,-zfpos, 0,"ONLY");
210 // gMC->Gspos("S01O",2,"S01M", 0.,0.,+zfpos, 0,"ONLY");
211 // gMC->Gspos("S02O",1,"S02M", 0.,0.,-zfpos, 0,"ONLY");
212 // gMC->Gspos("S02O",2,"S02M", 0.,0.,+zfpos, 0,"ONLY");
215 // tpar[0]= iChamber->RInner()-dframep1;
216 // tpar[1]= iChamber->RInner();
217 // tpar[2]= dframez/2;
218 // gMC->Gsvolu("S01I", "TUBE", idAlu1, tpar, 3);
219 // gMC->Gsvolu("S02I", "TUBE", idAlu1, tpar, 3);
221 // gMC->Gspos("S01I",1,"S01M", 0.,0.,-zfpos, 0,"ONLY");
222 // gMC->Gspos("S01I",2,"S01M", 0.,0.,+zfpos, 0,"ONLY");
223 // gMC->Gspos("S02I",1,"S02M", 0.,0.,-zfpos, 0,"ONLY");
224 // gMC->Gspos("S02I",2,"S02M", 0.,0.,+zfpos, 0,"ONLY");
229 // security for inside mother volume
230 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
231 * TMath::Cos(TMath::ASin(dframep1 /
232 (iChamber->ROuter() - iChamber->RInner())))
234 bpar[1] = dframep1/2;
235 // total thickness will be (4 * bpar[2]) for each chamber,
236 // which has to be equal to (2 * dframez) - DAlu
237 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
238 gMC->Gsvolu("S01B", "BOX", idAlu1, bpar, 3);
239 gMC->Gsvolu("S02B", "BOX", idAlu1, bpar, 3);
241 gMC->Gspos("S01B",1,"S01M", -iChamber->RInner()-bpar[0] , 0, zfpos,
242 idrotm[1100],"ONLY");
243 gMC->Gspos("S01B",2,"S01M", iChamber->RInner()+bpar[0] , 0, zfpos,
244 idrotm[1100],"ONLY");
245 gMC->Gspos("S01B",3,"S01M", 0, -iChamber->RInner()-bpar[0] , zfpos,
246 idrotm[1101],"ONLY");
247 gMC->Gspos("S01B",4,"S01M", 0, iChamber->RInner()+bpar[0] , zfpos,
248 idrotm[1101],"ONLY");
249 gMC->Gspos("S01B",5,"S01M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
250 idrotm[1100],"ONLY");
251 gMC->Gspos("S01B",6,"S01M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
252 idrotm[1100],"ONLY");
253 gMC->Gspos("S01B",7,"S01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
254 idrotm[1101],"ONLY");
255 gMC->Gspos("S01B",8,"S01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
256 idrotm[1101],"ONLY");
258 gMC->Gspos("S02B",1,"S02M", -iChamber->RInner()-bpar[0] , 0, zfpos,
259 idrotm[1100],"ONLY");
260 gMC->Gspos("S02B",2,"S02M", iChamber->RInner()+bpar[0] , 0, zfpos,
261 idrotm[1100],"ONLY");
262 gMC->Gspos("S02B",3,"S02M", 0, -iChamber->RInner()-bpar[0] , zfpos,
263 idrotm[1101],"ONLY");
264 gMC->Gspos("S02B",4,"S02M", 0, iChamber->RInner()+bpar[0] , zfpos,
265 idrotm[1101],"ONLY");
266 gMC->Gspos("S02B",5,"S02M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
267 idrotm[1100],"ONLY");
268 gMC->Gspos("S02B",6,"S02M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
269 idrotm[1100],"ONLY");
270 gMC->Gspos("S02B",7,"S02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
271 idrotm[1101],"ONLY");
272 gMC->Gspos("S02B",8,"S02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
273 idrotm[1101],"ONLY");
276 // Chamber Material represented by Alu sheet
277 tpar[0]= iChamber->RInner();
278 tpar[1]= iChamber->ROuter();
279 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
280 gMC->Gsvolu("S01A", "TUBE", idAlu2, tpar, 3);
281 gMC->Gsvolu("S02A", "TUBE",idAlu2, tpar, 3);
282 gMC->Gspos("S01A", 1, "S01M", 0., 0., 0., 0, "ONLY");
283 gMC->Gspos("S02A", 1, "S02M", 0., 0., 0., 0, "ONLY");
286 // tpar[2] = iChamber->DGas();
287 tpar[2] = iChamber->DGas()/2;
288 gMC->Gsvolu("S01G", "TUBE", idGas, tpar, 3);
289 gMC->Gsvolu("S02G", "TUBE", idGas, tpar, 3);
290 gMC->Gspos("S01G", 1, "S01A", 0., 0., 0., 0, "ONLY");
291 gMC->Gspos("S02G", 1, "S02A", 0., 0., 0., 0, "ONLY");
293 // Frame Crosses to be placed inside gas
294 // NONE: chambers are sensitive everywhere
295 // if (frameCrosses) {
297 // dr = (iChamber->ROuter() - iChamber->RInner());
298 // bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
299 // bpar[1] = dframep1/2;
300 // bpar[2] = iChamber->DGas()/2;
301 // gMC->Gsvolu("S01F", "BOX", idAlu1, bpar, 3);
302 // gMC->Gsvolu("S02F", "BOX", idAlu1, bpar, 3);
304 // gMC->Gspos("S01F",1,"S01G", +iChamber->RInner()+bpar[0] , 0, 0,
305 // idrotm[1100],"ONLY");
306 // gMC->Gspos("S01F",2,"S01G", -iChamber->RInner()-bpar[0] , 0, 0,
307 // idrotm[1100],"ONLY");
308 // gMC->Gspos("S01F",3,"S01G", 0, +iChamber->RInner()+bpar[0] , 0,
309 // idrotm[1101],"ONLY");
310 // gMC->Gspos("S01F",4,"S01G", 0, -iChamber->RInner()-bpar[0] , 0,
311 // idrotm[1101],"ONLY");
313 // gMC->Gspos("S02F",1,"S02G", +iChamber->RInner()+bpar[0] , 0, 0,
314 // idrotm[1100],"ONLY");
315 // gMC->Gspos("S02F",2,"S02G", -iChamber->RInner()-bpar[0] , 0, 0,
316 // idrotm[1100],"ONLY");
317 // gMC->Gspos("S02F",3,"S02G", 0, +iChamber->RInner()+bpar[0] , 0,
318 // idrotm[1101],"ONLY");
319 // gMC->Gspos("S02F",4,"S02G", 0, -iChamber->RInner()-bpar[0] , 0,
320 // idrotm[1101],"ONLY");
325 //********************************************************************
327 //********************************************************************
328 // indices 1 and 2 for first and second chambers in the station
329 // iChamber (first chamber) kept for other quanties than Z,
330 // assumed to be the same in both chambers
331 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
332 iChamber2 =(AliMUONChamber*) (*fChambers)[3];
333 zpos1=iChamber1->Z();
334 zpos2=iChamber2->Z();
335 dstation = TMath::Abs(zpos2 - zpos1);
336 // DGas and DAlu not changed from standard values
337 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
341 tpar[0] = iChamber->RInner()-dframep;
342 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
343 tpar[2] = dstation/5;
345 gMC->Gsvolu("S03M", "TUBE", idAir, tpar, 3);
346 gMC->Gsvolu("S04M", "TUBE", idAir, tpar, 3);
347 gMC->Gspos("S03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
348 gMC->Gspos("S04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
349 gMC->Gsbool("S03M", "L3DO");
350 gMC->Gsbool("S03M", "L3O1");
351 gMC->Gsbool("S03M", "L3O2");
352 gMC->Gsbool("S04M", "L3DO");
353 gMC->Gsbool("S04M", "L3O1");
354 gMC->Gsbool("S04M", "L3O2");
356 // // Aluminium frames
358 // pgpar[0] = 360/12/2;
362 // pgpar[4] = -dframez/2;
363 // pgpar[5] = iChamber->ROuter();
364 // pgpar[6] = pgpar[5]+dframep;
365 // pgpar[7] = +dframez/2;
366 // pgpar[8] = pgpar[5];
367 // pgpar[9] = pgpar[6];
368 // gMC->Gsvolu("S03O", "PGON", idAlu1, pgpar, 10);
369 // gMC->Gsvolu("S04O", "PGON", idAlu1, pgpar, 10);
370 // gMC->Gspos("S03O",1,"S03M", 0.,0.,-zfpos, 0,"ONLY");
371 // gMC->Gspos("S03O",2,"S03M", 0.,0.,+zfpos, 0,"ONLY");
372 // gMC->Gspos("S04O",1,"S04M", 0.,0.,-zfpos, 0,"ONLY");
373 // gMC->Gspos("S04O",2,"S04M", 0.,0.,+zfpos, 0,"ONLY");
376 // tpar[0]= iChamber->RInner()-dframep;
377 // tpar[1]= iChamber->RInner();
378 // tpar[2]= dframez/2;
379 // gMC->Gsvolu("S03I", "TUBE", idAlu1, tpar, 3);
380 // gMC->Gsvolu("S04I", "TUBE", idAlu1, tpar, 3);
382 // gMC->Gspos("S03I",1,"S03M", 0.,0.,-zfpos, 0,"ONLY");
383 // gMC->Gspos("S03I",2,"S03M", 0.,0.,+zfpos, 0,"ONLY");
384 // gMC->Gspos("S04I",1,"S04M", 0.,0.,-zfpos, 0,"ONLY");
385 // gMC->Gspos("S04I",2,"S04M", 0.,0.,+zfpos, 0,"ONLY");
390 // security for inside mother volume
391 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
392 * TMath::Cos(TMath::ASin(dframep1 /
393 (iChamber->ROuter() - iChamber->RInner())))
395 bpar[1] = dframep1/2;
396 // total thickness will be (4 * bpar[2]) for each chamber,
397 // which has to be equal to (2 * dframez) - DAlu
398 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
399 gMC->Gsvolu("S03B", "BOX", idAlu1, bpar, 3);
400 gMC->Gsvolu("S04B", "BOX", idAlu1, bpar, 3);
402 gMC->Gspos("S03B",1,"S03M", -iChamber->RInner()-bpar[0] , 0, zfpos,
403 idrotm[1100],"ONLY");
404 gMC->Gspos("S03B",2,"S03M", +iChamber->RInner()+bpar[0] , 0, zfpos,
405 idrotm[1100],"ONLY");
406 gMC->Gspos("S03B",3,"S03M", 0, -iChamber->RInner()-bpar[0] , zfpos,
407 idrotm[1101],"ONLY");
408 gMC->Gspos("S03B",4,"S03M", 0, +iChamber->RInner()+bpar[0] , zfpos,
409 idrotm[1101],"ONLY");
410 gMC->Gspos("S03B",5,"S03M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
411 idrotm[1100],"ONLY");
412 gMC->Gspos("S03B",6,"S03M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
413 idrotm[1100],"ONLY");
414 gMC->Gspos("S03B",7,"S03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
415 idrotm[1101],"ONLY");
416 gMC->Gspos("S03B",8,"S03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
417 idrotm[1101],"ONLY");
419 gMC->Gspos("S04B",1,"S04M", -iChamber->RInner()-bpar[0] , 0, zfpos,
420 idrotm[1100],"ONLY");
421 gMC->Gspos("S04B",2,"S04M", +iChamber->RInner()+bpar[0] , 0, zfpos,
422 idrotm[1100],"ONLY");
423 gMC->Gspos("S04B",3,"S04M", 0, -iChamber->RInner()-bpar[0] , zfpos,
424 idrotm[1101],"ONLY");
425 gMC->Gspos("S04B",4,"S04M", 0, +iChamber->RInner()+bpar[0] , zfpos,
426 idrotm[1101],"ONLY");
427 gMC->Gspos("S04B",5,"S04M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
428 idrotm[1100],"ONLY");
429 gMC->Gspos("S04B",6,"S04M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
430 idrotm[1100],"ONLY");
431 gMC->Gspos("S04B",7,"S04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
432 idrotm[1101],"ONLY");
433 gMC->Gspos("S04B",8,"S04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
434 idrotm[1101],"ONLY");
437 // Chamber Material represented by Alu sheet
438 tpar[0]= iChamber->RInner();
439 tpar[1]= iChamber->ROuter();
440 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
441 gMC->Gsvolu("S03A", "TUBE", idAlu2, tpar, 3);
442 gMC->Gsvolu("S04A", "TUBE", idAlu2, tpar, 3);
443 gMC->Gspos("S03A", 1, "S03M", 0., 0., 0., 0, "ONLY");
444 gMC->Gspos("S04A", 1, "S04M", 0., 0., 0., 0, "ONLY");
447 // tpar[2] = iChamber->DGas();
448 tpar[2] = iChamber->DGas()/2;
449 gMC->Gsvolu("S03G", "TUBE", idGas, tpar, 3);
450 gMC->Gsvolu("S04G", "TUBE", idGas, tpar, 3);
451 gMC->Gspos("S03G", 1, "S03A", 0., 0., 0., 0, "ONLY");
452 gMC->Gspos("S04G", 1, "S04A", 0., 0., 0., 0, "ONLY");
454 // Frame Crosses to be placed inside gas
455 // NONE: chambers are sensitive everywhere
456 // if (frameCrosses) {
458 // dr = (iChamber->ROuter() - iChamber->RInner());
459 // bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
460 // bpar[1] = dframep1/2;
461 // bpar[2] = iChamber->DGas()/2;
462 // gMC->Gsvolu("S03F", "BOX", idAlu1, bpar, 3);
463 // gMC->Gsvolu("S04F", "BOX", idAlu1, bpar, 3);
465 // gMC->Gspos("S03F",1,"S03G", +iChamber->RInner()+bpar[0] , 0, 0,
466 // idrotm[1100],"ONLY");
467 // gMC->Gspos("S03F",2,"S03G", -iChamber->RInner()-bpar[0] , 0, 0,
468 // idrotm[1100],"ONLY");
469 // gMC->Gspos("S03F",3,"S03G", 0, +iChamber->RInner()+bpar[0] , 0,
470 // idrotm[1101],"ONLY");
471 // gMC->Gspos("S03F",4,"S03G", 0, -iChamber->RInner()-bpar[0] , 0,
472 // idrotm[1101],"ONLY");
474 // gMC->Gspos("S04F",1,"S04G", +iChamber->RInner()+bpar[0] , 0, 0,
475 // idrotm[1100],"ONLY");
476 // gMC->Gspos("S04F",2,"S04G", -iChamber->RInner()-bpar[0] , 0, 0,
477 // idrotm[1100],"ONLY");
478 // gMC->Gspos("S04F",3,"S04G", 0, +iChamber->RInner()+bpar[0] , 0,
479 // idrotm[1101],"ONLY");
480 // gMC->Gspos("S04F",4,"S04G", 0, -iChamber->RInner()-bpar[0] , 0,
481 // idrotm[1101],"ONLY");
484 // define the id of tracking media:
485 Int_t idCopper = idtmed[1110];
486 Int_t idGlass = idtmed[1111];
487 Int_t idCarbon = idtmed[1112];
488 Int_t idRoha = idtmed[1113];
490 // sensitive area: 40*40 cm**2
491 const Float_t ksensLength = 40.;
492 const Float_t ksensHeight = 40.;
493 const Float_t ksensWidth = 0.5; // according to TDR fig 2.120
494 const Int_t ksensMaterial = idGas;
495 const Float_t kyOverlap = 1.5;
497 // PCB dimensions in cm; width: 30 mum copper
498 const Float_t kpcbLength = ksensLength;
499 const Float_t kpcbHeight = 60.;
500 const Float_t kpcbWidth = 0.003;
501 const Int_t kpcbMaterial= idCopper;
503 // Insulating material: 200 mum glass fiber glued to pcb
504 const Float_t kinsuLength = kpcbLength;
505 const Float_t kinsuHeight = kpcbHeight;
506 const Float_t kinsuWidth = 0.020;
507 const Int_t kinsuMaterial = idGlass;
509 // Carbon fiber panels: 200mum carbon/epoxy skin
510 const Float_t kpanelLength = ksensLength;
511 const Float_t kpanelHeight = ksensHeight;
512 const Float_t kpanelWidth = 0.020;
513 const Int_t kpanelMaterial = idCarbon;
515 // rohacell between the two carbon panels
516 const Float_t krohaLength = ksensLength;
517 const Float_t krohaHeight = ksensHeight;
518 const Float_t krohaWidth = 0.5;
519 const Int_t krohaMaterial = idRoha;
521 // Frame around the slat: 2 sticks along length,2 along height
522 // H: the horizontal ones
523 const Float_t khFrameLength = kpcbLength;
524 const Float_t khFrameHeight = 1.5;
525 const Float_t khFrameWidth = ksensWidth;
526 const Int_t khFrameMaterial = idGlass;
528 // V: the vertical ones
529 const Float_t kvFrameLength = 4.0;
530 const Float_t kvFrameHeight = ksensHeight + khFrameHeight;
531 const Float_t kvFrameWidth = ksensWidth;
532 const Int_t kvFrameMaterial = idGlass;
534 // B: the horizontal border filled with rohacell
535 const Float_t kbFrameLength = khFrameLength;
536 const Float_t kbFrameHeight = (kpcbHeight - ksensHeight)/2. - khFrameHeight;
537 const Float_t kbFrameWidth = khFrameWidth;
538 const Int_t kbFrameMaterial = idRoha;
540 // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
541 const Float_t knulocLength = 2.5;
542 const Float_t knulocHeight = 7.5;
543 const Float_t knulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite;
544 const Int_t knulocMaterial = idCopper;
546 const Float_t kslatHeight = kpcbHeight;
547 const Float_t kslatWidth = ksensWidth + 2.*(kpcbWidth + kinsuWidth +
548 2.* kpanelWidth + krohaWidth);
549 const Int_t kslatMaterial = idAir;
550 const Float_t kdSlatLength = kvFrameLength; // border on left and right
555 // the panel volume contains the rohacell
557 Float_t twidth = 2 * kpanelWidth + krohaWidth;
558 Float_t panelpar[3] = { kpanelLength/2., kpanelHeight/2., twidth/2. };
559 Float_t rohapar[3] = { krohaLength/2., krohaHeight/2., krohaWidth/2. };
561 // insulating material contains PCB-> gas-> 2 borders filled with rohacell
563 twidth = 2*(kinsuWidth + kpcbWidth) + ksensWidth;
564 Float_t insupar[3] = { kinsuLength/2., kinsuHeight/2., twidth/2. };
565 twidth -= 2 * kinsuWidth;
566 Float_t pcbpar[3] = { kpcbLength/2., kpcbHeight/2., twidth/2. };
567 Float_t senspar[3] = { ksensLength/2., ksensHeight/2., ksensWidth/2. };
568 Float_t theight = 2*khFrameHeight + ksensHeight;
569 Float_t hFramepar[3]={khFrameLength/2., theight/2., khFrameWidth/2.};
570 Float_t bFramepar[3]={kbFrameLength/2., kbFrameHeight/2., kbFrameWidth/2.};
571 Float_t vFramepar[3]={kvFrameLength/2., kvFrameHeight/2., kvFrameWidth/2.};
572 Float_t nulocpar[3]={knulocLength/2., knulocHeight/2., knulocWidth/2.};
574 Float_t xxmax = (kbFrameLength - knulocLength)/2.;
579 //********************************************************************
581 //********************************************************************
582 // indices 1 and 2 for first and second chambers in the station
583 // iChamber (first chamber) kept for other quanties than Z,
584 // assumed to be the same in both chambers
585 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
586 iChamber2 =(AliMUONChamber*) (*fChambers)[5];
587 zpos1=iChamber1->Z();
588 zpos2=iChamber2->Z();
589 dstation = TMath::Abs(zpos2 - zpos1);
593 tpar[0] = iChamber->RInner()-dframep;
594 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
595 tpar[2] = dstation/5;
597 char *slats5Mother = "S05M";
598 char *slats6Mother = "S06M";
602 if (gAlice->GetModule("DIPO")) {
606 zoffs5 = TMath::Abs(zpos1);
607 zoffs6 = TMath::Abs(zpos2);
611 gMC->Gsvolu("S05M", "TUBE", idAir, tpar, 3);
612 gMC->Gsvolu("S06M", "TUBE", idAir, tpar, 3);
613 gMC->Gspos("S05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
614 gMC->Gspos("S06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
617 // volumes for slat geometry (xx=5,..,10 chamber id):
618 // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes
619 // SxxG --> Sensitive volume (gas)
620 // SxxP --> PCB (copper)
621 // SxxI --> Insulator (vetronite)
622 // SxxC --> Carbon panel
624 // SxxH, SxxV --> Horizontal and Vertical frames (vetronite)
625 // SB5x --> Volumes for the 35 cm long PCB
626 // slat dimensions: slat is a MOTHER volume!!! made of air
628 // only for chamber 5: slat 1 has a PCB shorter by 5cm!
630 Float_t tlength = 35.;
631 Float_t panelpar2[3] = { tlength/2., panelpar[1], panelpar[2]};
632 Float_t rohapar2[3] = { tlength/2., rohapar[1], rohapar[2]};
633 Float_t insupar2[3] = { tlength/2., insupar[1], insupar[2]};
634 Float_t pcbpar2[3] = { tlength/2., pcbpar[1], pcbpar[2]};
635 Float_t senspar2[3] = { tlength/2., senspar[1], senspar[2]};
636 Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]};
637 Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]};
639 const Int_t knSlats3 = 5; // number of slats per quadrant
640 const Int_t knPCB3[knSlats3] = {3,3,4,3,2}; // n PCB per slat
641 const Float_t kxpos3[knSlats3] = {31., 40., 0., 0., 0.};
642 Float_t slatLength3[knSlats3];
644 // create and position the slat (mother) volumes
651 for (i = 0; i<knSlats3; i++){
652 slatLength3[i] = kpcbLength * knPCB3[i] + 2. * kdSlatLength;
653 xSlat3 = slatLength3[i]/2. - kvFrameLength/2. + kxpos3[i];
654 if (i==1 || i==0) slatLength3[i] -= 2. *kdSlatLength; // frame out in PCB with circular border
655 Float_t ySlat31 = ksensHeight * i - kyOverlap * i;
656 Float_t ySlat32 = -ksensHeight * i + kyOverlap * i;
657 spar[0] = slatLength3[i]/2.;
658 spar[1] = kslatHeight/2.;
659 spar[2] = kslatWidth/2. * 1.01;
660 // take away 5 cm from the first slat in chamber 5
662 if (i==1 || i==2) { // 1 pcb is shortened by 5cm
663 spar2[0] = spar[0]-5./2.;
664 xSlat32 = xSlat3 - 5/2.;
672 Float_t dzCh3=spar[2] * 1.01;
673 // zSlat to be checked (odd downstream or upstream?)
674 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
676 if (gAlice->GetModule("DIPO")) {zSlat*=-1.;}
678 sprintf(volNam5,"S05%d",i);
679 gMC->Gsvolu(volNam5,"BOX",kslatMaterial,spar2,3);
680 gMC->Gspos(volNam5, i*4+1,slats5Mother, -xSlat32, ySlat31, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
681 gMC->Gspos(volNam5, i*4+2,slats5Mother, +xSlat32, ySlat31, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
684 gMC->Gspos(volNam5, i*4+3,slats5Mother,-xSlat32, ySlat32, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
685 gMC->Gspos(volNam5, i*4+4,slats5Mother,+xSlat32, ySlat32, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
687 sprintf(volNam6,"S06%d",i);
688 gMC->Gsvolu(volNam6,"BOX",kslatMaterial,spar,3);
689 gMC->Gspos(volNam6, i*4+1,slats6Mother,-xSlat3, ySlat31, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
690 gMC->Gspos(volNam6, i*4+2,slats6Mother,+xSlat3, ySlat31, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
692 gMC->Gspos(volNam6, i*4+3,slats6Mother,-xSlat3, ySlat32, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
693 gMC->Gspos(volNam6, i*4+4,slats6Mother,+xSlat3, ySlat32, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
697 // create the panel volume
699 gMC->Gsvolu("S05C","BOX",kpanelMaterial,panelpar,3);
700 gMC->Gsvolu("SB5C","BOX",kpanelMaterial,panelpar2,3);
701 gMC->Gsvolu("S06C","BOX",kpanelMaterial,panelpar,3);
703 // create the rohacell volume
705 gMC->Gsvolu("S05R","BOX",krohaMaterial,rohapar,3);
706 gMC->Gsvolu("SB5R","BOX",krohaMaterial,rohapar2,3);
707 gMC->Gsvolu("S06R","BOX",krohaMaterial,rohapar,3);
709 // create the insulating material volume
711 gMC->Gsvolu("S05I","BOX",kinsuMaterial,insupar,3);
712 gMC->Gsvolu("SB5I","BOX",kinsuMaterial,insupar2,3);
713 gMC->Gsvolu("S06I","BOX",kinsuMaterial,insupar,3);
715 // create the PCB volume
717 gMC->Gsvolu("S05P","BOX",kpcbMaterial,pcbpar,3);
718 gMC->Gsvolu("SB5P","BOX",kpcbMaterial,pcbpar2,3);
719 gMC->Gsvolu("S06P","BOX",kpcbMaterial,pcbpar,3);
721 // create the sensitive volumes,
722 gMC->Gsvolu("S05G","BOX",ksensMaterial,dum,0);
723 gMC->Gsvolu("S06G","BOX",ksensMaterial,dum,0);
726 // create the vertical frame volume
728 gMC->Gsvolu("S05V","BOX",kvFrameMaterial,vFramepar,3);
729 gMC->Gsvolu("S06V","BOX",kvFrameMaterial,vFramepar,3);
731 // create the horizontal frame volume
733 gMC->Gsvolu("S05H","BOX",khFrameMaterial,hFramepar,3);
734 gMC->Gsvolu("SB5H","BOX",khFrameMaterial,hFramepar2,3);
735 gMC->Gsvolu("S06H","BOX",khFrameMaterial,hFramepar,3);
737 // create the horizontal border volume
739 gMC->Gsvolu("S05B","BOX",kbFrameMaterial,bFramepar,3);
740 gMC->Gsvolu("SB5B","BOX",kbFrameMaterial,bFramepar2,3);
741 gMC->Gsvolu("S06B","BOX",kbFrameMaterial,bFramepar,3);
744 for (i = 0; i<knSlats3; i++){
745 sprintf(volNam5,"S05%d",i);
746 sprintf(volNam6,"S06%d",i);
747 Float_t xvFrame = (slatLength3[i] - kvFrameLength)/2.;
748 Float_t xvFrame2 = xvFrame;
749 if ( i==1 || i ==2 ) xvFrame2 -= 5./2.;
750 // position the vertical frames
752 gMC->Gspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY");
753 gMC->Gspos("S05V",2*i ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY");
754 gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
755 gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
757 // position the panels and the insulating material
758 for (j=0; j<knPCB3[i]; j++){
760 Float_t xx = ksensLength * (-knPCB3[i]/2.+j+.5);
761 Float_t xx2 = xx + 5/2.;
763 Float_t zPanel = spar[2] - panelpar[2];
764 if ( (i==1 || i==2) && j == knPCB3[i]-1) { // 1 pcb is shortened by 5cm
765 gMC->Gspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
766 gMC->Gspos("SB5C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
767 gMC->Gspos("SB5I",index ,volNam5, xx, 0., 0 , 0, "ONLY");
769 else if ( (i==1 || i==2) && j < knPCB3[i]-1) {
770 gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY");
771 gMC->Gspos("S05C",2*index ,volNam5, xx2, 0.,-zPanel , 0, "ONLY");
772 gMC->Gspos("S05I",index ,volNam5, xx2, 0., 0 , 0, "ONLY");
775 gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
776 gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
777 gMC->Gspos("S05I",index ,volNam5, xx, 0., 0 , 0, "ONLY");
779 gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY");
780 gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY");
781 gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY");
785 // position the rohacell volume inside the panel volume
786 gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY");
787 gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY");
788 gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY");
790 // position the PCB volume inside the insulating material volume
791 gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY");
792 gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY");
793 gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY");
794 // position the horizontal frame volume inside the PCB volume
795 gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY");
796 gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY");
797 gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY");
798 // position the sensitive volume inside the horizontal frame volume
799 gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3);
800 gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3);
801 gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3);
802 // position the border volumes inside the PCB volume
803 Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.;
804 gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY");
805 gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY");
806 gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY");
807 gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY");
808 gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY");
809 gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY");
811 // create the NULOC volume and position it in the horizontal frame
813 gMC->Gsvolu("S05N","BOX",knulocMaterial,nulocpar,3);
814 gMC->Gsvolu("S06N","BOX",knulocMaterial,nulocpar,3);
816 Float_t xxmax2 = xxmax - 5./2.;
817 for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) {
819 gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
820 gMC->Gspos("S05N",2*index ,"S05B", xx, 0., kbFrameWidth/4., 0, "ONLY");
821 if (xx > -xxmax2 && xx< xxmax2) {
822 gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
823 gMC->Gspos("S05N",2*index ,"SB5B", xx, 0., kbFrameWidth/4., 0, "ONLY");
825 gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
826 gMC->Gspos("S06N",2*index ,"S06B", xx, 0., kbFrameWidth/4., 0, "ONLY");
829 // position the volumes approximating the circular section of the pipe
830 Float_t yoffs = ksensHeight/2. - kyOverlap;
831 Float_t epsilon = 0.001;
834 Double_t dydiv= ksensHeight/ndiv;
835 Double_t ydiv = yoffs -dydiv;
839 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
840 if (gAlice->GetModule("DIPO")) {z1*=-1.;}
841 for (Int_t idiv=0;idiv<ndiv; idiv++){
844 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
845 divpar[0] = (kpcbLength-xdiv)/2.;
846 divpar[1] = dydiv/2. - epsilon;
847 divpar[2] = ksensWidth/2.;
848 Float_t xvol=(kpcbLength+xdiv)/2.+1.999;
849 Float_t yvol=ydiv + dydiv/2.;
850 //printf ("y ll = %f y ur = %f \n",yvol - divpar[1], yvol + divpar[1]);
851 gMC->Gsposp("S05G",imax+4*idiv+1,slats5Mother,-xvol, yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
852 gMC->Gsposp("S06G",imax+4*idiv+1,slats6Mother,-xvol, yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
853 gMC->Gsposp("S05G",imax+4*idiv+2,slats5Mother,-xvol,-yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
854 gMC->Gsposp("S06G",imax+4*idiv+2,slats6Mother,-xvol,-yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
855 gMC->Gsposp("S05G",imax+4*idiv+3,slats5Mother,+xvol, yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
856 gMC->Gsposp("S06G",imax+4*idiv+3,slats6Mother,+xvol, yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
857 gMC->Gsposp("S05G",imax+4*idiv+4,slats5Mother,+xvol,-yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
858 gMC->Gsposp("S06G",imax+4*idiv+4,slats6Mother,+xvol,-yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
864 //********************************************************************
866 //********************************************************************
867 // indices 1 and 2 for first and second chambers in the station
868 // iChamber (first chamber) kept for other quanties than Z,
869 // assumed to be the same in both chambers
870 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
871 iChamber2 =(AliMUONChamber*) (*fChambers)[7];
872 zpos1=iChamber1->Z();
873 zpos2=iChamber2->Z();
874 dstation = TMath::Abs(zpos2 - zpos1);
875 // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
879 tpar[0] = iChamber->RInner()-dframep;
880 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
881 tpar[2] = dstation/4;
883 gMC->Gsvolu("S07M", "TUBE", idAir, tpar, 3);
884 gMC->Gsvolu("S08M", "TUBE", idAir, tpar, 3);
885 gMC->Gspos("S07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
886 gMC->Gspos("S08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
889 const Int_t knSlats4 = 6; // number of slats per quadrant
890 const Int_t knPCB4[knSlats4] = {4,4,5,5,4,3}; // n PCB per slat
891 const Float_t kxpos4[knSlats4] = {38.5, 40., 0., 0., 0., 0.};
892 Float_t slatLength4[knSlats4];
894 // create and position the slat (mother) volumes
901 for (i = 0; i<knSlats4; i++){
902 slatLength4[i] = kpcbLength * knPCB4[i] + 2. * kdSlatLength;
903 xSlat4 = slatLength4[i]/2. - kvFrameLength/2. + kxpos4[i];
904 if (i==1) slatLength4[i] -= 2. *kdSlatLength; // frame out in PCB with circular border
905 ySlat4 = ksensHeight * i - kyOverlap *i;
907 spar[0] = slatLength4[i]/2.;
908 spar[1] = kslatHeight/2.;
909 spar[2] = kslatWidth/2.*1.01;
910 Float_t dzCh4=spar[2]*1.01;
911 // zSlat to be checked (odd downstream or upstream?)
912 Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2];
913 sprintf(volNam7,"S07%d",i);
914 gMC->Gsvolu(volNam7,"BOX",kslatMaterial,spar,3);
915 gMC->Gspos(volNam7, i*4+1,"S07M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
916 gMC->Gspos(volNam7, i*4+2,"S07M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
918 gMC->Gspos(volNam7, i*4+3,"S07M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
919 gMC->Gspos(volNam7, i*4+4,"S07M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
921 sprintf(volNam8,"S08%d",i);
922 gMC->Gsvolu(volNam8,"BOX",kslatMaterial,spar,3);
923 gMC->Gspos(volNam8, i*4+1,"S08M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
924 gMC->Gspos(volNam8, i*4+2,"S08M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
926 gMC->Gspos(volNam8, i*4+3,"S08M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
927 gMC->Gspos(volNam8, i*4+4,"S08M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
932 // create the panel volume
934 gMC->Gsvolu("S07C","BOX",kpanelMaterial,panelpar,3);
935 gMC->Gsvolu("S08C","BOX",kpanelMaterial,panelpar,3);
937 // create the rohacell volume
939 gMC->Gsvolu("S07R","BOX",krohaMaterial,rohapar,3);
940 gMC->Gsvolu("S08R","BOX",krohaMaterial,rohapar,3);
942 // create the insulating material volume
944 gMC->Gsvolu("S07I","BOX",kinsuMaterial,insupar,3);
945 gMC->Gsvolu("S08I","BOX",kinsuMaterial,insupar,3);
947 // create the PCB volume
949 gMC->Gsvolu("S07P","BOX",kpcbMaterial,pcbpar,3);
950 gMC->Gsvolu("S08P","BOX",kpcbMaterial,pcbpar,3);
952 // create the sensitive volumes,
954 gMC->Gsvolu("S07G","BOX",ksensMaterial,dum,0);
955 gMC->Gsvolu("S08G","BOX",ksensMaterial,dum,0);
957 // create the vertical frame volume
959 gMC->Gsvolu("S07V","BOX",kvFrameMaterial,vFramepar,3);
960 gMC->Gsvolu("S08V","BOX",kvFrameMaterial,vFramepar,3);
962 // create the horizontal frame volume
964 gMC->Gsvolu("S07H","BOX",khFrameMaterial,hFramepar,3);
965 gMC->Gsvolu("S08H","BOX",khFrameMaterial,hFramepar,3);
967 // create the horizontal border volume
969 gMC->Gsvolu("S07B","BOX",kbFrameMaterial,bFramepar,3);
970 gMC->Gsvolu("S08B","BOX",kbFrameMaterial,bFramepar,3);
973 for (i = 0; i<knSlats4; i++){
974 sprintf(volNam7,"S07%d",i);
975 sprintf(volNam8,"S08%d",i);
976 Float_t xvFrame = (slatLength4[i] - kvFrameLength)/2.;
977 // position the vertical frames
979 gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
980 gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
981 gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
982 gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
984 // position the panels and the insulating material
985 for (j=0; j<knPCB4[i]; j++){
987 Float_t xx = ksensLength * (-knPCB4[i]/2.+j+.5);
989 Float_t zPanel = spar[2] - panelpar[2];
990 gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY");
991 gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY");
992 gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY");
993 gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY");
995 gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY");
996 gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY");
1000 // position the rohacell volume inside the panel volume
1001 gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY");
1002 gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY");
1004 // position the PCB volume inside the insulating material volume
1005 gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY");
1006 gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY");
1007 // position the horizontal frame volume inside the PCB volume
1008 gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY");
1009 gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY");
1010 // position the sensitive volume inside the horizontal frame volume
1011 gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3);
1012 gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3);
1013 // position the border volumes inside the PCB volume
1014 Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.;
1015 gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY");
1016 gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY");
1017 gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY");
1018 gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY");
1020 // create the NULOC volume and position it in the horizontal frame
1022 gMC->Gsvolu("S07N","BOX",knulocMaterial,nulocpar,3);
1023 gMC->Gsvolu("S08N","BOX",knulocMaterial,nulocpar,3);
1025 for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) {
1027 gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1028 gMC->Gspos("S07N",2*index ,"S07B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1029 gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1030 gMC->Gspos("S08N",2*index ,"S08B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1033 // position the volumes approximating the circular section of the pipe
1034 Float_t yoffs = ksensHeight/2. - kyOverlap;
1035 Float_t epsilon = 0.001;
1038 Double_t dydiv= ksensHeight/ndiv;
1039 Double_t ydiv = yoffs -dydiv;
1043 Float_t z1 = -spar[2], z2=2*spar[2]*1.01;
1044 for (Int_t idiv=0;idiv<ndiv; idiv++){
1047 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1048 divpar[0] = (kpcbLength-xdiv)/2.;
1049 divpar[1] = dydiv/2. - epsilon;
1050 divpar[2] = ksensWidth/2.;
1051 Float_t xvol=(kpcbLength+xdiv)/2.+1.999;
1052 Float_t yvol=ydiv + dydiv/2.;
1053 gMC->Gsposp("S07G",imax+4*idiv+1,"S07M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1054 gMC->Gsposp("S08G",imax+4*idiv+1,"S08M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1055 gMC->Gsposp("S07G",imax+4*idiv+2,"S07M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1056 gMC->Gsposp("S08G",imax+4*idiv+2,"S08M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1057 gMC->Gsposp("S07G",imax+4*idiv+3,"S07M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1058 gMC->Gsposp("S08G",imax+4*idiv+3,"S08M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1059 gMC->Gsposp("S07G",imax+4*idiv+4,"S07M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1060 gMC->Gsposp("S08G",imax+4*idiv+4,"S08M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1072 //********************************************************************
1074 //********************************************************************
1075 // indices 1 and 2 for first and second chambers in the station
1076 // iChamber (first chamber) kept for other quanties than Z,
1077 // assumed to be the same in both chambers
1078 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
1079 iChamber2 =(AliMUONChamber*) (*fChambers)[9];
1080 zpos1=iChamber1->Z();
1081 zpos2=iChamber2->Z();
1082 dstation = TMath::Abs(zpos2 - zpos1);
1083 // zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
1087 tpar[0] = iChamber->RInner()-dframep;
1088 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
1089 tpar[2] = dstation/5.;
1091 gMC->Gsvolu("S09M", "TUBE", idAir, tpar, 3);
1092 gMC->Gsvolu("S10M", "TUBE", idAir, tpar, 3);
1093 gMC->Gspos("S09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1094 gMC->Gspos("S10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1097 const Int_t knSlats5 = 7; // number of slats per quadrant
1098 const Int_t knPCB5[knSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat
1099 const Float_t kxpos5[knSlats5] = {38.5, 40., 0., 0., 0., 0., 0.};
1100 Float_t slatLength5[knSlats5];
1106 for (i = 0; i<knSlats5; i++){
1107 slatLength5[i] = kpcbLength * knPCB5[i] + 2. * kdSlatLength;
1108 xSlat5 = slatLength5[i]/2. - kvFrameLength/2. +kxpos5[i];
1109 if (i==1 || i==0) slatLength5[i] -= 2. *kdSlatLength; // frame out in PCB with circular border
1110 ySlat5 = ksensHeight * i - kyOverlap * i;
1111 spar[0] = slatLength5[i]/2.;
1112 spar[1] = kslatHeight/2.;
1113 spar[2] = kslatWidth/2. * 1.01;
1114 Float_t dzCh5=spar[2]*1.01;
1115 // zSlat to be checked (odd downstream or upstream?)
1116 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
1117 sprintf(volNam9,"S09%d",i);
1118 gMC->Gsvolu(volNam9,"BOX",kslatMaterial,spar,3);
1119 gMC->Gspos(volNam9, i*4+1,"S09M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1120 gMC->Gspos(volNam9, i*4+2,"S09M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1122 gMC->Gspos(volNam9, i*4+3,"S09M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1123 gMC->Gspos(volNam9, i*4+4,"S09M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1125 sprintf(volNam10,"S10%d",i);
1126 gMC->Gsvolu(volNam10,"BOX",kslatMaterial,spar,3);
1127 gMC->Gspos(volNam10, i*4+1,"S10M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1128 gMC->Gspos(volNam10, i*4+2,"S10M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1130 gMC->Gspos(volNam10, i*4+3,"S10M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1131 gMC->Gspos(volNam10, i*4+4,"S10M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1135 // create the panel volume
1137 gMC->Gsvolu("S09C","BOX",kpanelMaterial,panelpar,3);
1138 gMC->Gsvolu("S10C","BOX",kpanelMaterial,panelpar,3);
1140 // create the rohacell volume
1142 gMC->Gsvolu("S09R","BOX",krohaMaterial,rohapar,3);
1143 gMC->Gsvolu("S10R","BOX",krohaMaterial,rohapar,3);
1145 // create the insulating material volume
1147 gMC->Gsvolu("S09I","BOX",kinsuMaterial,insupar,3);
1148 gMC->Gsvolu("S10I","BOX",kinsuMaterial,insupar,3);
1150 // create the PCB volume
1152 gMC->Gsvolu("S09P","BOX",kpcbMaterial,pcbpar,3);
1153 gMC->Gsvolu("S10P","BOX",kpcbMaterial,pcbpar,3);
1155 // create the sensitive volumes,
1157 gMC->Gsvolu("S09G","BOX",ksensMaterial,dum,0);
1158 gMC->Gsvolu("S10G","BOX",ksensMaterial,dum,0);
1160 // create the vertical frame volume
1162 gMC->Gsvolu("S09V","BOX",kvFrameMaterial,vFramepar,3);
1163 gMC->Gsvolu("S10V","BOX",kvFrameMaterial,vFramepar,3);
1165 // create the horizontal frame volume
1167 gMC->Gsvolu("S09H","BOX",khFrameMaterial,hFramepar,3);
1168 gMC->Gsvolu("S10H","BOX",khFrameMaterial,hFramepar,3);
1170 // create the horizontal border volume
1172 gMC->Gsvolu("S09B","BOX",kbFrameMaterial,bFramepar,3);
1173 gMC->Gsvolu("S10B","BOX",kbFrameMaterial,bFramepar,3);
1176 for (i = 0; i<knSlats5; i++){
1177 sprintf(volNam9,"S09%d",i);
1178 sprintf(volNam10,"S10%d",i);
1179 Float_t xvFrame = (slatLength5[i] - kvFrameLength)/2.;
1180 // position the vertical frames
1182 gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1183 gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1184 gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1185 gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1188 // position the panels and the insulating material
1189 for (j=0; j<knPCB5[i]; j++){
1191 Float_t xx = ksensLength * (-knPCB5[i]/2.+j+.5);
1193 Float_t zPanel = spar[2] - panelpar[2];
1194 gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY");
1195 gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY");
1196 gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY");
1197 gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY");
1199 gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY");
1200 gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY");
1204 // position the rohacell volume inside the panel volume
1205 gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY");
1206 gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY");
1208 // position the PCB volume inside the insulating material volume
1209 gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY");
1210 gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY");
1211 // position the horizontal frame volume inside the PCB volume
1212 gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY");
1213 gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY");
1214 // position the sensitive volume inside the horizontal frame volume
1215 gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3);
1216 gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3);
1217 // position the border volumes inside the PCB volume
1218 Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.;
1219 gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY");
1220 gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY");
1221 gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY");
1222 gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY");
1224 // create the NULOC volume and position it in the horizontal frame
1226 gMC->Gsvolu("S09N","BOX",knulocMaterial,nulocpar,3);
1227 gMC->Gsvolu("S10N","BOX",knulocMaterial,nulocpar,3);
1229 for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) {
1231 gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1232 gMC->Gspos("S09N",2*index ,"S09B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1233 gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1234 gMC->Gspos("S10N",2*index ,"S10B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1236 // position the volumes approximating the circular section of the pipe
1237 Float_t yoffs = ksensHeight/2. - kyOverlap;
1238 Float_t epsilon = 0.001;
1241 Double_t dydiv= ksensHeight/ndiv;
1242 Double_t ydiv = yoffs -dydiv;
1244 // for (Int_t islat=0; islat<knSlats3; islat++) imax += knPCB3[islat];
1247 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
1248 for (Int_t idiv=0;idiv<ndiv; idiv++){
1251 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1252 divpar[0] = (kpcbLength-xdiv)/2.;
1253 divpar[1] = dydiv/2. - epsilon;
1254 divpar[2] = ksensWidth/2.;
1255 Float_t xvol=(kpcbLength+xdiv)/2. + 1.999;
1256 Float_t yvol=ydiv + dydiv/2.;
1257 gMC->Gsposp("S09G",imax+4*idiv+1,"S09M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1258 gMC->Gsposp("S10G",imax+4*idiv+1,"S10M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1259 gMC->Gsposp("S09G",imax+4*idiv+2,"S09M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1260 gMC->Gsposp("S10G",imax+4*idiv+2,"S10M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1261 gMC->Gsposp("S09G",imax+4*idiv+3,"S09M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1262 gMC->Gsposp("S10G",imax+4*idiv+3,"S10M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1263 gMC->Gsposp("S09G",imax+4*idiv+4,"S09M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1264 gMC->Gsposp("S10G",imax+4*idiv+4,"S10M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1269 //********************************************************************
1271 //********************************************************************
1273 zpos1 and zpos2 are the middle of the first and second
1274 planes of station 1 (+1m for second station):
1275 zpos1=(zpos1m+zpos1p)/2=(15999+16071)/2=16035 mm, thick/2=40 mm
1276 zpos2=(zpos2m+zpos2p)/2=(16169+16241)/2=16205 mm, thick/2=40 mm
1277 zposxm and zposxp= middles of gaz gaps within a detection plane
1278 rem: the total thickness accounts for 1 mm of al on both
1279 side of the RPCs (see zpos1 and zpos2)
1282 // vertical gap between right and left chambers (kDXZERO*2=4cm)
1283 const Float_t kDXZERO=2.;
1284 // main distances for chamber definition in first plane/first station
1285 const Float_t kXMIN=34.;
1286 const Float_t kXMED=51.;
1287 const Float_t kXMAX=272.;
1288 // kXMAX will become 255. in real life. segmentation to be updated accordingly
1289 // (see fig.2-4 & 2-5 of Local Trigger Board PRR)
1290 const Float_t kYMIN=34.;
1291 const Float_t kYMAX=51.;
1292 // inner/outer radius of flange between beam shield. and chambers (1/station)
1293 const Float_t kRMIN[2]={50.,50.};
1294 const Float_t kRMAX[2]={64.,68.};
1295 // z position of the middle of the gas gap in mother vol
1296 const Float_t kZm=-3.6;
1297 const Float_t kZp=+3.6;
1299 iChamber1 = (AliMUONChamber*) (*fChambers)[10];
1300 zpos1 = iChamber1->Z();
1302 // ratio of zpos1m/zpos1p and inverse for first plane
1303 Float_t zmp=(zpos1+3.6)/(zpos1-3.6);
1306 Int_t icount=0; // chamber counter (0 1 2 3)
1308 for (Int_t istation=0; istation<2; istation++) { // loop on stations
1309 for (Int_t iplane=0; iplane<2; iplane++) { // loop on detection planes
1311 Int_t iVolNum=1; // counter Volume Number
1312 icount = Int_t(iplane*TMath::Power(2,0))+
1313 Int_t(istation*TMath::Power(2,1));
1316 sprintf(volPlane,"SM%d%d",istation+1,iplane+1);
1318 iChamber = (AliMUONChamber*) (*fChambers)[10+icount];
1319 Float_t zpos = iChamber->Z();
1322 tpar[0] = iChamber->RInner();
1323 tpar[1] = iChamber->ROuter();
1325 gMC->Gsvolu(volPlane,"TUBE",idAir,tpar,3);
1327 // Flange between beam shielding and RPC
1328 tpar[0]= kRMIN[istation];
1329 tpar[1]= kRMAX[istation];
1333 sprintf(volFlange,"SF%dA",icount+1);
1334 gMC->Gsvolu(volFlange,"TUBE",idAlu1,tpar,3); //Al
1335 gMC->Gspos(volFlange,1,volPlane,0.,0.,0.,0,"MANY");
1338 Float_t zRatio = zpos / zpos1;
1340 // chamber prototype
1345 char volAlu[5]; // Alu
1346 char volBak[5]; // Bakelite
1347 char volGaz[5]; // Gas streamer
1349 sprintf(volAlu,"SC%dA",icount+1);
1350 sprintf(volBak,"SB%dA",icount+1);
1351 sprintf(volGaz,"SG%dA",icount+1);
1353 gMC->Gsvolu(volAlu,"BOX",idAlu1,tpar,0); // Al
1354 gMC->Gsvolu(volBak,"BOX",idtmed[1107],tpar,0); // Bakelite
1355 gMC->Gsvolu(volGaz,"BOX",idtmed[1106],tpar,0); // Gas streamer
1361 Float_t xA=(kDXZERO+kXMED+(kXMAX-kXMED)/2.)*zRatio;
1366 gMC->Gsposp(volGaz,1,volBak,0.,0.,0.,0,"ONLY",tpar,3);
1368 gMC->Gsposp(volBak,1,volAlu,0.,0.,0.,0,"ONLY",tpar,3);
1371 tpar[0] = ((kXMAX-kXMED)/2.)*zRatio;
1372 tpar[1] = kYMIN*zRatio;
1374 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xA,yAm,-kZm,0,"ONLY",tpar,3);
1375 gMC->Gsposp(volAlu,iVolNum++,volPlane, xA,yAp,-kZp,0,"ONLY",tpar,3);
1376 gMC->Gsbool(volAlu,volFlange);
1379 Float_t tpar1save=tpar[1];
1380 Float_t y1msave=yAm;
1381 Float_t y1psave=yAp;
1383 tpar[0] = ((kXMAX-kXMIN)/2.) * zRatio;
1384 tpar[1] = ((kYMAX-kYMIN)/2.) * zRatio;
1386 Float_t xB=(kDXZERO+kXMIN)*zRatio+tpar[0];
1387 Float_t yBp=(y1msave+tpar1save)*zpm+tpar[1];
1388 Float_t yBm=(y1psave+tpar1save)*zmp+tpar[1];
1390 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB, yBp,-kZp,0,"ONLY",tpar,3);
1391 gMC->Gsposp(volAlu,iVolNum++,volPlane, xB, yBm,-kZm,0,"ONLY",tpar,3);
1392 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB,-yBp,-kZp,0,"ONLY",tpar,3);
1393 gMC->Gsposp(volAlu,iVolNum++,volPlane, xB,-yBm,-kZm,0,"ONLY",tpar,3);
1395 // chamber type C (note : same Z than type B)
1400 tpar[0] = (kXMAX/2)*zRatio;
1401 tpar[1] = (kYMAX/2)*zRatio;
1403 Float_t xC=kDXZERO*zRatio+tpar[0];
1404 Float_t yCp=(y1psave+tpar1save)*1.+tpar[1];
1405 Float_t yCm=(y1msave+tpar1save)*1.+tpar[1];
1407 gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC, yCp,-kZp,0,"ONLY",tpar,3);
1408 gMC->Gsposp(volAlu,iVolNum++,volPlane, xC, yCm,-kZm,0,"ONLY",tpar,3);
1409 gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC,-yCp,-kZp,0,"ONLY",tpar,3);
1410 gMC->Gsposp(volAlu,iVolNum++,volPlane, xC,-yCm,-kZm,0,"ONLY",tpar,3);
1412 // chamber type D, E and F (same size)
1417 tpar[0] = (kXMAX/2.)*zRatio;
1418 tpar[1] = kYMIN*zRatio;
1420 Float_t xD=kDXZERO*zRatio+tpar[0];
1421 Float_t yDp=(y1msave+tpar1save)*zpm+tpar[1];
1422 Float_t yDm=(y1psave+tpar1save)*zmp+tpar[1];
1424 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yDm,-kZm,0,"ONLY",tpar,3);
1425 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yDp,-kZp,0,"ONLY",tpar,3);
1426 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yDm,-kZm,0,"ONLY",tpar,3);
1427 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yDp,-kZp,0,"ONLY",tpar,3);
1432 Float_t yEp=(y1msave+tpar1save)*zpm+tpar[1];
1433 Float_t yEm=(y1psave+tpar1save)*zmp+tpar[1];
1435 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yEp,-kZp,0,"ONLY",tpar,3);
1436 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yEm,-kZm,0,"ONLY",tpar,3);
1437 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yEp,-kZp,0,"ONLY",tpar,3);
1438 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yEm,-kZm,0,"ONLY",tpar,3);
1443 Float_t yFp=(y1msave+tpar1save)*zpm+tpar[1];
1444 Float_t yFm=(y1psave+tpar1save)*zmp+tpar[1];
1446 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yFm,-kZm,0,"ONLY",tpar,3);
1447 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yFp,-kZp,0,"ONLY",tpar,3);
1448 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yFm,-kZm,0,"ONLY",tpar,3);
1449 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yFp,-kZp,0,"ONLY",tpar,3);
1451 // Positioning plane in ALICE
1452 gMC->Gspos(volPlane,1,"ALIC",0.,0.,zpos,0,"ONLY");
1454 } // end loop on detection planes
1455 } // end loop on stations
1460 //___________________________________________
1461 void AliMUONv1::CreateMaterials()
1463 // *** DEFINITION OF AVAILABLE MUON MATERIALS ***
1465 // Ar-CO2 gas (80%+20%)
1466 Float_t ag1[3] = { 39.95,12.01,16. };
1467 Float_t zg1[3] = { 18.,6.,8. };
1468 Float_t wg1[3] = { .8,.0667,.13333 };
1469 Float_t dg1 = .001821;
1471 // Ar-buthane-freon gas -- trigger chambers
1472 Float_t atr1[4] = { 39.95,12.01,1.01,19. };
1473 Float_t ztr1[4] = { 18.,6.,1.,9. };
1474 Float_t wtr1[4] = { .56,.1262857,.2857143,.028 };
1475 Float_t dtr1 = .002599;
1478 Float_t agas[3] = { 39.95,12.01,16. };
1479 Float_t zgas[3] = { 18.,6.,8. };
1480 Float_t wgas[3] = { .74,.086684,.173316 };
1481 Float_t dgas = .0018327;
1483 // Ar-Isobutane gas (80%+20%) -- tracking
1484 Float_t ag[3] = { 39.95,12.01,1.01 };
1485 Float_t zg[3] = { 18.,6.,1. };
1486 Float_t wg[3] = { .8,.057,.143 };
1487 Float_t dg = .0019596;
1489 // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger
1490 Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1491 Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1492 Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1493 Float_t dtrig = .0031463;
1497 Float_t abak[3] = {12.01 , 1.01 , 16.};
1498 Float_t zbak[3] = {6. , 1. , 8.};
1499 Float_t wbak[3] = {6. , 6. , 1.};
1502 Float_t epsil, stmin, deemax, tmaxfd, stemax;
1504 Int_t iSXFLD = gAlice->Field()->Integ();
1505 Float_t sXMGMX = gAlice->Field()->Max();
1507 // --- Define the various materials for GEANT ---
1508 AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1509 AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1510 AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
1511 AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1512 AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1513 AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1514 AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1515 AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1516 AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1517 // materials for slat:
1518 // Sensitive area: gas (already defined)
1520 // insulating material and frame: vetronite
1521 // walls: carbon, rohacell, carbon
1522 Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.};
1523 Float_t zglass[5]={ 6., 14., 8., 5., 11.};
1524 Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01};
1525 Float_t dglass=1.74;
1527 // rohacell: C9 H13 N1 O2
1528 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.};
1529 Float_t zrohac[4] = { 6., 1., 7., 8.};
1530 Float_t wrohac[4] = { 9., 13., 1., 2.};
1531 Float_t drohac = 0.03;
1533 AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
1534 AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
1535 AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
1536 AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
1539 epsil = .001; // Tracking precision,
1540 stemax = -1.; // Maximum displacement for multiple scat
1541 tmaxfd = -20.; // Maximum angle due to field deflection
1542 deemax = -.3; // Maximum fractional energy loss, DLS
1546 AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1550 AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1551 fMaxDestepAlu, epsil, stmin);
1552 AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1553 fMaxDestepAlu, epsil, stmin);
1557 AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1558 fMaxDestepGas, epsil, stmin);
1560 // Ar-Isobuthane-Forane-SF6 gas
1562 AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1564 AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1565 fMaxDestepAlu, epsil, stmin);
1567 AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1568 fMaxDestepAlu, epsil, stmin);
1569 // tracking media for slats: check the parameters!!
1570 AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd,
1571 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1572 AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd,
1573 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1574 AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd,
1575 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1576 AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd,
1577 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1580 //___________________________________________
1582 void AliMUONv1::Init()
1585 // Initialize Tracking Chambers
1588 if(fDebug) printf("\n%s: Start Init for version 1 - CPC chamber type\n\n",ClassName());
1590 for (i=0; i<AliMUONConstants::NCh(); i++) {
1591 ( (AliMUONChamber*) (*fChambers)[i])->Init();
1595 // Set the chamber (sensitive region) GEANT identifier
1596 ((AliMUONChamber*)(*fChambers)[0])->SetGid(gMC->VolId("S01G"));
1597 ((AliMUONChamber*)(*fChambers)[1])->SetGid(gMC->VolId("S02G"));
1599 ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("S03G"));
1600 ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("S04G"));
1602 ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
1603 ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
1605 ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
1606 ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
1608 ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
1609 ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
1611 ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("SG1A"));
1612 ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("SG2A"));
1613 ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("SG3A"));
1614 ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("SG4A"));
1616 if(fDebug) printf("\n%s: Finished Init for version 1 - CPC chamber type\n",ClassName());
1619 if(fDebug) printf("\n%s: Start Init for Trigger Circuits\n",ClassName());
1620 for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
1621 ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
1623 if(fDebug) printf("%s: Finished Init for Trigger Circuits\n",ClassName());
1628 //_______________________________________________________________________________
1629 Int_t AliMUONv1::GetChamberId(Int_t volId) const
1631 // Check if the volume with specified volId is a sensitive volume (gas)
1632 // of some chamber and returns the chamber number;
1633 // if not sensitive volume - return 0.
1636 for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++)
1637 if (volId==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) return i;
1641 //_______________________________________________________________________________
1642 void AliMUONv1::StepManager()
1644 // Stepmanager for the chambers
1646 if (fStepManagerVersionOld) {
1651 // Only charged tracks
1652 if( !(gMC->TrackCharge()) ) return;
1653 // Only charged tracks
1655 // Only gas gap inside chamber
1656 // Tag chambers and record hits when track enters
1661 const Float_t kBig = 1.e10;
1663 id=gMC->CurrentVolID(copy);
1664 // printf("id == %d \n",id);
1665 for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++) {
1666 if(id==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) {
1675 if( gMC->IsTrackEntering() ) {
1676 Float_t theta = fTrackMomentum.Theta();
1677 if ((TMath::Pi()-theta)*kRaddeg>=15.) gMC->SetMaxStep(fStepMaxInActiveGas); // We use Pi-theta because z is negative
1680 // if (GetDebug()) {
1681 // Float_t z = ( (AliMUONChamber*)(*fChambers)[idvol])->Z() ;
1682 // Info("StepManager Step","Active volume found %d chamber %d Z chamber is %f ",idvol,iChamber, z);
1684 // Particule id and mass,
1685 Int_t ipart = gMC->TrackPid();
1686 Float_t mass = gMC->TrackMass();
1688 fDestepSum[idvol]+=gMC->Edep();
1689 // Get current particle id (ipart), track position (pos) and momentum (mom)
1690 if ( fStepSum[idvol]==0.0 ) gMC->TrackMomentum(fTrackMomentum);
1691 fStepSum[idvol]+=gMC->TrackStep();
1693 // if (GetDebug()) {
1694 // Info("StepManager Step","iChamber %d, Particle %d, theta %f phi %f mass %f StepSum %f eloss %g",
1695 // iChamber,ipart, fTrackMomentum.Theta()*kRaddeg, fTrackMomentum.Phi()*kRaddeg, mass, fStepSum[idvol], gMC->Edep());
1696 // Info("StepManager Step","Track Momentum %f %f %f", fTrackMomentum.X(), fTrackMomentum.Y(), fTrackMomentum.Z()) ;
1697 // gMC->TrackPosition(fTrackPosition);
1698 // Info("StepManager Step","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1701 // Track left chamber or StepSum larger than fStepMaxInActiveGas
1702 if ( gMC->IsTrackExiting() ||
1703 gMC->IsTrackStop() ||
1704 gMC->IsTrackDisappeared()||
1705 (fStepSum[idvol]>fStepMaxInActiveGas) ) {
1707 if ( gMC->IsTrackExiting() ||
1708 gMC->IsTrackStop() ||
1709 gMC->IsTrackDisappeared() ) gMC->SetMaxStep(kBig);
1711 gMC->TrackPosition(fTrackPosition);
1712 Float_t theta = fTrackMomentum.Theta();
1713 Float_t phi = fTrackMomentum.Phi();
1715 TLorentzVector backToWire( fStepSum[idvol]/2.*sin(theta)*cos(phi),
1716 fStepSum[idvol]/2.*sin(theta)*sin(phi),
1717 fStepSum[idvol]/2.*cos(theta),0.0 );
1719 // Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1721 // Info("StepManager Exit ","Track backToWire %f %f %f",backToWire.X(),backToWire.Y(),backToWire.Z()) ;
1722 fTrackPosition-=backToWire;
1724 //-------------- Angle effect
1725 // Ratio between energy loss of particle and Mip as a function of BetaGamma of particle (Energy/Mass)
1727 Float_t BetaxGamma = fTrackMomentum.P()/mass;// pc/mc2
1728 Float_t sigmaEffect10degrees;
1729 Float_t sigmaEffectThetadegrees;
1730 Float_t eLossParticleELossMip;
1731 Float_t yAngleEffect=0.;
1732 Float_t thetawires = TMath::Abs( TMath::ASin( TMath::Sin(TMath::Pi()-theta) * TMath::Sin(phi) ) );// We use Pi-theta because z is negative
1736 if ( (BetaxGamma >3.2) && (thetawires*kRaddeg<=15.) ) {
1737 BetaxGamma=TMath::Log(BetaxGamma);
1738 eLossParticleELossMip = fElossRatio->Eval(BetaxGamma);
1739 // 10 degrees is a reference for a model (arbitrary)
1740 sigmaEffect10degrees=fAngleEffect10->Eval(eLossParticleELossMip);// in micrometers
1741 // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
1742 sigmaEffectThetadegrees = sigmaEffect10degrees/fAngleEffectNorma->Eval(thetawires*kRaddeg); // For 5mm gap
1743 if ( (iChamber==1) || (iChamber==2) )
1744 sigmaEffectThetadegrees/=(1.09833e+00+1.70000e-02*(thetawires*kRaddeg)); // The gap is different (4mm)
1745 yAngleEffect=1.e-04*gRandom->Gaus(0,sigmaEffectThetadegrees); // Error due to the angle effect in cm
1749 // One hit per chamber
1750 GetMUONData()->AddHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), iChamber, ipart,
1751 fTrackPosition.X(), fTrackPosition.Y()+yAngleEffect, fTrackPosition.Z(), 0.0,
1752 fTrackMomentum.P(),theta, phi, fStepSum[idvol], fDestepSum[idvol],
1753 fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z());
1755 // Info("StepManager Exit","Particle exiting from chamber %d",iChamber);
1756 // Info("StepManager Exit","StepSum %f eloss geant %g ",fStepSum[idvol],fDestepSum[idvol]);
1757 // Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1759 fStepSum[idvol] =0; // Reset for the next event
1760 fDestepSum[idvol]=0; // Reset for the next event
1764 //__________________________________________
1765 void AliMUONv1::StepManagerOld()
1767 // Old Stepmanager for the chambers
1770 static Int_t vol[2];
1775 Float_t destep, step;
1777 static Float_t sstep;
1778 static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
1779 const Float_t kBig = 1.e10;
1780 static Float_t hits[15];
1782 TClonesArray &lhits = *fHits;
1786 // Only charged tracks
1787 if( !(gMC->TrackCharge()) ) return;
1789 // Only gas gap inside chamber
1790 // Tag chambers and record hits when track enters
1791 id=gMC->CurrentVolID(copy);
1792 vol[0] = GetChamberId(id);
1795 if (idvol == -1) return;
1798 // Get current particle id (ipart), track position (pos) and momentum (mom)
1799 gMC->TrackPosition(pos);
1800 gMC->TrackMomentum(mom);
1802 ipart = gMC->TrackPid();
1805 // momentum loss and steplength in last step
1806 destep = gMC->Edep();
1807 step = gMC->TrackStep();
1808 // cout<<"------------"<<step<<endl;
1810 // record hits when track enters ...
1811 if( gMC->IsTrackEntering()) {
1813 gMC->SetMaxStep(fMaxStepGas);
1814 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1815 Double_t rt = TMath::Sqrt(tc);
1816 Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
1817 Double_t tx = mom[0]/pmom;
1818 Double_t ty = mom[1]/pmom;
1819 Double_t tz = mom[2]/pmom;
1820 Double_t s = ((AliMUONChamber*)(*fChambers)[idvol])
1823 theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1824 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1825 hits[0] = Float_t(ipart); // Geant3 particle type
1826 hits[1] = pos[0]+s*tx; // X-position for hit
1827 hits[2] = pos[1]+s*ty; // Y-position for hit
1828 hits[3] = pos[2]+s*tz; // Z-position for hit
1829 hits[4] = theta; // theta angle of incidence
1830 hits[5] = phi; // phi angle of incidence
1831 hits[8] = 0;//PadHits does not exist anymore (Float_t) fNPadHits; // first padhit
1832 hits[9] = -1; // last pad hit
1833 hits[10] = mom[3]; // hit momentum P
1834 hits[11] = mom[0]; // Px
1835 hits[12] = mom[1]; // Py
1836 hits[13] = mom[2]; // Pz
1837 tof=gMC->TrackTime();
1838 hits[14] = tof; // Time of flight
1846 Chamber(idvol).ChargeCorrelationInit();
1847 // Only if not trigger chamber
1849 // printf("---------------------------\n");
1850 // printf(">>>> Y = %f \n",hits[2]);
1851 // printf("---------------------------\n");
1855 // if(idvol < AliMUONConstants::NTrackingCh()) {
1857 // // Initialize hit position (cursor) in the segmentation model
1858 // ((AliMUONChamber*) (*fChambers)[idvol])
1859 // ->SigGenInit(pos[0], pos[1], pos[2]);
1861 // //geant3->Gpcxyz();
1862 // //printf("In the Trigger Chamber #%d\n",idvol-9);
1868 // cout<<sstep<<endl;
1871 // Calculate the charge induced on a pad (disintegration) in case
1873 // Mip left chamber ...
1874 if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1875 gMC->SetMaxStep(kBig);
1880 Float_t localPos[3];
1881 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1882 gMC->Gmtod(globalPos,localPos,1);
1884 if(idvol < AliMUONConstants::NTrackingCh()) {
1885 // tracking chambers
1886 x0 = 0.5*(xhit+pos[0]);
1887 y0 = 0.5*(yhit+pos[1]);
1888 z0 = 0.5*(zhit+pos[2]);
1897 // if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol);
1900 hits[6] = tlength; // track length
1901 hits[7] = eloss2; // de/dx energy loss
1904 // if (fNPadHits > (Int_t)hits[8]) {
1905 // hits[8] = hits[8]+1;
1906 // hits[9] = 0: // PadHits does not exist anymore (Float_t) fNPadHits;
1911 new(lhits[fNhits++])
1912 AliMUONHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), vol,hits);
1915 // Check additional signal generation conditions
1916 // defined by the segmentation
1917 // model (boundary crossing conditions)
1918 // only for tracking chambers
1920 ((idvol < AliMUONConstants::NTrackingCh()) &&
1921 ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
1923 ((AliMUONChamber*) (*fChambers)[idvol])
1924 ->SigGenInit(pos[0], pos[1], pos[2]);
1926 Float_t localPos[3];
1927 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1928 gMC->Gmtod(globalPos,localPos,1);
1932 // if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1933 // MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
1940 // nothing special happened, add up energy loss