1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 // Authors: David Guez, Ivana Hrivnacova, Marion MacCormick; IPN Orsay
22 // Inherits from AliMUONv1 but with a more detailed
23 // geometrical description of station 1
29 #include <TClonesArray.h>
30 #include <TLorentzVector.h>
32 #include <Riostream.h>
35 #include "AliMpFiles.h"
36 #include "AliMpReader.h"
37 #include "AliMpSector.h"
39 #include "AliMpVRowSegment.h"
40 #include "AliMpMotifMap.h"
41 #include "AliMpMotifPosition.h"
43 #include "AliMUONv2.h"
44 #include "AliMUONConstants.h"
45 #include "AliMUONHit.h"
49 #include "AliMUONChamber.h"
53 // Thickness Constants
54 const GReal_t AliMUONv2::fgkHzPadPlane=0.0148/2.; //Pad plane
55 const GReal_t AliMUONv2::fgkHzFoam = 2.083/2.; //Foam of mechanicalplane
56 const GReal_t AliMUONv2::fgkHzFR4 = 0.0031/2.; //FR4 of mechanical plane
57 const GReal_t AliMUONv2::fgkHzSnPb = 0.0091/2.; //Pad/Kapton connection (66 pt)
58 const GReal_t AliMUONv2::fgkHzKapton = 0.0122/2.; //Kapton
59 const GReal_t AliMUONv2::fgkHzBergPlastic = 0.3062/2.;//Berg connector
60 const GReal_t AliMUONv2::fgkHzBergCopper = 0.1882/2.; //Berg connector
61 const GReal_t AliMUONv2::fgkHzDaughter = 0.0156/2.; //Daughter board
62 const GReal_t AliMUONv2::fgkHzGas = 0.2/2.; //Gas thickness
64 // Quadrant Mother volume - TUBS1 - Middle layer of model
65 const GReal_t AliMUONv2::fgkMotherIR1 = 18.3;
66 const GReal_t AliMUONv2::fgkMotherOR1 = 105.673;
67 const GReal_t AliMUONv2::fgkMotherThick1 = 6.5/2;
68 const GReal_t AliMUONv2::fgkMotherPhiL1 = 0.;
69 const GReal_t AliMUONv2::fgkMotherPhiU1 = 90.;
71 // Quadrant Mother volume - TUBS2 - near and far layers of model
72 const GReal_t AliMUONv2::fgkMotherIR2 = 20.7;
73 const GReal_t AliMUONv2::fgkMotherOR2 = 100.073;
74 const GReal_t AliMUONv2::fgkMotherThick2 = 3.0/2;
75 const GReal_t AliMUONv2::fgkMotherPhiL2 = 0.;
76 const GReal_t AliMUONv2::fgkMotherPhiU2 = 90.;
78 // Sensitive copper pads, foam layer, PCB and electronics model parameters
79 const GReal_t AliMUONv2::fgkHxHole=1.5/2.;
80 const GReal_t AliMUONv2::fgkHyHole=6./2.;
81 const GReal_t AliMUONv2::fgkHxBergPlastic=0.74/2.;
82 const GReal_t AliMUONv2::fgkHyBergPlastic=5.09/2.;
83 const GReal_t AliMUONv2::fgkHxBergCopper=0.25/2.;
84 const GReal_t AliMUONv2::fgkHyBergCopper=3.6/2.;
85 const GReal_t AliMUONv2::fgkHxKapton=0.8/2.;
86 const GReal_t AliMUONv2::fgkHyKapton=5.7/2.;
87 const GReal_t AliMUONv2::fgkHxDaughter=2.3/2.;
88 const GReal_t AliMUONv2::fgkHyDaughter=6.3/2.;
89 const GReal_t AliMUONv2::fgkOffsetX=1.46;
90 const GReal_t AliMUONv2::fgkOffsetY=0.71;
91 const GReal_t AliMUONv2::fgkDeltaFilleEtamX=1.46;
92 const GReal_t AliMUONv2::fgkDeltaFilleEtamY=0.051;
94 const GReal_t AliMUONv2::fgkDeltaQuadLHC=2.6; // LHC Origin wrt Quadrant Origin
95 const GReal_t AliMUONv2::fgkFrameOffset=5.0;
97 const char* AliMUONv2::fgkHoleName="MCHL";
98 const char* AliMUONv2::fgkDaughterName="MCDB";
99 const char AliMUONv2::fgkFoamLayerSuffix='F'; // prefix for automatic volume naming
100 const char* AliMUONv2::fgkQuadrantMLayerName="SQM";
101 const char* AliMUONv2::fgkQuadrantNLayerName="SQN";
102 const char* AliMUONv2::fgkQuadrantFLayerName="SQF";
104 //______________________________________________________________________________
105 AliMUONv2::AliMUONv2()
108 // Default Constructor
116 // set path to mapping data files
117 if (! gSystem->Getenv("MINSTALL")) {
118 TString dirPath = gSystem->Getenv("ALICE_ROOT");
119 dirPath += "/MUON/mapping";
120 AliMpFiles::Instance()->SetTopPath(dirPath);
121 gSystem->Setenv("MINSTALL", dirPath.Data());
122 //cout << "AliMpFiles top path set to " << dirPath << endl;
125 // cout << gSystem->Getenv("MINSTALL") << endl;
128 //______________________________________________________________________________
129 AliMUONv2::AliMUONv2(const char *name, const char *title)
130 : AliMUONv1(name,title)
138 // set path to mapping data files
139 if (! gSystem->Getenv("MINSTALL")) {
140 TString dirPath = gSystem->Getenv("ALICE_ROOT");
141 dirPath += "/MUON/mapping";
142 AliMpFiles::Instance()->SetTopPath(dirPath);
143 gSystem->Setenv("MINSTALL", dirPath.Data());
144 //cout << "AliMpFiles top path set to " << dirPath << endl;
147 // cout << gSystem->Getenv("MINSTALL") << endl;
150 //______________________________________________________________________________
151 AliMUONv2::AliMUONv2(const AliMUONv2& rMUON):AliMUONv1(rMUON)
153 // Dummy copy constructor
156 //______________________________________________________________________________
157 AliMUONv2::~AliMUONv2()
166 //______________________________________________________________________________
167 void AliMUONv2::CreateHole()
169 // Create all the elements found inside a foam hole
171 Int_t* idtmed = fIdtmed->GetArray()-1099;
172 Int_t idAir = idtmed[1100]; // medium 1
173 Int_t idCopper = idtmed[1109]; // medium 10 = copper
176 GReal_t posX,posY,posZ;
181 gMC->Gsvolu(fgkHoleName,"BOX",idAir,par,3);
183 par[0] = fgkHxKapton;
184 par[1] = fgkHyKapton;
186 gMC->Gsvolu("SNPB", "BOX", idCopper, par, 3);
189 posZ = -fgkHzFoam+fgkHzSnPb;
190 gMC->Gspos("SNPB",1,fgkHoleName, posX, posY, posZ, 0,"ONLY");
193 par[1] = fgkHyBergPlastic;
194 par[2] = fgkHzKapton;
195 gMC->Gsvolu("KAPT", "BOX", idCopper, par, 3);
199 gMC->Gspos("KAPT",1,fgkHoleName, posX, posY, posZ, 0,"ONLY");
202 //______________________________________________________________________________
203 void AliMUONv2::CreateDaughterBoard()
205 // Create all the elements in a daughter board
207 Int_t* idtmed = fIdtmed->GetArray()-1099;
208 Int_t idAir = idtmed[1100]; // medium 1
209 Int_t idCopper = idtmed[1109]; // medium 10 = copper
210 Int_t idPlastic =idtmed[1116]; // medium 17 = Plastic
213 GReal_t posX,posY,posZ;
215 par[0]=fgkHxDaughter;
216 par[1]=fgkHyDaughter;
217 par[2]=TotalHzDaughter();
218 gMC->Gsvolu(fgkDaughterName,"BOX",idAir,par,3);
220 par[0]=fgkHxBergPlastic;
221 par[1]=fgkHyBergPlastic;
222 par[2]=fgkHzBergPlastic;
223 gMC->Gsvolu("BRGP","BOX",idPlastic,par,3);
226 posZ = -TotalHzDaughter() + fgkHzBergPlastic;
227 gMC->Gspos("BRGP",1,fgkDaughterName,posX,posY,posZ,0,"ONLY");
229 par[0]=fgkHxBergCopper;
230 par[1]=fgkHyBergCopper;
231 par[2]=fgkHzBergCopper;
232 gMC->Gsvolu("BRGC","BOX",idCopper,par,3);
236 gMC->Gspos("BRGC",1,"BRGP",posX,posY,posZ,0,"ONLY");
238 par[0]=fgkHxDaughter;
239 par[1]=fgkHyDaughter;
240 par[2]=fgkHzDaughter;
241 gMC->Gsvolu("DGHT","BOX",idCopper,par,3);
244 posZ = -TotalHzDaughter() + 2.*fgkHzBergPlastic + fgkHzDaughter;
245 gMC->Gspos("DGHT",1,fgkDaughterName,posX,posY,posZ,0,"ONLY");
248 //______________________________________________________________________________
249 void AliMUONv2::CreateInnerLayers()
251 // Create the layer of sensitive volumes with gas
252 // and the copper layer.
256 Int_t* idtmed = fIdtmed->GetArray()-1099;
257 Int_t idArCO2 = idtmed[1108]; // medium 9 (ArCO2 80%)
258 Int_t idCopper = idtmed[1109]; // medium 10 = copper
262 //Make gas volume - composed of 11 trapezoids
276 gMC->Gsvolu("SA1G", "TRAP", idArCO2, par, 11);
277 gMC->Gsvolu("SA2G", "TRAP", idArCO2, par, 11);
279 par[0] = fgkHzPadPlane;
280 gMC->Gsvolu("SA1C", "TRAP", idCopper,par, 11);
294 gMC->Gsvolu("SB1G", "TRAP", idArCO2, par, 11);
295 gMC->Gsvolu("SB2G", "TRAP", idArCO2, par, 11);
297 par[0] = fgkHzPadPlane;
298 gMC->Gsvolu("SB1C", "TRAP", idCopper,par, 11);
313 gMC->Gsvolu("SC1G", "TRAP", idArCO2, par, 11);
314 gMC->Gsvolu("SC2G", "TRAP", idArCO2, par, 11);
316 par[0] = fgkHzPadPlane;
317 gMC->Gsvolu("SC1C", "TRAP", idCopper,par, 11);
331 gMC->Gsvolu("SD1G", "TRAP", idArCO2, par, 11);
332 gMC->Gsvolu("SD2G", "TRAP", idArCO2, par, 11);
334 par[0] = fgkHzPadPlane;
335 gMC->Gsvolu("SD1C", "TRAP", idCopper,par, 11);
349 gMC->Gsvolu("SE1G", "TRAP", idArCO2, par, 11);
350 gMC->Gsvolu("SE2G", "TRAP", idArCO2, par, 11);
352 par[0] = fgkHzPadPlane;
353 gMC->Gsvolu("SE1C", "TRAP", idCopper,par, 11);
367 gMC->Gsvolu("SF1G", "TRAP", idArCO2, par, 11);
368 gMC->Gsvolu("SF2G", "TRAP", idArCO2, par, 11);
370 par[0] = fgkHzPadPlane;
371 gMC->Gsvolu("SF1C", "TRAP", idCopper,par, 11);
385 gMC->Gsvolu("SG1G", "TRAP", idArCO2, par, 11);
386 gMC->Gsvolu("SG2G", "TRAP", idArCO2, par, 11);
388 par[0] = fgkHzPadPlane;
389 gMC->Gsvolu("SG1C", "TRAP", idCopper,par, 11);
403 gMC->Gsvolu("SH1G", "TRAP", idArCO2, par, 11);
404 gMC->Gsvolu("SH2G", "TRAP", idArCO2, par, 11);
406 par[0] = fgkHzPadPlane;
407 gMC->Gsvolu("SH1C", "TRAP", idCopper,par, 11);
421 gMC->Gsvolu("SI1G", "TRAP", idArCO2, par, 11);
422 gMC->Gsvolu("SI2G", "TRAP", idArCO2, par, 11);
424 par[0] = fgkHzPadPlane;
425 gMC->Gsvolu("SI1C", "TRAP", idCopper,par, 11);
439 gMC->Gsvolu("SJ1G", "TRAP", idArCO2, par, 11);
440 gMC->Gsvolu("SJ2G", "TRAP", idArCO2, par, 11);
442 par[0] = fgkHzPadPlane;
443 gMC->Gsvolu("SJ1C", "TRAP", idCopper,par, 11);
457 gMC->Gsvolu("SK1G", "TRAP", idArCO2, par, 11);
458 gMC->Gsvolu("SK2G", "TRAP", idArCO2, par, 11);
460 par[0] = fgkHzPadPlane;
461 gMC->Gsvolu("SK1C", "TRAP", idCopper,par, 11);
464 //______________________________________________________________________________
465 void AliMUONv2::CreateQuadrant(Int_t chamber)
467 // create the quadrant (bending and non-bending planes)
468 // for the given chamber
471 CreateFrame(chamber);
473 TSpecialMap specialMap;
474 specialMap[1001] = AliMUONSt1SpecialMotif(TVector2( 0.1, 0.84), 90.);
475 specialMap[1002] = AliMUONSt1SpecialMotif(TVector2( 0.5, 0.36));
476 specialMap[1003] = AliMUONSt1SpecialMotif(TVector2(1.01, 0.36));
477 AliMpReader reader1(kBendingPlane);
478 AliMpSector* sector1 = reader1.BuildSector();
480 Bool_t reflectZ = true;
481 TVector3 where = TVector3(2.5+0.1+0.56+0.001, 2.5+0.1+0.001, 0.);
482 PlaceSector(sector1, specialMap, where, reflectZ, chamber);
485 specialMap[4001] = AliMUONSt1SpecialMotif(TVector2(1.01,0.59),90.);
486 specialMap[4002] = AliMUONSt1SpecialMotif(TVector2(1.96, 0.17));
487 specialMap[4003] = AliMUONSt1SpecialMotif(TVector2(1.61,-1.18));
488 specialMap[4004] = AliMUONSt1SpecialMotif(TVector2(0.2 ,-0.08));
489 specialMap[4005] = AliMUONSt1SpecialMotif(TVector2(0.2 , 0.25));
490 specialMap[4006] = AliMUONSt1SpecialMotif(TVector2(0.28, 0.21));
491 AliMpReader reader2(kNonBendingPlane);
492 AliMpSector* sector2 = reader2.BuildSector();
495 where = TVector3(where.X()+0.63/2.,where.Y()+0.42/2., 0.); //add a half pad shift
496 PlaceSector(sector2, specialMap, where, reflectZ, chamber);
499 //______________________________________________________________________________
500 void AliMUONv2::CreateFoamBox(const char* name,const TVector2& dimensions)
502 // create all the elements in the copper plane
505 Int_t* idtmed = fIdtmed->GetArray()-1099;
506 Int_t idAir = idtmed[1100]; // medium 1
507 Int_t idFoam = idtmed[1115]; // medium 16 = Foam
508 Int_t idFR4 = idtmed[1114]; // medium 15 = FR4
512 par[0] = dimensions.X();
513 par[1] = dimensions.Y();
514 par[2] = TotalHzPlane();
515 gMC->Gsvolu(name,"BOX",idAir,par,3);
518 GReal_t posX,posY,posZ;
521 eName[3]=fgkFoamLayerSuffix;
522 par[0] = dimensions.X();
523 par[1] = dimensions.Y();
525 gMC->Gsvolu(eName,"BOX",idFoam,par,3);
528 posZ = -TotalHzPlane() + fgkHzFoam;
529 gMC->Gspos(eName,1,name,posX,posY,posZ,0,"ONLY");
531 // mechanical plane FR4 layer
533 par[0] = dimensions.X();
534 par[1] = dimensions.Y();
536 gMC->Gsvolu(eName,"BOX",idFR4,par,3);
539 posZ = -TotalHzPlane()+ 2.*fgkHzFoam + fgkHzFR4;
540 gMC->Gspos(eName,1,name,posX,posY,posZ,0,"ONLY");
543 //______________________________________________________________________________
544 void AliMUONv2::CreatePlaneSegment(const char* name,const TVector2& dimensions,
547 // Create a segment of a plane (this includes a foam layer,
548 // holes in the foam to feed the kaptons through, kapton connectors
549 // and the mother board.)
552 CreateFoamBox(name,dimensions);
556 eName[3]=fgkFoamLayerSuffix;
558 for (Int_t holeNum=0;holeNum<nofHoles;holeNum++) {
559 GReal_t posX = ((2.*holeNum+1.)/nofHoles-1.)*dimensions.X();
563 gMC->Gspos(fgkHoleName,holeNum+1,eName,posX,posY,posZ,0,"ONLY");
567 //______________________________________________________________________________
568 void AliMUONv2::CreateFrame(Int_t chamber)
570 // Create the non-sensitive elements of the frame for the <chamber>
573 // Model and notation:
575 // The Quadrant volume name starts with SQ
576 // The volume segments are numbered 00 to XX.
582 // (SQ17-24) / | InVFrame (SQ00-01)
586 // (SQ25-39) | | InArcFrame (SQ42-45)
589 // InHFrame (SQ40-41)
592 // 06 February 2003 - Overlapping volumes resolved.
593 // One quarter chamber is comprised of three TUBS volumes: SQMx, SQNx, and SQFx,
594 // where SQMx is the Quadrant Middle layer for chamber <x> ( posZ in [-3.25,3.25]),
595 // SQNx is the Quadrant Near side layer for chamber <x> ( posZ in [-6.25,3-.25) ), and
596 // SQFx is the Quadrant Far side layer for chamber <x> ( posZ in (3.25,6.25] ).
599 const Float_t fgkNearFarLHC=2.4; // Near and Far TUBS Origin wrt LHC Origin
602 Int_t* idtmed = fIdtmed->GetArray()-1099;
604 Int_t idAir = idtmed[1100]; // medium 1
605 Int_t idFrameEpoxy = idtmed[1115]; // medium 16 = Frame Epoxy ME730
606 Int_t idInox = idtmed[1116]; // medium 17 Stainless Steel (18%Cr,9%Ni,Fe)
607 Int_t idFR4 = idtmed[1110]; // medium 11 FR4
608 Int_t idCopper = idtmed[1109]; // medium 10 Copper
609 Int_t idAlu = idtmed[1103]; // medium 4 Aluminium
613 Int_t rot1, rot2, rot3;
616 AliMatrix(rot1, 90., 90., 90., 180., 0., 0.); // +90 deg in x-y plane
617 AliMatrix(rot2, 90., 45., 90., 135., 0., 0.); // +45 deg in x-y plane
618 AliMatrix(rot3, 90., 45., 90., 315.,180., 0.); // +45 deg in x-y + rotation 180° around y
620 // Translation matrices ... NOT USED
621 // AliMatrix(trans1, 90., 0., 90., 90., 0., 0.); // X-> X; Y -> Y; Z -> Z
622 // AliMatrix(trans2, 90., 180., 90., 90., 180., 0.); // X->-X; Y -> Y; Z ->-Z
623 // AliMatrix(trans3, 90., 180., 90., 270., 0., 0.); // X->-X; Y ->-Y; Z -> Z
624 // AliMatrix(trans4, 90., 0., 90., 270., 180., 0.); // X-> X; Y ->-Y; Z ->-Z
626 // ___________________Volume thicknesses________________________
628 const Float_t hzFrameThickness = 1.59/2.; //equivalent thickness
629 const Float_t hzOuterFrameEpoxy = 1.19/2.; //equivalent thickness
630 const Float_t hzOuterFrameInox = 0.1/2.; //equivalent thickness
631 const Float_t hzFoam = 2.083/2.; //evaluated elsewhere
633 // Pertaining to the top outer area
634 const Float_t hzTopAnodeSteel1 = 0.185/2.; //equivalent thickness
635 const Float_t hzTopAnodeSteel2 = 0.51/2.; //equivalent thickness
636 const Float_t hzAnodeFR4 = 0.08/2.; //equivalent thickness
637 const Float_t hzTopEarthFaceCu = 0.364/2.; //equivalent thickness
638 const Float_t hzTopEarthProfileCu = 1.1/2.; //equivalent thickness
639 const Float_t hzTopPositionerSteel = 1.45/2.; //should really be 2.125/2.;
640 const Float_t hzTopGasSupportAl = 0.85/2.; //equivalent thickness
642 // Pertaining to the vertical outer area
643 const Float_t hzVerticalCradleAl = 0.8/2.; //equivalent thickness
644 const Float_t hzLateralSightAl = 0.975/2.; //equivalent thickness
645 const Float_t hzLateralPosnInoxFace = 2.125/2.;//equivalent thickness
646 const Float_t hzLatPosInoxProfM = 6.4/2.; //equivalent thickness
647 const Float_t hzLatPosInoxProfNF = 1.45/2.; //equivalent thickness
648 const Float_t hzLateralPosnAl = 0.5/2.; //equivalent thickness
649 const Float_t hzVertEarthFaceCu = 0.367/2.; //equivalent thickness
650 const Float_t hzVertBarSteel = 0.198/2.; //equivalent thickness
651 const Float_t hzVertEarthProfCu = 1.1/2.; //equivalent thickness
653 //_______________Parameter definitions in sequence _________
655 // InVFrame parameters
656 const Float_t hxInVFrame = 1.85/2.;
657 const Float_t hyInVFrame = 73.95/2.;
658 const Float_t hzInVFrame = hzFrameThickness;
660 //Flat 7.5mm vertical section
661 const Float_t hxV1mm = 0.75/2.;
662 const Float_t hyV1mm = 1.85/2.;
663 const Float_t hzV1mm = hzFrameThickness;
665 // OuterTopFrame Structure
668 // The frame is composed of a cuboid and two trapezoids
669 // (TopFrameAnode, TopFrameAnodeA, TopFrameAnodeB).
670 // Each shape is composed of two layers (Epoxy and Inox) and
671 // takes the frame's inner anode circuitry into account in the material budget.
674 // The overhanging anode part is composed froma cuboid and two trapezoids
675 // (TopAnode, TopAnode1, and TopAnode2). These surfaces neglect implanted
676 // resistors, but accounts for the major Cu, Pb/Sn, and FR4 material
678 // The stainless steel anode supports have been included.
680 // EARTHING (TopEarthFace, TopEarthProfile)
681 // Al GAS SUPPORT (TopGasSupport)
683 // ALIGNMENT (TopPositioner) - Alignment system, three sights per quarter
684 // chamber. This sight is forseen for the alignment of the horizontal level
685 // (parallel to the OY axis of LHC). Its position will be evaluated relative
686 // to a system of sights places on the cradles;
690 //TopFrameAnode parameters - cuboid, 2 layers
691 const Float_t hxTFA = 34.1433/2.;
692 const Float_t hyTFA = 7.75/2.;
693 const Float_t hzTFAE = hzOuterFrameEpoxy; // layer 1 thickness
694 const Float_t hzTFAI = hzOuterFrameInox; // layer 3 thickness
696 // TopFrameAnodeA parameters - trapezoid, 2 layers
697 const Float_t hzFAAE = hzOuterFrameEpoxy; // layer 1 thickness
698 const Float_t hzFAAI = hzOuterFrameInox; // layer 3 thickness
699 const Float_t tetFAA = 0.;
700 const Float_t phiFAA = 0.;
701 const Float_t h1FAA = 8.7/2.;
702 const Float_t bl1FAA = 4.35/2.;
703 const Float_t tl1FAA = 7.75/2.;
704 const Float_t alp1FAA = 11.06;
705 const Float_t h2FAA = 8.7/2.;
706 const Float_t bl2FAA = 4.35/2.;
707 const Float_t tl2FAA = 7.75/2.;
708 const Float_t alp2FAA = 11.06;
710 // TopFrameAnodeB parameters - trapezoid, 2 layers
711 const Float_t hzFABE = hzOuterFrameEpoxy; // layer 1 thickness
712 const Float_t hzFABI = hzOuterFrameInox; // layer 3 thickness
713 const Float_t tetFAB = 0.;
714 const Float_t phiFAB = 0.;
715 const Float_t h1FAB = 8.70/2.;
716 const Float_t bl1FAB = 0.;
717 const Float_t tl1FAB = 4.35/2.;
718 const Float_t alp1FAB = 14.03;
719 const Float_t h2FAB = 8.70/2.;
720 const Float_t bl2FAB = 0.;
721 const Float_t tl2FAB = 4.35/2.;
722 const Float_t alp2FAB = 14.03;
724 // TopAnode parameters - cuboid (part 1 of 3 parts)
725 const Float_t hxTA1 = 16.2/2.;
726 const Float_t hyTA1 = 3.5/2.;
727 const Float_t hzTA11 = hzTopAnodeSteel1; // layer 1
728 const Float_t hzTA12 = hzAnodeFR4; // layer 2
730 // TopAnode parameters - trapezoid 1 (part 2 of 3 parts)
731 const Float_t hzTA21 = hzTopAnodeSteel2; // layer 1
732 const Float_t hzTA22 = hzAnodeFR4; // layer 2
733 const Float_t tetTA2 = 0.;
734 const Float_t phiTA2= 0.;
735 const Float_t h1TA2 = 7.268/2.;
736 const Float_t bl1TA2 = 2.03/2.;
737 const Float_t tl1TA2 = 3.5/2.;
738 const Float_t alp1TA2 = 5.78;
739 const Float_t h2TA2 = 7.268/2.;
740 const Float_t bl2TA2 = 2.03/2.;
741 const Float_t tl2TA2 = 3.5/2.;
742 const Float_t alp2TA2 = 5.78;
744 // TopAnode parameters - trapezoid 2 (part 3 of 3 parts)
745 const Float_t hzTA3 = hzAnodeFR4; // layer 1
746 const Float_t tetTA3 = 0.;
747 const Float_t phiTA3 = 0.;
748 const Float_t h1TA3 = 7.268/2.;
749 const Float_t bl1TA3 = 0.;
750 const Float_t tl1TA3 = 2.03/2.;
751 const Float_t alp1TA3 = 7.95;
752 const Float_t h2TA3 = 7.268/2.;
753 const Float_t bl2TA3 = 0.;
754 const Float_t tl2TA3 = 2.03/2.;
755 const Float_t alp2TA3 = 7.95;
757 // TopEarthFace parameters - single trapezoid
758 const Float_t hzTEF = hzTopEarthFaceCu;
759 const Float_t tetTEF = 0.;
760 const Float_t phiTEF = 0.;
761 const Float_t h1TEF = 1.200/2.;
762 const Float_t bl1TEF = 21.323/2.;
763 const Float_t tl1TEF = 17.963/2.;
764 const Float_t alp1TEF = -54.46;
765 const Float_t h2TEF = 1.200/2.;
766 const Float_t bl2TEF = 21.323/2.;
767 const Float_t tl2TEF = 17.963/2.;
768 const Float_t alp2TEF = -54.46;
770 // TopEarthProfile parameters - single trapezoid
771 const Float_t hzTEP = hzTopEarthProfileCu;
772 const Float_t tetTEP = 0.;
773 const Float_t phiTEP = 0.;
774 const Float_t h1TEP = 0.40/2.;
775 const Float_t bl1TEP = 31.766/2.;
776 const Float_t tl1TEP = 30.535/2.;
777 const Float_t alp1TEP = -56.98;
778 const Float_t h2TEP = 0.40/2.;
779 const Float_t bl2TEP = 31.766/2.;
780 const Float_t tl2TEP = 30.535/2.;
781 const Float_t alp2TEP = -56.98;
783 // TopPositioner parameters - single Stainless Steel trapezoid
784 const Float_t hzTP = hzTopPositionerSteel;
785 const Float_t tetTP = 0.;
786 const Float_t phiTP = 0.;
787 const Float_t h1TP = 3.00/2.;
788 const Float_t bl1TP = 7.023/2.;
789 const Float_t tl1TP = 7.314/2.;
790 const Float_t alp1TP = 2.78;
791 const Float_t h2TP = 3.00/2.;
792 const Float_t bl2TP = 7.023/2.;
793 const Float_t tl2TP = 7.314/2.;
794 const Float_t alp2TP = 2.78;
796 // TopGasSupport parameters - single cuboid
797 const Float_t hxTGS = 8.50/2.;
798 const Float_t hyTGS = 3.00/2.;
799 const Float_t hzTGS = hzTopGasSupportAl;
801 // OutEdgeFrame parameters - 4 trapezoidal sections, 2 layers of material
806 const Float_t hzOETFE = hzOuterFrameEpoxy; // layer 1
807 const Float_t hzOETFI = hzOuterFrameInox; // layer 3
809 const Float_t tetOETF = 0.; // common to all 4 trapezoids
810 const Float_t phiOETF = 0.; // common to all 4 trapezoids
812 const Float_t h1OETF = 7.196/2.; // common to all 4 trapezoids
813 const Float_t h2OETF = 7.196/2.; // common to all 4 trapezoids
815 const Float_t bl1OETF1 = 3.75/2;
816 const Float_t tl1OETF1 = 3.996/2.;
817 const Float_t alp1OETF1 = 0.98;
819 const Float_t bl2OETF1 = 3.75/2;
820 const Float_t tl2OETF1 = 3.996/2.;
821 const Float_t alp2OETF1 = 0.98;
824 const Float_t bl1OETF2 = 3.01/2.;
825 const Float_t tl1OETF2 = 3.75/2;
826 const Float_t alp1OETF2 = 2.94;
828 const Float_t bl2OETF2 = 3.01/2.;
829 const Float_t tl2OETF2 = 3.75/2;
830 const Float_t alp2OETF2 = 2.94;
833 const Float_t bl1OETF3 = 1.767/2.;
834 const Float_t tl1OETF3 = 3.01/2.;
835 const Float_t alp1OETF3 = 4.94;
837 const Float_t bl2OETF3 = 1.767/2.;
838 const Float_t tl2OETF3 = 3.01/2.;
839 const Float_t alp2OETF3 = 4.94;
842 const Float_t bl1OETF4 = 0.;
843 const Float_t tl1OETF4 = 1.77/2.;
844 const Float_t alp1OETF4 = 7.01;
846 const Float_t bl2OETF4 = 0.;
847 const Float_t tl2OETF4 = 1.77/2.;
848 const Float_t alp2OETF4 = 7.01;
850 // Frame Structure (OutVFrame):
852 // OutVFrame and corner (OutVFrame cuboid, OutVFrame trapezoid)
853 // EARTHING (VertEarthFaceCu,VertEarthSteel,VertEarthProfCu),
854 // DETECTOR POSITIONNING (SuppLateralPositionner, LateralPositionner),
855 // CRADLE (VertCradle), and
856 // ALIGNMENT (LateralSightSupport, LateralSight)
860 // OutVFrame parameters - cuboid
861 const Float_t hxOutVFrame = 1.85/2.;
862 const Float_t hyOutVFrame = 46.23/2.;
863 const Float_t hzOutVFrame = hzFrameThickness;
865 // OutVFrame corner parameters - trapezoid
866 const Float_t hzOCTF = hzFrameThickness;
867 const Float_t tetOCTF = 0.;
868 const Float_t phiOCTF = 0.;
869 const Float_t h1OCTF = 1.85/2.;
870 const Float_t bl1OCTF = 0.;
871 const Float_t tl1OCTF = 3.66/2.;
872 const Float_t alp1OCTF = 44.67;
873 const Float_t h2OCTF = 1.85/2.;
874 const Float_t bl2OCTF = 0.;
875 const Float_t tl2OCTF = 3.66/2.;
876 const Float_t alp2OCTF = 44.67;
878 // VertEarthFaceCu parameters - single trapezoid
879 const Float_t hzVFC = hzVertEarthFaceCu;
880 const Float_t tetVFC = 0.;
881 const Float_t phiVFC = 0.;
882 const Float_t h1VFC = 1.200/2.;
883 const Float_t bl1VFC = 46.11/2.;
884 const Float_t tl1VFC = 48.236/2.;
885 const Float_t alp1VFC = 41.54;
886 const Float_t h2VFC = 1.200/2.;
887 const Float_t bl2VFC = 46.11/2.;
888 const Float_t tl2VFC = 48.236/2.;
889 const Float_t alp2VFC = 41.54;
891 // VertEarthSteel parameters - single trapezoid
892 const Float_t hzVES = hzVertBarSteel;
893 const Float_t tetVES = 0.;
894 const Float_t phiVES = 0.;
895 const Float_t h1VES = 1.200/2.;
896 const Float_t bl1VES = 30.486/2.;
897 const Float_t tl1VES = 32.777/2.;
898 const Float_t alp1VES = 43.67;
899 const Float_t h2VES = 1.200/2.;
900 const Float_t bl2VES = 30.486/2.;
901 const Float_t tl2VES = 32.777/2.;
902 const Float_t alp2VES = 43.67;
904 // VertEarthProfCu parameters - single trapezoid
905 const Float_t hzVPC = hzVertEarthProfCu;
906 const Float_t tetVPC = 0.;
907 const Float_t phiVPC = 0.;
908 const Float_t h1VPC = 0.400/2.;
909 const Float_t bl1VPC = 29.287/2.;
910 const Float_t tl1VPC = 30.091/2.;
911 const Float_t alp1VPC = 45.14;
912 const Float_t h2VPC = 0.400/2.;
913 const Float_t bl2VPC = 29.287/2.;
914 const Float_t tl2VPC = 30.091/2.;
915 const Float_t alp2VPC = 45.14;
917 // SuppLateralPositionner - single cuboid
918 const Float_t hxSLP = 2.80/2.;
919 const Float_t hySLP = 5.00/2.;
920 const Float_t hzSLP = hzLateralPosnAl;
922 // LateralPositionner - squared off U bend, face view
923 const Float_t hxLPF = 5.2/2.;
924 const Float_t hyLPF = 3.0/2.;
925 const Float_t hzLPF = hzLateralPosnInoxFace;
927 // LateralPositionner - squared off U bend, profile view
928 const Float_t hxLPP = 0.425/2.;
929 const Float_t hyLPP = 3.0/2.;
930 const Float_t hzLPP = hzLatPosInoxProfM; // middle layer
931 const Float_t hzLPNF = hzLatPosInoxProfNF; // near and far layers
933 // VertCradle, 3 layers (copies), each composed of 4 trapezoids
935 const Float_t hzVC1 = hzVerticalCradleAl;
936 const Float_t tetVC1 = 0.;
937 const Float_t phiVC1 = 0.;
938 const Float_t h1VC1 = 10.25/2.;
939 const Float_t bl1VC1 = 3.70/2.;
940 const Float_t tl1VC1 = 0.;
941 const Float_t alp1VC1 = -10.23;
942 const Float_t h2VC1 = 10.25/2.;
943 const Float_t bl2VC1 = 3.70/2.;
944 const Float_t tl2VC1 = 0.;
945 const Float_t alp2VC1 = -10.23;
948 const Float_t hzVC2 = hzVerticalCradleAl;
949 const Float_t tetVC2 = 0.;
950 const Float_t phiVC2 = 0.;
951 const Float_t h1VC2 = 10.25/2.;
952 const Float_t bl1VC2 = 6.266/2.;
953 const Float_t tl1VC2 = 3.70/2.;
954 const Float_t alp1VC2 = -7.13;
955 const Float_t h2VC2 = 10.25/2.;
956 const Float_t bl2VC2 = 6.266/2.;
957 const Float_t tl2VC2 = 3.70/2.;
958 const Float_t alp2VC2 = -7.13;
961 const Float_t hzVC3 = hzVerticalCradleAl;
962 const Float_t tetVC3 = 0.;
963 const Float_t phiVC3 = 0.;
964 const Float_t h1VC3 = 10.25/2.;
965 const Float_t bl1VC3 = 7.75/2.;
966 const Float_t tl1VC3 = 6.266/2.;
967 const Float_t alp1VC3 = -4.14;
968 const Float_t h2VC3 = 10.25/2.;
969 const Float_t bl2VC3 = 7.75/2.;
970 const Float_t tl2VC3 = 6.266/2.;
971 const Float_t alp2VC3 = -4.14;
974 const Float_t hzVC4 = hzVerticalCradleAl;
975 const Float_t tetVC4 = 0.;
976 const Float_t phiVC4 = 0.;
977 const Float_t h1VC4 = 10.27/2.;
978 const Float_t bl1VC4 = 8.273/2.;
979 const Float_t tl1VC4 = 7.75/2.;
980 const Float_t alp1VC4 = -1.46;
981 const Float_t h2VC4 = 10.27/2.;
982 const Float_t bl2VC4 = 8.273/2.;
983 const Float_t tl2VC4 = 7.75/2.;
984 const Float_t alp2VC4 = -1.46;
986 // LateralSightSupport - single trapezoid
987 const Float_t hzVSS = hzLateralSightAl;
988 const Float_t tetVSS = 0.;
989 const Float_t phiVSS = 0.;
990 const Float_t h1VSS = 5.00/2.;
991 const Float_t bl1VSS = 7.747/2;
992 const Float_t tl1VSS = 7.188/2.;
993 const Float_t alp1VSS = -3.20;
994 const Float_t h2VSS = 5.00/2.;
995 const Float_t bl2VSS = 7.747/2.;
996 const Float_t tl2VSS = 7.188/2.;
997 const Float_t alp2VSS = -3.20;
999 // LateralSight (reference point) - 3 per quadrant, only 1 programmed for now
1000 const Float_t VSInRad = 0.6;
1001 const Float_t VSOutRad = 1.3;
1002 const Float_t VSLen = hzFrameThickness;
1006 // InHFrame parameters
1007 const Float_t hxInHFrame = 75.8/2.;
1008 const Float_t hyInHFrame = 1.85/2.;
1009 const Float_t hzInHFrame = hzFrameThickness;
1011 //Flat 7.5mm horizontal section
1012 const Float_t hxH1mm = 1.85/2.;
1013 const Float_t hyH1mm = 0.75/2.;
1014 const Float_t hzH1mm = hzFrameThickness;
1018 // InArcFrame parameters
1019 const Float_t IAF = 15.70;
1020 const Float_t OAF = 17.55;
1021 const Float_t hzAF = hzFrameThickness;
1022 const Float_t AFphi1 = 0.0;
1023 const Float_t AFphi2 = 90.0;
1027 // ScrewsInFrame parameters HEAD
1028 const Float_t SCRUHMI = 0.;
1029 const Float_t SCRUHMA = 0.690/2.;
1030 const Float_t SCRUHLE = 0.4/2.;
1031 // ScrewsInFrame parameters MIDDLE
1032 const Float_t SCRUMMI = 0.;
1033 const Float_t SCRUMMA = 0.39/2.;
1034 const Float_t SCRUMLE = hzFrameThickness;
1035 // ScrewsInFrame parameters NUT
1036 const Float_t SCRUNMI = 0.;
1037 const Float_t SCRUNMA = 0.78/2.;
1038 const Float_t SCRUNLE = 0.8/2.;
1040 // ___________________Make volumes________________________
1043 Float_t posX,posY,posZ;
1045 // Quadrant volume TUBS1, positioned at the end
1046 par[0] = fgkMotherIR1;
1047 par[1] = fgkMotherOR1;
1048 par[2] = fgkMotherThick1;
1049 par[3] = fgkMotherPhiL1;
1050 par[4] = fgkMotherPhiU1;
1051 gMC->Gsvolu(QuadrantMLayerName(chamber),"TUBS",idAir,par,5);
1053 // Quadrant volume TUBS2, positioned at the end
1054 par[0] = fgkMotherIR2;
1055 par[1] = fgkMotherOR2;
1056 par[2] = fgkMotherThick2;
1057 par[3] = fgkMotherPhiL2;
1058 par[4] = fgkMotherPhiU2;
1060 gMC->Gsvolu(QuadrantNLayerName(chamber),"TUBS",idAir,par,5);
1061 gMC->Gsvolu(QuadrantFLayerName(chamber),"TUBS",idAir,par,5);
1065 par[0] = hxInVFrame;
1066 par[1] = hyInVFrame;
1067 par[2] = hzInVFrame;
1068 gMC->Gsvolu("SQ00","BOX",idFrameEpoxy,par,3);
1070 //Flat 1mm vertical section
1074 gMC->Gsvolu("SQ01","BOX",idFrameEpoxy,par,3);
1078 // - 3 components (a cuboid and 2 trapezes) and 2 layers (Epoxy/Inox)
1082 // TopFrameAnode - layer 1 of 2
1086 gMC->Gsvolu("SQ02","BOX",idFrameEpoxy,par,3);
1088 // TopFrameAnode - layer 2 of 2
1090 gMC->Gsvolu("SQ03","BOX",idInox,par,3);
1092 // TopFrameAnodeA - layer 1 of 2
1104 gMC->Gsvolu("SQ04","TRAP",idFrameEpoxy,par,11);
1106 // TopFrameAnodeA - layer 2 of 2
1108 gMC->Gsvolu("SQ05","TRAP",idInox,par,11);
1110 // TopFrameAnodeB - layer 1 of 2
1122 gMC->Gsvolu("SQ06","TRAP",idFrameEpoxy,par,11);
1124 // OutTopTrapFrameB - layer 2 of 2
1126 gMC->Gsvolu("SQ07","TRAP",idInox,par,11);
1128 // TopAnode1 - layer 1 of 2
1132 gMC->Gsvolu("SQ08","BOX",idInox,par,3);
1134 // TopAnode1 - layer 2 of 2
1136 gMC->Gsvolu("SQ09","BOX",idFR4,par,11);
1138 // TopAnode2 - layer 1 of 2
1150 gMC->Gsvolu("SQ10","TRAP",idInox,par,11);
1152 // TopAnode2 - layer 2 of 2
1154 gMC->Gsvolu("SQ11","TRAP",idFR4,par,11);
1156 // TopAnode3 - layer 1 of 1
1168 gMC->Gsvolu("SQ12","TRAP",idFR4,par,11);
1182 gMC->Gsvolu("SQ13","TRAP",idCopper,par,11);
1196 gMC->Gsvolu("SQ14","TRAP",idCopper,par,11);
1202 gMC->Gsvolu("SQ15","BOX",idAlu,par,3);
1204 // TopPositioner parameters - single Stainless Steel trapezoid
1216 gMC->Gsvolu("SQ16","TRAP",idInox,par,11);
1219 // OutEdgeTrapFrame Epoxy = (4 trapezes)*2 copies*2 layers (Epoxy/Inox)
1222 // Trapezoid 1 - 2 layers
1232 par[10] = alp2OETF1;
1235 gMC->Gsvolu("SQ17","TRAP",idFrameEpoxy,par,11);
1237 gMC->Gsvolu("SQ18","TRAP",idInox,par,11);
1239 // Trapezoid 2 - 2 layers
1246 par[10] = alp2OETF2;
1249 gMC->Gsvolu("SQ19","TRAP",idFrameEpoxy,par,11);
1251 gMC->Gsvolu("SQ20","TRAP",idInox,par,11);
1253 // Trapezoid 3 - 2 layers
1260 par[10] = alp2OETF3;
1263 gMC->Gsvolu("SQ21","TRAP",idFrameEpoxy,par,11);
1265 gMC->Gsvolu("SQ22","TRAP",idInox,par,11);
1267 // Trapezoid 4 - 2 layers
1275 par[10] = alp2OETF4;
1278 gMC->Gsvolu("SQ23","TRAP",idFrameEpoxy,par,11);
1280 gMC->Gsvolu("SQ24","TRAP",idInox,par,11);
1284 par[0] = hxOutVFrame;
1285 par[1] = hyOutVFrame;
1286 par[2] = hzOutVFrame;
1287 gMC->Gsvolu("SQ25","BOX",idFrameEpoxy,par,3);
1301 gMC->Gsvolu("SQ26","TRAP",idFrameEpoxy,par,11);
1303 // EarthFaceCu trapezoid
1315 gMC->Gsvolu("SQ27","TRAP",idCopper,par,11);
1317 // VertEarthSteel trapezoid
1329 gMC->Gsvolu("SQ28","TRAP",idInox,par,11);
1331 // VertEarthProfCu trapezoid
1343 gMC->Gsvolu("SQ29","TRAP",idCopper,par,11);
1345 // SuppLateralPositionner cuboid
1349 gMC->Gsvolu("SQ30","BOX",idAlu,par,3);
1351 // LateralPositionerFace
1355 gMC->Gsvolu("SQ31","BOX",idInox,par,3);
1357 // LateralPositionerProfile
1361 gMC->Gsvolu("SQ32","BOX",idInox,par,3); // middle layer
1366 gMC->Gsvolu("SQ33","BOX",idInox,par,3); // near and far layers
1368 // VertCradleA - 1st trapezoid
1380 gMC->Gsvolu("SQ34","TRAP",idAlu,par,11);
1382 // VertCradleB - 2nd trapezoid
1394 gMC->Gsvolu("SQ35","TRAP",idAlu,par,11);
1396 // VertCradleC - 3rd trapezoid
1408 gMC->Gsvolu("SQ36","TRAP",idAlu,par,11);
1410 // VertCradleD - 4th trapezoid
1422 gMC->Gsvolu("SQ37","TRAP",idAlu,par,11);
1424 // LateralSightSupport trapezoid
1436 gMC->Gsvolu("SQ38","TRAP",idAlu,par,11);
1442 gMC->Gsvolu("SQ39","TUBE",idFrameEpoxy,par,3);
1446 par[0] = hxInHFrame;
1447 par[1] = hyInHFrame;
1448 par[2] = hzInHFrame;
1449 gMC->Gsvolu("SQ40","BOX",idFrameEpoxy,par,3);
1451 //Flat 7.5mm horizontal section
1455 gMC->Gsvolu("SQ41","BOX",idFrameEpoxy,par,3);
1464 gMC->Gsvolu("SQ42","TUBS",idFrameEpoxy,par,5);
1467 // ScrewsInFrame - 3 sections in order to avoid overlapping volumes
1468 // Screw Head, in air
1473 gMC->Gsvolu("SQ43","TUBE",idInox,par,3);
1475 // Middle part, in the Epoxy
1479 gMC->Gsvolu("SQ44","TUBE",idInox,par,3);
1481 // Screw nut, in air
1485 gMC->Gsvolu("SQ45","TUBE",idInox,par,3);
1488 // __________________Place volumes in the quadrant ____________
1492 posY = 2.0*hyInHFrame+2.*hyH1mm+IAF+hyInVFrame;
1494 gMC->Gspos("SQ00",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1496 //Flat 7.5mm vertical section
1497 posX = 2.0*hxInVFrame+hxV1mm;
1498 posY = 2.0*hyInHFrame+2.*hyH1mm+IAF+hyV1mm;
1500 gMC->Gspos("SQ01",1,QuadrantMLayerName(chamber),posX, posY, posZ,0, "ONLY");
1502 // TopFrameAnode place 2 layers of TopFrameAnode cuboids
1504 posY = 2.*hyInHFrame+2.*hyH1mm+IAF+2.*hyInVFrame+hyTFA;
1505 posZ = hzOuterFrameInox;
1506 gMC->Gspos("SQ02",1,QuadrantMLayerName(chamber),posX, posY, posZ,0,"ONLY");
1507 posZ = posZ+hzOuterFrameInox;
1508 gMC->Gspos("SQ03",1,QuadrantMLayerName(chamber),posX, posY, posZ,0,"ONLY");
1510 // place 2 layers of TopFrameAnodeA trapezoids
1511 posX = 35.8932+fgkDeltaQuadLHC;
1512 posY = 92.6745+fgkDeltaQuadLHC;
1513 posZ = hzOuterFrameInox;
1514 gMC->Gspos("SQ04",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1515 posZ = posZ+hzOuterFrameInox;
1516 gMC->Gspos("SQ05",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1518 // place 2 layers of TopFrameAnodeB trapezoids
1519 posX = 44.593+fgkDeltaQuadLHC;
1520 posY = 90.737+fgkDeltaQuadLHC;
1521 posZ = hzOuterFrameInox;
1522 gMC->Gspos("SQ06",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1523 posZ = posZ+hzOuterFrameInox;
1524 gMC->Gspos("SQ07",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1526 // TopAnode1 place 2 layers
1527 posX = 6.8+fgkDeltaQuadLHC;
1528 posY = 99.85+fgkDeltaQuadLHC;
1529 posZ = -1.*hzAnodeFR4;
1530 gMC->Gspos("SQ08",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1531 posZ = posZ+hzTopAnodeSteel1;
1532 gMC->Gspos("SQ09",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1534 // TopAnode2 place 2 layers
1535 posX = 18.534+fgkDeltaQuadLHC;
1536 posY = 99.482+fgkDeltaQuadLHC;
1537 posZ = -1.*hzAnodeFR4;
1538 gMC->Gspos("SQ10",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1539 posZ = posZ+hzTopAnodeSteel2;
1540 gMC->Gspos("SQ11",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1542 // TopAnode3 place 1 layer
1543 posX = 25.80+fgkDeltaQuadLHC;
1544 posY = 98.61+fgkDeltaQuadLHC;
1546 gMC->Gspos("SQ12",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1548 // TopEarthFace - 2 copies
1549 posX = 23.122+fgkDeltaQuadLHC;
1550 posY = 96.90+fgkDeltaQuadLHC;
1551 posZ = hzOuterFrameEpoxy+hzOuterFrameInox+hzTopEarthFaceCu;
1552 gMC->Gspos("SQ13",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1554 gMC->Gspos("SQ13",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1557 posX = 14.475+fgkDeltaQuadLHC;
1558 posY = 97.900+fgkDeltaQuadLHC;
1559 posZ = hzTopEarthProfileCu;
1560 gMC->Gspos("SQ14",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1562 gMC->Gspos("SQ14",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1564 // TopGasSupport - 2 copies
1565 posX = 4.9500+fgkDeltaQuadLHC;
1566 posY = 96.200+fgkDeltaQuadLHC;
1567 posZ = hzOuterFrameEpoxy+hzOuterFrameInox+hzTopGasSupportAl;
1568 gMC->Gspos("SQ15",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1570 gMC->Gspos("SQ15",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1572 // TopPositioner parameters - single Stainless Steel trapezoid - 2 copies
1573 posX = 7.60+fgkDeltaQuadLHC;
1574 posY = 98.98+fgkDeltaQuadLHC;
1575 posZ = hzOuterFrameEpoxy+hzOuterFrameInox+2.*hzTopGasSupportAl+hzTopPositionerSteel;
1576 gMC->Gspos("SQ16",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1578 gMC->Gspos("SQ16",2,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1584 XCenter[0] = 73.201 + fgkDeltaQuadLHC;
1585 XCenter[1] = 78.124 + fgkDeltaQuadLHC;
1586 XCenter[2] = 82.862 + fgkDeltaQuadLHC;
1587 XCenter[3] = 87.418 + fgkDeltaQuadLHC;
1589 YCenter[0] = 68.122 + fgkDeltaQuadLHC;
1590 YCenter[1] = 62.860 + fgkDeltaQuadLHC;
1591 YCenter[2] = 57.420 + fgkDeltaQuadLHC;
1592 YCenter[3] = 51.800 + fgkDeltaQuadLHC;
1594 XCenter[4] = 68.122 + fgkDeltaQuadLHC;
1595 XCenter[5] = 62.860 + fgkDeltaQuadLHC;
1596 XCenter[6] = 57.420 + fgkDeltaQuadLHC;
1597 XCenter[7] = 51.800 + fgkDeltaQuadLHC;
1599 YCenter[4] = 73.210 + fgkDeltaQuadLHC;
1600 YCenter[5] = 78.124 + fgkDeltaQuadLHC;
1601 YCenter[6] = 82.862 + fgkDeltaQuadLHC;
1602 YCenter[7] = 87.418 + fgkDeltaQuadLHC;
1604 posZ = -1.0*hzOuterFrameInox;
1605 gMC->Gspos("SQ17",1,QuadrantMLayerName(chamber), XCenter[0], YCenter[0], posZ, rot2,"ONLY");
1606 gMC->Gspos("SQ17",2,QuadrantMLayerName(chamber), XCenter[4], YCenter[4], posZ, rot3,"ONLY");
1608 gMC->Gspos("SQ19",1,QuadrantMLayerName(chamber), XCenter[1], YCenter[1], posZ, rot2,"ONLY");
1609 gMC->Gspos("SQ19",2,QuadrantMLayerName(chamber), XCenter[5], YCenter[5], posZ, rot3,"ONLY");
1611 gMC->Gspos("SQ21",1,QuadrantMLayerName(chamber), XCenter[2], YCenter[2], posZ, rot2,"ONLY");
1612 gMC->Gspos("SQ21",2,QuadrantMLayerName(chamber), XCenter[6], YCenter[6], posZ, rot3,"ONLY");
1614 gMC->Gspos("SQ23",1,QuadrantMLayerName(chamber), XCenter[3], YCenter[3], posZ, rot2,"ONLY");
1615 gMC->Gspos("SQ23",2,QuadrantMLayerName(chamber), XCenter[7], YCenter[7], posZ, rot3,"ONLY");
1617 posZ = posZ+hzOuterFrameEpoxy;
1619 gMC->Gspos("SQ18",1,QuadrantMLayerName(chamber), XCenter[0], YCenter[0], posZ, rot2,"ONLY");
1620 gMC->Gspos("SQ18",2,QuadrantMLayerName(chamber), XCenter[4], YCenter[4], posZ, rot3,"ONLY");
1622 gMC->Gspos("SQ20",1,QuadrantMLayerName(chamber), XCenter[1], YCenter[1], posZ, rot2,"ONLY");
1623 gMC->Gspos("SQ20",2,QuadrantMLayerName(chamber), XCenter[5], YCenter[5], posZ, rot3,"ONLY");
1625 gMC->Gspos("SQ22",1,QuadrantMLayerName(chamber), XCenter[2], YCenter[2], posZ, rot2,"ONLY");
1626 gMC->Gspos("SQ22",2,QuadrantMLayerName(chamber), XCenter[6], YCenter[6], posZ, rot3,"ONLY");
1628 gMC->Gspos("SQ24",1,QuadrantMLayerName(chamber), XCenter[3], YCenter[3], posZ, rot2,"ONLY");
1629 gMC->Gspos("SQ24",2,QuadrantMLayerName(chamber), XCenter[7], YCenter[7], posZ, rot3,"ONLY");
1634 posX = 2.*hxInVFrame+IAF+2.*hxInHFrame-hxOutVFrame+2.*hxV1mm;
1635 posY = 2.*hyInHFrame+hyOutVFrame;
1637 gMC->Gspos("SQ25",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1639 const Float_t TOPY = posY+hyOutVFrame;
1640 const Float_t OUTX = posX;
1644 posY = TOPY+((bl1OCTF+tl1OCTF)/2.);
1646 gMC->Gspos("SQ26",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1,"ONLY");
1648 // VertEarthFaceCu - 2 copies
1649 posX = 89.4000+fgkDeltaQuadLHC;
1650 posY = 25.79+fgkDeltaQuadLHC;
1651 posZ = hzFrameThickness+2.0*hzFoam+hzVertEarthFaceCu;
1652 gMC->Gspos("SQ27",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1654 gMC->Gspos("SQ27",2,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1656 // VertEarthSteel - 2 copies
1657 posX = 91.00+fgkDeltaQuadLHC;
1658 posY = 30.616+fgkDeltaQuadLHC;
1659 posZ = hzFrameThickness+2.0*hzFoam+hzVertBarSteel;
1660 gMC->Gspos("SQ28",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1662 gMC->Gspos("SQ28",2,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1664 // VertEarthProfCu - 2 copies
1665 posX = 92.000+fgkDeltaQuadLHC;
1666 posY = 29.64+fgkDeltaQuadLHC;
1667 posZ = hzFrameThickness;
1668 gMC->Gspos("SQ29",1,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1670 gMC->Gspos("SQ29",2,QuadrantMLayerName(chamber),posX, posY, posZ, rot1, "ONLY");
1672 // SuppLateralPositionner - 2 copies
1673 posX = 90.2-fgkNearFarLHC;
1674 posY = 5.00-fgkNearFarLHC;
1675 posZ = hzLateralPosnAl-fgkMotherThick2;
1676 gMC->Gspos("SQ30",1,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1678 gMC->Gspos("SQ30",2,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1680 // LateralPositionner - 2 copies - Face view
1681 posX = 92.175-fgkNearFarLHC-2.*hxLPP;
1682 posY = 5.00-fgkNearFarLHC;
1683 posZ =2.0*hzLateralPosnAl+hzLateralPosnInoxFace-fgkMotherThick2;
1684 gMC->Gspos("SQ31",1,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1686 gMC->Gspos("SQ31",2,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1688 // LateralPositionner - Profile view
1689 posX = 92.175+fgkDeltaQuadLHC+hxLPF-hxLPP;
1690 posY = 5.00+fgkDeltaQuadLHC;
1692 gMC->Gspos("SQ32",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY"); // middle layer
1694 posX = 92.175-fgkNearFarLHC+hxLPF-hxLPP;
1695 posY = 5.0000-fgkNearFarLHC;
1696 posZ = fgkMotherThick2-hzLPNF;
1697 gMC->Gspos("SQ33",1,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY"); // near layer
1699 gMC->Gspos("SQ33",2,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY"); // far layer
1701 // VertCradleA 1st Trapezoid - 3 copies
1702 posX = 95.73+fgkDeltaQuadLHC;
1703 posY = 33.26+fgkDeltaQuadLHC;
1705 gMC->Gspos("SQ34",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1707 posX = 95.73-fgkNearFarLHC;
1708 posY = 33.26-fgkNearFarLHC;
1709 posZ = 2.0*hzLateralSightAl+hzVerticalCradleAl-fgkMotherThick2;
1710 gMC->Gspos("SQ34",1,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1712 gMC->Gspos("SQ34",3,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1714 // VertCradleB 2nd Trapezoid - 3 copies
1715 posX = 97.29+fgkDeltaQuadLHC;
1716 posY = 23.02+fgkDeltaQuadLHC;
1718 gMC->Gspos("SQ35",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1720 posX = 97.29-fgkNearFarLHC;
1721 posY = 23.02-fgkNearFarLHC;
1722 posZ = 2.0*hzLateralSightAl+hzVerticalCradleAl-fgkMotherThick2;
1723 gMC->Gspos("SQ35",1,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1725 gMC->Gspos("SQ35",3,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1727 // OutVertCradleC 3rd Trapeze - 3 copies
1728 posX = 98.31+fgkDeltaQuadLHC;
1729 posY = 12.77+fgkDeltaQuadLHC;
1731 gMC->Gspos("SQ36",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1733 posX = 98.31-fgkNearFarLHC;
1734 posY = 12.77-fgkNearFarLHC;
1736 posZ = 2.0*hzLateralSightAl+hzVerticalCradleAl-fgkMotherThick2;
1737 gMC->Gspos("SQ36",1,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1739 gMC->Gspos("SQ36",3,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1741 // OutVertCradleD 4th Trapeze - 3 copies
1742 posX = 98.81+fgkDeltaQuadLHC;
1743 posY = 2.52+fgkDeltaQuadLHC;
1745 gMC->Gspos("SQ37",2,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1747 posZ = fgkMotherThick1-hzVerticalCradleAl;
1748 gMC->Gspos("SQ37",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1750 gMC->Gspos("SQ37",3,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1752 // LateralSightSupport - 2 copies
1753 posX = 98.53-fgkNearFarLHC;
1754 posY = 10.00-fgkNearFarLHC;
1755 posZ = hzLateralSightAl-fgkMotherThick2;
1756 gMC->Gspos("SQ38",1,QuadrantNLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1758 gMC->Gspos("SQ38",2,QuadrantFLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1761 posX = 92.84+fgkDeltaQuadLHC;
1762 posY = 8.13+fgkDeltaQuadLHC;
1764 gMC->Gspos("SQ39",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0,"ONLY");
1769 posX = 2.0*hxInVFrame+2.*hxV1mm+IAF+hxInHFrame;
1772 gMC->Gspos("SQ40",1,QuadrantMLayerName(chamber),posX, posY, posZ, 0, "ONLY");
1774 // Flat 7.5mm horizontal section
1775 posX = 2.0*hxInVFrame+2.*hxV1mm+IAF+hxH1mm;
1776 posY = 2.0*hyInHFrame+hyH1mm;
1778 gMC->Gspos("SQ41",1,QuadrantMLayerName(chamber),posX, posY, posZ,0, "ONLY");
1781 posX = 2.0*hxInVFrame+2.*hxV1mm;
1782 posY = 2.0*hyInHFrame+2.*hyH1mm;
1784 gMC->Gspos("SQ42",1,QuadrantMLayerName(chamber),posX, posY, posZ,0, "ONLY");
1786 // ScrewsInFrame - in sensitive volume
1791 // Screws on IHEpoxyFrame
1793 const Int_t NumberOfScrewsIH = 14; // no. of screws on the IHEpoxyFrame
1794 const Float_t offX = 5.; // inter-screw distance
1796 // first screw coordinates
1799 // other screw coordinates
1800 for (Int_t i = 1;i<NumberOfScrewsIH;i++){
1801 scruX[i] = scruX[i-1]+offX;
1802 scruY[i] = scruY[0];
1804 // Position the volumes on the frames
1805 for (Int_t i = 0;i<NumberOfScrewsIH;i++){
1806 posX = fgkDeltaQuadLHC + scruX[i];
1807 posY = fgkDeltaQuadLHC + scruY[i];
1809 gMC->Gspos("SQ43",i+1,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ-hzInHFrame-SCRUHLE, 0, "ONLY");
1810 gMC->Gspos("SQ44",i+1,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ, 0, "ONLY");
1811 gMC->Gspos("SQ45",i+1,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ+hzInHFrame+SCRUNLE, 0, "ONLY");
1813 // special screw coordinates
1816 posX = fgkDeltaQuadLHC + scruX[63];
1817 posY = fgkDeltaQuadLHC + scruY[63];
1819 gMC->Gspos("SQ43",64,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ-hzInHFrame-SCRUHLE, 0, "ONLY");
1820 gMC->Gspos("SQ44",64,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ, 0, "ONLY");
1821 gMC->Gspos("SQ45",64,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ+hzInHFrame+SCRUNLE, 0, "ONLY");
1823 // Screws on the IVEpoxyFrame
1825 const Int_t NumberOfScrewsIV = 15; // no. of screws on the IVEpoxyFrame
1826 const Float_t offY = 5.; // inter-screw distance
1827 Int_t FirstScrew = 58;
1828 Int_t LastScrew = 44;
1830 // first (special) screw coordinates
1831 scruX[FirstScrew-1] = -2.23;
1832 scruY[FirstScrew-1] = 16.3;
1833 // second (repetitive) screw coordinates
1834 scruX[FirstScrew-2] = -2.23;
1835 scruY[FirstScrew-2] = 21.07;
1836 // other screw coordinates
1837 for (Int_t i = FirstScrew-3;i>LastScrew-2;i--){
1838 scruX[i] = scruX[FirstScrew-2];
1839 scruY[i] = scruY[i+1]+offY;
1842 for (Int_t i = 0;i<NumberOfScrewsIV;i++){
1843 posX = fgkDeltaQuadLHC + scruX[i+LastScrew-1];
1844 posY = fgkDeltaQuadLHC + scruY[i+LastScrew-1];
1846 gMC->Gspos("SQ43",i+LastScrew,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ-hzInHFrame-SCRUHLE, 0, "ONLY");
1847 gMC->Gspos("SQ44",i+LastScrew,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ, 0, "ONLY");
1848 gMC->Gspos("SQ45",i+LastScrew,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ+hzInHFrame+SCRUNLE, 0, "ONLY");
1851 // Screws on the OVEpoxyFrame
1853 const Int_t NumberOfScrewsOV = 10; // no. of screws on the OVEpoxyFrame
1858 // first (repetitive) screw coordinates
1859 scruX[FirstScrew-1] = 90.9;
1860 scruY[FirstScrew-1] = -2.23; // true value
1862 // other screw coordinates
1863 for (Int_t i = FirstScrew; i<LastScrew; i++ ){
1864 scruX[i] = scruX[FirstScrew-1];
1865 scruY[i] = scruY[i-1]+offY;
1867 for (Int_t i = 0;i<NumberOfScrewsOV;i++){
1868 posX = fgkDeltaQuadLHC + scruX[i+FirstScrew-1];
1869 posY = fgkDeltaQuadLHC + scruY[i+FirstScrew-1];
1871 gMC->Gspos("SQ43",i+FirstScrew,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ-hzInHFrame-SCRUHLE, 0, "ONLY");
1872 gMC->Gspos("SQ44",i+FirstScrew,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ, 0, "ONLY");
1873 gMC->Gspos("SQ45",i+FirstScrew,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ+hzInHFrame+SCRUNLE, 0, "ONLY");
1876 // Inner Arc of Frame, screw positions and numbers-1
1877 scruX[62] = 16.009; scruY[62] = 1.401;
1878 scruX[61] = 14.564; scruY[61] = 6.791;
1879 scruX[60] = 11.363; scruY[60] = 11.363;
1880 scruX[59] = 6.791 ; scruY[59] = 14.564;
1881 scruX[58] = 1.401 ; scruY[58] = 16.009;
1883 for (Int_t i = 0;i<5;i++){
1884 posX = fgkDeltaQuadLHC + scruX[i+58];
1885 posY = fgkDeltaQuadLHC + scruY[i+58];
1887 gMC->Gspos("SQ43",i+58+1,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ-hzInHFrame-SCRUHLE, 0, "ONLY");
1888 gMC->Gspos("SQ44",i+58+1,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ, 0, "ONLY");
1889 gMC->Gspos("SQ45",i+58+1,QuadrantMLayerName(chamber),posX+0.1, posY+0.1, posZ+hzInHFrame+SCRUNLE, 0, "ONLY");
1893 //______________________________________________________________________________
1894 void AliMUONv2::PlaceInnerLayers(Int_t chamber)
1896 // Place the gas and copper layers for the specified chamber.
1899 // Rotation Matrices
1900 Int_t rot1, rot2, rot3, rot4;
1902 AliMatrix(rot1, 90., 315., 90., 45., 0., 0.); // -45 deg
1903 AliMatrix(rot2, 90., 90., 90., 180., 0., 0.); // 90 deg
1904 AliMatrix(rot3, 90., 270., 90., 0., 0., 0.); // -90 deg
1905 AliMatrix(rot4, 90., 45., 90., 135., 0., 0.); // deg
1910 GReal_t zc = fgkHzGas + fgkHzPadPlane;
1911 Int_t dpos = (chamber-1)*2;
1914 x = 14.53 + fgkDeltaQuadLHC;
1915 y = 53.34 + fgkDeltaQuadLHC;
1916 name = GasVolumeName("SAG", chamber);
1917 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,0,"ONLY");
1918 gMC->Gspos("SA1C", 1+dpos, QuadrantMLayerName(chamber),x,y, zc,0,"ONLY");
1919 gMC->Gspos("SA1C", 2+dpos, QuadrantMLayerName(chamber),x,y,-zc,0,"ONLY");
1921 x = 40.67 + fgkDeltaQuadLHC;
1922 y = 40.66 + fgkDeltaQuadLHC;
1923 name = GasVolumeName("SBG", chamber);
1924 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot1,"ONLY");
1925 gMC->Gspos("SB1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot1,"ONLY");
1926 gMC->Gspos("SB1C", 2+dpos, QuadrantMLayerName(chamber),x,y,-zc,rot1,"ONLY");
1928 x = 53.34 + fgkDeltaQuadLHC;
1929 y = 14.52 + fgkDeltaQuadLHC;
1930 name = GasVolumeName("SCG", chamber);
1931 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot2,"ONLY");
1932 gMC->Gspos("SC1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot2,"ONLY");
1933 gMC->Gspos("SC1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot2,"ONLY");
1935 x = 5.83 + fgkDeltaQuadLHC;
1936 y = 17.29 + fgkDeltaQuadLHC;
1937 name = GasVolumeName("SDG", chamber);
1938 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot3,"ONLY");
1939 gMC->Gspos("SD1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot3,"ONLY");
1940 gMC->Gspos("SD1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot3,"ONLY");
1942 x = 9.04 + fgkDeltaQuadLHC;
1943 y = 16.91 + fgkDeltaQuadLHC;
1944 name = GasVolumeName("SEG", chamber);
1945 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,0,"ONLY");
1946 gMC->Gspos("SE1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,0,"ONLY");
1947 gMC->Gspos("SE1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,0,"ONLY");
1949 x = 10.12 + fgkDeltaQuadLHC;
1950 y = 14.67 + fgkDeltaQuadLHC;
1951 name = GasVolumeName("SFG", chamber);
1952 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
1953 gMC->Gspos("SF1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
1954 gMC->Gspos("SF1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
1956 x = 8.2042 + fgkDeltaQuadLHC;
1957 y = 16.19 + fgkDeltaQuadLHC;
1958 name = GasVolumeName("SGG", chamber);
1959 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
1960 gMC->Gspos("SG1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
1961 gMC->Gspos("SG1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
1963 x = 14.68 + fgkDeltaQuadLHC;
1964 y = 10.10 + fgkDeltaQuadLHC;
1965 name = GasVolumeName("SHG", chamber);
1966 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
1967 gMC->Gspos("SH1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
1968 gMC->Gspos("SH1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
1970 x = 16.21 + fgkDeltaQuadLHC;
1971 y = 8.17 + fgkDeltaQuadLHC;
1972 name = GasVolumeName("SIG", chamber);
1973 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot4,"ONLY");
1974 gMC->Gspos("SI1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot4,"ONLY");
1975 gMC->Gspos("SI1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot4,"ONLY");
1977 x = 16.92 + fgkDeltaQuadLHC;
1978 y = 9.02 + fgkDeltaQuadLHC;
1979 name = GasVolumeName("SJG", chamber);
1980 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,rot3,"ONLY");
1981 gMC->Gspos("SJ1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,rot3,"ONLY");
1982 gMC->Gspos("SJ1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,rot3,"ONLY");
1984 x = 17.30 + fgkDeltaQuadLHC;
1985 y = 5.85 + fgkDeltaQuadLHC;
1986 name = GasVolumeName("SKG", chamber);
1987 gMC->Gspos(name,1,QuadrantMLayerName(chamber),x,y,zg,0,"ONLY");
1988 gMC->Gspos("SK1C", 1+dpos ,QuadrantMLayerName(chamber),x,y, zc,0,"ONLY");
1989 gMC->Gspos("SK1C", 2+dpos ,QuadrantMLayerName(chamber),x,y,-zc,0,"ONLY");
1992 //______________________________________________________________________________
1993 void AliMUONv2::PlaceSector(AliMpSector* sector,TSpecialMap specialMap,
1994 const TVector3& where, Bool_t reflectZ, Int_t chamber)
1996 // Place all the segments in the mother volume, at the position defined
1997 // by the sector's data.
2000 static Int_t segNum=1;
2007 reflZ=0; // no reflection along z... nothing
2008 AliMatrix(rotMat, 90.,90.,90,180.,0.,0.); // 90° rotation around z, NO reflection along z
2011 AliMatrix(reflZ, 90.,0.,90,90.,180.,0.); // reflection along z
2012 AliMatrix(rotMat, 90.,90.,90,180.,180.,0.); // 90° rotation around z AND reflection along z
2015 GReal_t posX,posY,posZ;
2017 IntVector already_done;
2018 for (Int_t irow=0;irow<sector->GetNofRows();irow++){ // for each row
2019 AliMpRow* row = sector->GetRow(irow);
2022 for (Int_t iseg=0;iseg<row->GetNofRowSegments();iseg++){ // for each row segment
2023 AliMpVRowSegment* seg = row->GetRowSegment(iseg);
2026 TSpecialMap::iterator iter
2027 = specialMap.find(seg->GetMotifPositionId(0));
2029 if ( iter == specialMap.end()){ //if this is a normal segment (ie. not part of <specialMap>)
2031 // create the cathode part
2032 sprintf(segName,"%.3dM", segNum);
2033 CreatePlaneSegment(segName, seg->Dimensions()/10., seg->GetNofMotifs());
2035 posX = where.X() + seg->Position().X()/10.;
2036 posY = where.Y() + seg->Position().Y()/10.;
2037 posZ = where.Z() + sgn * (TotalHzPlane() + fgkHzGas + 2.*fgkHzPadPlane);
2038 gMC->Gspos(segName, 1, QuadrantMLayerName(chamber), posX, posY, posZ, reflZ, "ONLY");
2040 // and place all the daughter boards of this segment
2041 for (Int_t motifNum=0;motifNum<seg->GetNofMotifs();motifNum++) {
2042 Int_t motifPosId = seg->GetMotifPositionId(motifNum);
2043 AliMpMotifPosition* motifPos =
2044 sector->GetMotifMap()->FindMotifPosition(motifPosId);
2046 posX = where.X() + motifPos->Position().X()/10.+fgkOffsetX;
2047 posY = where.Y() + motifPos->Position().Y()/10.+fgkOffsetY;
2048 posZ = where.Z() + sgn * (fgkMotherThick1 - TotalHzDaughter());
2049 gMC->Gspos(fgkDaughterName, motifPosId, QuadrantMLayerName(chamber), posX, posY, posZ, reflZ, "ONLY");
2055 // if this is a special segment
2056 for (Int_t motifNum=0;motifNum<seg->GetNofMotifs();motifNum++) {// for each motif
2058 Int_t motifPosId = seg->GetMotifPositionId(motifNum);
2060 if (find(already_done.begin(),already_done.end(),motifPosId)
2061 != already_done.end()) continue; // don't treat the same motif twice
2063 AliMUONSt1SpecialMotif spMot = specialMap[motifPosId];
2064 AliMpMotifPosition* motifPos = sector->GetMotifMap()->FindMotifPosition(motifPosId);
2066 // place the hole for the motif, wrt the requested rotation angle
2067 Int_t rot = ( spMot.GetRotAngle()<0.1 ) ? reflZ:rotMat;
2069 posX = where.X() + motifPos->Position().X()/10.+spMot.GetDelta().X();
2070 posY = where.Y() + motifPos->Position().Y()/10.+spMot.GetDelta().Y();
2071 posZ = where.Z() + sgn * (TotalHzPlane() + fgkHzGas + 2.*fgkHzPadPlane);
2072 gMC->Gspos(fgkHoleName, motifPosId, QuadrantMLayerName(chamber), posX, posY, posZ, rot, "ONLY");
2074 // then place the daughter board for the motif, wrt the requested rotation angle
2075 posX = posX+fgkDeltaFilleEtamX;
2076 posY = posY+fgkDeltaFilleEtamY;
2077 posZ = where.Z() + sgn * (fgkMotherThick1 - TotalHzDaughter());
2078 gMC->Gspos(fgkDaughterName, motifPosId, QuadrantMLayerName(chamber), posX, posY, posZ, rot, "ONLY");
2080 already_done.push_back(motifPosId);// mark this motif as done
2082 }// end of special motif case
2087 //______________________________________________________________________________
2088 TString AliMUONv2::GasVolumeName(const TString& name, Int_t chamber) const
2090 // Inserts the chamber number into the name.
2093 TString newString(name);
2098 newString.Insert(2, number);
2103 //______________________________________________________________________________
2104 Bool_t AliMUONv2::IsInChamber(Int_t ich, Int_t volGid) const
2106 // True if volume <volGid> is part of the sensitive
2107 // volumes of chamber <ich>
2109 for (Int_t i = 0; i < fChamberV2[ich]->GetSize(); i++) {
2110 if (fChamberV2[ich]->At(i) == volGid) return kTRUE;
2116 // protected methods
2119 //______________________________________________________________________________
2120 Int_t AliMUONv2::GetChamberId(Int_t volId) const
2122 // Check if the volume with specified volId is a sensitive volume (gas)
2123 // of some chamber and returns the chamber number;
2124 // if not sensitive volume - return 0.
2127 for (Int_t i = 1; i <=2; i++)
2128 if (IsInChamber(i-1,volId)) return i;
2130 for (Int_t i = 3; i <= AliMUONConstants::NCh(); i++)
2131 if (volId==((AliMUONChamber*)(*fChambers)[i-1])->GetGid()) return i;
2140 //______________________________________________________________________________
2141 void AliMUONv2::CreateMaterials()
2143 // --- Define the various mixtures for GEANT ---
2145 // Ar-CO2 gas (80%+20%)
2146 Float_t ag1[2] = { 39.95,44.01};
2147 Float_t zg1[2] = { 18.,22.};
2148 Float_t dg1 = .001821;
2149 Float_t wg1[2] = { .8,0.2};
2150 // use wg1 weighting factors (6th arg > 0)
2151 AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 2, wg1);
2153 // Ar-buthane-freon gas -- trigger chambers
2154 Float_t atr1[4] = { 39.95,12.01,1.01,19. };
2155 Float_t ztr1[4] = { 18.,6.,1.,9. };
2156 Float_t wtr1[4] = { .56,.1262857,.2857143,.028 };
2157 Float_t dtr1 = .002599;
2158 AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
2160 // Rohacell 51 - imide methacrylique
2161 Float_t aRohacell51[4] = {12.01,1.01,16.00,14.01};
2162 Float_t zRohacell51[4] = {6.,1.,8.,7.};
2163 Float_t dRohacell51 = 0.052;
2164 Float_t wRohacell51[4] = {9.,13.,2.,1.};
2165 // use relative A (molecular) values (6th arg < 0)
2166 AliMixture(32, "FOAM$",aRohacell51,zRohacell51,dRohacell51,-4,wRohacell51);
2168 Float_t aSnPb[2] = {118.69,207.19};
2169 Float_t zSnPb[2] = {50,82};
2170 Float_t dSnPb = 8.926;
2171 Float_t wSnPb[2] = {0.6, 0.4} ;
2172 // use wSnPb weighting factors (6th arg > 0)
2173 AliMixture(35, "SnPb$", aSnPb,zSnPb,dSnPb,2,wSnPb);
2175 // plastic definition from K5, Freiburg (found on web)
2176 Float_t aPlastic[2]={1.01,12.01};
2177 Float_t zPlastic[2]={1,6};
2178 Float_t denPlastic=1.107;
2179 Float_t wPlastic[2]={1,1};
2180 // use relative A (molecular) values (6th arg < 0)...no other info...
2181 AliMixture( 33, "Plastic$",aPlastic,zPlastic,denPlastic,-2,wPlastic);
2183 // from CERN note NUFACT Note023, Oct.2000
2184 // Inox/Stainless Steel (18%Cr, 9%Ni)
2185 Float_t aInox[3] = {55.847,51.9961,58.6934};
2186 Float_t zInox[3] = {26.,24.,28.};
2187 Float_t denInox = 7.930;
2188 Float_t wInox[3] = {0.73,0.18,0.09};
2189 // use wInox weighting factors (6th arg > 0)
2190 AliMixture(37, "StainlessSteel$",aInox,zInox,denInox,3,wInox);
2193 Float_t abak[3] = {12.01 , 1.01 , 16.};
2194 Float_t zbak[3] = {6. , 1. , 8.};
2195 Float_t wbak[3] = {6. , 6. , 1.};
2197 AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
2199 // Ar-Isobutane gas (80%+20%)
2200 Float_t ag[3] = { 39.95,12.01,1.01 };
2201 Float_t zg[3] = { 18.,6.,1. };
2202 Float_t wg[3] = { .8,.057,.143 };
2203 Float_t dg = .0019596;
2204 AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
2206 // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger
2207 Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
2208 Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
2209 Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
2210 Float_t dtrig = .0031463;
2211 AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
2213 // --- Define the various AliMaterials for GEANT ---
2214 // from PDG and "The Particle Detector BriefBook", Bock and Vasilescu, P.18
2215 AliMaterial( 9, "Aluminium$", 26.98, 13., 2.7, -8.9, 26.1);
2216 AliMaterial(10, "Aluminium$", 26.98, 13., 2.7, -8.9, 26.1);
2217 AliMaterial(15, "air$", 14.61, 7.3, .001205, -30423.24, 67500);
2218 AliMaterial(30, "Copper$", 63.546,29.,8.96,-1.43,9.6);
2219 AliMaterial(31, "FR4$", 17.749, 8.875, 1.7, -19.4, 999.); // from DPG
2220 AliMaterial(34, "Kapton$", 12.01,6,1.42,-28.6,999); // from DPG
2221 // Density of FrameEpoxy only from manufacturer's specifications
2222 // Frame composite epoxy , X0 in g/cm**2 (guestimation!)
2223 AliMaterial(36, "FrameEpoxy",12.24,6.0,1.85,-19.14,999);// use 16.75cm
2225 // --- Define the tracking medias (AliMediums) for GEANT ---
2226 GReal_t epsil = .001; // Tracking precision,
2227 GReal_t stemax = -1.; // Maximum displacement for multiple scat
2228 GReal_t tmaxfd = -20.; // Maximum angle due to field deflection
2229 GReal_t deemax = -.3; // Maximum fractional energy loss, DLS
2230 GReal_t stmin = -.8;
2231 GReal_t maxStepAlu = 0.001; // from AliMUON.cxx
2232 GReal_t maxDestepAlu = -1.; // from AliMUON.cxx
2233 GReal_t maxStepGas=0.01; // from AliMUON.cxx
2235 Int_t iSXFLD = gAlice->Field()->Integ();
2236 Float_t sXMGMX = gAlice->Field()->Max();
2238 AliMedium(1, "AIR_CH_US$", 15, 1, iSXFLD, sXMGMX, tmaxfd,
2239 stemax, deemax, epsil, stmin);
2240 AliMedium(4, "ALU_CH_US$", 9, 0, iSXFLD, sXMGMX, tmaxfd,
2241 maxStepAlu, maxDestepAlu, epsil, stmin);
2242 AliMedium(5, "ALU_CH_US$", 10, 0, iSXFLD, sXMGMX, tmaxfd,
2243 maxStepAlu,maxDestepAlu, epsil, stmin);
2244 AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX,
2245 tmaxfd, fMaxStepGas,fMaxDestepGas, epsil, stmin);
2247 // Ar-Isobuthane-Forane-SF6 gas
2248 AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX,
2249 tmaxfd, stemax, deemax, epsil, stmin);
2250 AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX,
2251 tmaxfd, fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
2253 AliMedium(9, "ArCO2 80%$", 22, 1, iSXFLD, sXMGMX, tmaxfd, maxStepGas,
2254 maxDestepAlu, epsil, stmin);
2255 AliMedium(10, "COPPER_CH$", 30, 0, iSXFLD, sXMGMX, tmaxfd,
2256 maxStepAlu, maxDestepAlu, epsil, stmin);
2257 AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd,
2258 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
2259 AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd,
2260 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
2261 AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd,
2262 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
2263 AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd,
2264 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
2265 AliMedium(15, "FR4_CH$", 31, 0,iSXFLD, sXMGMX, 10., .01,.1, .003, .003);
2266 AliMedium(16, "FOAM_CH$", 32, 0,
2267 iSXFLD, sXMGMX, 10.0, 0.1, 0.1, 0.1, 0.1, 0, 0) ;
2268 AliMedium(17, "Plastic$", 33, 0,iSXFLD, sXMGMX, 10., .01, 1., .003, .003);
2269 AliMedium(18, "Kapton$", 34, 0,iSXFLD, sXMGMX, 10., .01, 1., .003, .003);
2270 AliMedium(19, "SnPb$", 35, 0,iSXFLD, sXMGMX, 10., .01, 1., .003, .003);
2271 AliMedium(20, "FrameCH$", 36, 1,iSXFLD, sXMGMX, 10., .001, 0.001, .001, .001);
2272 AliMedium(21, "InoxBolts$", 37,1,iSXFLD, sXMGMX, 10., .01, 1., .003, .003);
2274 // store the parameters
2275 Float_t a, z, dens, absl;
2277 AliGetMaterial(30,matName,a,z,dens,fRadlCopper,absl);
2278 AliGetMaterial(31,matName,a,z,dens,fRadlFR4,absl);
2279 AliGetMaterial(32,matName,a,z,dens,fRadlFoam,absl);
2282 //______________________________________________________________________________
2283 void AliMUONv2::CreateGeometry()
2285 // Create the GEANT geometry for the dimuon arm.
2286 // Use the parent's method for stations 2, 3, 4 and 5.
2287 // Use the detailed code for the first station.
2289 cout << "AliMUONv2::CreateGeometry()" << endl;
2290 cout << "_________________________________________" << endl;
2292 // Create basic volumes
2295 CreateDaughterBoard();
2296 CreateInnerLayers();
2298 // Create reflexion matrices
2300 Int_t reflXZ, reflYZ, reflXY;
2301 AliMatrix(reflXZ, 90., 180., 90., 90., 180., 0.);
2302 AliMatrix(reflYZ, 90., 0., 90.,-90., 180., 0.);
2303 AliMatrix(reflXY, 90., 180., 90., 270., 0., 0.);
2305 // Define transformations for each quadrant
2313 rotm[0]=0; // quadrant I
2314 rotm[1]=reflXZ; // quadrant II
2315 rotm[2]=reflXY; // quadrant III
2316 rotm[3]=reflYZ; // quadrant IV
2319 scale[0] = TVector3( 1, 1, 1); // quadrant I
2320 scale[1] = TVector3(-1, 1, -1); // quadrant II
2321 scale[2] = TVector3(-1, -1, 1); // quadrant III
2322 scale[3] = TVector3( 1, -1, -1); // quadrant IV
2324 // Shift in Z of the middle layer
2325 Double_t deltaZ = 6.5/2.;
2327 // Position of quadrant I wrt to the chamber position
2328 TVector3 pos0(-fgkDeltaQuadLHC, -fgkDeltaQuadLHC, deltaZ);
2330 // Shift for near/far layers
2331 GReal_t shiftXY = fgkFrameOffset;
2332 GReal_t shiftZ = fgkMotherThick1+fgkMotherThick2;
2334 // Build two chambers
2336 for (Int_t ich=1; ich<3; ich++) {
2338 // Create quadrant volume
2339 CreateQuadrant(ich);
2341 // Place gas volumes
2342 PlaceInnerLayers(ich);
2344 // Place the quadrant
2345 for (Int_t i=0; i<4; i++) {
2348 GReal_t posx = pos0.X() * scale[i].X();
2349 GReal_t posy = pos0.Y() * scale[i].Y();
2350 GReal_t posz = pos0.Z() * scale[i].Z() + AliMUONConstants::DefaultChamberZ(ich-1);
2351 gMC->Gspos(QuadrantMLayerName(ich), i+1, "ALIC", posx, posy, posz, rotm[i], "ONLY");
2354 Real_t posx2 = posx + shiftXY * scale[i].X();
2355 Real_t posy2 = posy + shiftXY * scale[i].Y();
2356 Real_t posz2 = posz - scale[i].Z()*shiftZ;
2357 gMC->Gspos(QuadrantNLayerName(ich), i+1, "ALIC", posx2, posy2, posz2, rotm[i],"ONLY");
2359 posz2 = posz + scale[i].Z()*shiftZ;
2360 gMC->Gspos(QuadrantFLayerName(ich), i+1, "ALIC", posx2, posy2, posz2, rotm[i],"ONLY");
2364 static Int_t stations[5]={0,1,1,1,1};
2366 AliMUONv1::CreateGeometry();
2369 //______________________________________________________________________________
2370 void AliMUONv2::Init()
2372 // Initialize Station 1 Tracking Chambers
2375 // Set the chamber (sensitive region) GEANT identifier
2376 fChamberV2[0] = new TArrayI(11); // Chamber 1 sensitive volume Id array
2377 fChamberV2[1] = new TArrayI(11); // Chamber 2 sensitive volume Id array
2379 AddChamberGid(0,gMC->VolId("SA1G"),0);
2380 AddChamberGid(0,gMC->VolId("SB1G"),1);
2381 AddChamberGid(0,gMC->VolId("SC1G"),2);
2382 AddChamberGid(0,gMC->VolId("SD1G"),3);
2383 AddChamberGid(0,gMC->VolId("SE1G"),4);
2384 AddChamberGid(0,gMC->VolId("SF1G"),5);
2385 AddChamberGid(0,gMC->VolId("SG1G"),6);
2386 AddChamberGid(0,gMC->VolId("SH1G"),7);
2387 AddChamberGid(0,gMC->VolId("SI1G"),8);
2388 AddChamberGid(0,gMC->VolId("SJ1G"),9);
2389 AddChamberGid(0,gMC->VolId("SK1G"),10);
2392 AddChamberGid(1,gMC->VolId("SA2G"),0);
2393 AddChamberGid(1,gMC->VolId("SB2G"),1);
2394 AddChamberGid(1,gMC->VolId("SC2G"),2);
2395 AddChamberGid(1,gMC->VolId("SD2G"),3);
2396 AddChamberGid(1,gMC->VolId("SE2G"),4);
2397 AddChamberGid(1,gMC->VolId("SF2G"),5);
2398 AddChamberGid(1,gMC->VolId("SG2G"),6);
2399 AddChamberGid(1,gMC->VolId("SH2G"),7);
2400 AddChamberGid(1,gMC->VolId("SI2G"),8);
2401 AddChamberGid(1,gMC->VolId("SJ2G"),9);
2402 AddChamberGid(1,gMC->VolId("SK2G"),10);
2405 // now do the other stations as in AliMUONv1
2406 for (i=0; i<AliMUONConstants::NCh(); i++) {
2407 ( (AliMUONChamber*) (*fChambers)[i])->Init();
2411 // Set the chamber (sensitive region) GEANT identifier
2412 ((AliMUONChamber*)(*fChambers)[0])->SetGid(-1); // joker
2413 ((AliMUONChamber*)(*fChambers)[1])->SetGid(-1); // joker
2415 ((AliMUONChamber*)(*fChambers)[2])->SetGid(gMC->VolId("S03G"));
2416 ((AliMUONChamber*)(*fChambers)[3])->SetGid(gMC->VolId("S04G"));
2418 ((AliMUONChamber*)(*fChambers)[4])->SetGid(gMC->VolId("S05G"));
2419 ((AliMUONChamber*)(*fChambers)[5])->SetGid(gMC->VolId("S06G"));
2421 ((AliMUONChamber*)(*fChambers)[6])->SetGid(gMC->VolId("S07G"));
2422 ((AliMUONChamber*)(*fChambers)[7])->SetGid(gMC->VolId("S08G"));
2424 ((AliMUONChamber*)(*fChambers)[8])->SetGid(gMC->VolId("S09G"));
2425 ((AliMUONChamber*)(*fChambers)[9])->SetGid(gMC->VolId("S10G"));
2427 ((AliMUONChamber*)(*fChambers)[10])->SetGid(gMC->VolId("SG1A"));
2428 ((AliMUONChamber*)(*fChambers)[11])->SetGid(gMC->VolId("SG2A"));
2429 ((AliMUONChamber*)(*fChambers)[12])->SetGid(gMC->VolId("SG3A"));
2430 ((AliMUONChamber*)(*fChambers)[13])->SetGid(gMC->VolId("SG4A"));