
AliROOT Flow Package manual and documentation The FLOW team

The FLOW Analysis Package1

a short manual2

June 30, 20143

Redmer Alexander Bertens4

(rbertens @ cern.ch)5

with excerpts from other manuals, authors of those are mentioned in text6

Page i of 56

Contents7

1 Introduction 18

1.1 This manual . 19

1.2 Disclaimer . 110

2 A Quick Start 311

2.1 On the fly - getting started on a Toy MC . 312

2.2 What is in the output file ? . 513

2.2.1 AliFlowCommonHists - Output objects . 514

3 The Program 715

3.1 Overview . 716

3.2 Analysis in the ALICE analysis framework . 717

3.2.1 Input data . 718

3.2.2 Event selection . 819

3.2.3 Track cuts and the track cuts object . 1020

3.2.4 Additional options . 1221

3.2.5 Relevant pieces of code . 2122

3.2.6 Some words on the ALICE analysis framework . 2423

3.2.7 Example: π± vn . 2624

3.3 Flow analysis in ROOT: Using TTree’s and TNTuples . 2925

3.3.1 A custom class derived from AliFlowEventSimple . 2926

3.3.2 A realistic example: flow package analysis on STAR data . 3127

4 Methods 3328

4.1 AliFlowAnalysisWithMCEventPlane . 3329

4.1.1 Theory . 3330

4.1.2 Implementation . 3331

4.2 AliFlowAnalysisWithQCumulants . 3332

4.2.1 Implementation . 3333

4.3 AliFlowAnalysisWithScalarProduct . 3534

4.3.1 Theory . 3535

4.4 AliFlowAnalysisWithCumulants . 3636

4.4.1 Theory . 3637

4.4.2 Implementation . 3638

4.5 AliFlowAnalysisWithMixedHarmonics . 3639

4.5.1 Theory . 3640

4.5.2 Implementation . 3641

4.6 AliFlowAnalysisWithFittingQDistribution . 3642

4.6.1 Theory . 3643

4.6.2 Implementation . 3644

4.7 AliFlowAnalysisWithMultiparticleCorrelations . 3745

4.7.1 Theory . 3746

4.7.2 Implementation . 3747

4.8 AliFlowAnalysisWithLeeYangZeros . 3748

4.8.1 Theory . 3749

4.8.2 Implementation . 3750

4.9 AliFlowAnalysisWithLYZEventPlane . 3751

4.9.1 Theory . 3752

4.9.2 Implementation . 3753

4.10 Developing your own task . 3754

AliROOT Flow Package manual and documentation The FLOW team

5 More exotic uses 3955

5.1 Flow analysis in the LEGO framework: re-tagging your POI and RP selections 3956

5.1.1 Caveats . 4057

5.2 Flow analysis of resonances . 4058

5.3 Non-uniform acceptance correction . 4159

5.3.1 Caveats . 4160

6 Summary 4361

7 Bibliography 4562

A About this document 4763

A.1 Specifics and webpage . 4764

B Flow analysis ‘on-the-fly’ 4965

B.1 Introduction . 4966

B.2 Kickstart . 4967

B.2.1 AliRoot users . 4968

B.2.2 Root users . 5069

B.3 Making your own flow events . 5070

B.3.1 pT spectra . 5071

B.3.2 Azimuthal distribution . 5172

B.3.3 Nonflow . 5473

B.3.4 Detector inefficiencies . 5474

Index 5575

CONTENTS Page ii of 56

Chapter 176

Introduction77

The ALICE flow packagea contains most known flow analysis methods. The package itself consists of two parts78

1. The ‘tasks’ library, which can be considered to be the ALICE interface to the package and takes care of e.g. track79

cuts, event cuts, etc;80

2. The ‘base’ library, which is the core of the package and contains the actual implementation of flow analysis methods81

such as the scalar product method, Q-cumulant method, etc. This part of the package has no dependencies other82

than ROOT and can be used on any type of input data.83

1.1 This manual84

This manual is designed to get you started with using the flow package. It is written in the following way:85

• Chapter 2 is designed to get you started on a short Monte Carlo example. In this example you will use the flow86

package to generate toy Monte Carlo events and analyze them;87

• Chapter 3 describes the flow package itself in detail. This includes a brief discussion on the structure of the package,88

sections on track and event cuts, an explanation of some relevant code sections and ending with an example analysis89

of v2(pt) of charged pions with the Q-cumulant method. Most of this chapter pertains to the ‘tasks (the AliROOT)’90

part of the flow package (i.e. event cuts, track cuts, PID, etc), but it is also explained how to do flow analysis in91

ROOT only on a TTree;92

• Chapter 4 gives an overview of the available flow analysis methods. For the theory behind the methods references93

to papers are given. Settings relevant to the specific implementation are given as well.94

• Lastly, chapter 5 explains how the flow package can be put to use in more ‘exotic’ environments, such as an invariant95

mass method estimate of flow of rapidly decaying particles.96

1.2 Disclaimer97

What this manual is not designed for is letting the analyzer use the flow package as a ‘black box’. It is supposed to be98

a starting point, to give an overview of the design of the software and point you to relevant classes, but in the end, the99

analyzer is responsible for understanding what is happening and using the software in a proper way. Configurations of100

the package which may work on a technical level (i.e. produce output) do not necessarily mean that the output is what101

you expect it to be! Always make sure that you understand what you are doing, and when in doubt, browse through the102

source code or consult an expert. The package is not a static entity, users are encouraged to make additions, be it track103

cuts, bug fixes, additional analysis methods, etc, etc. If you have suggestions, questions, commit requests, send an email104

to the flow-pag mailing list or to rbertens @ cern.105

aThe ALICE flow package is part of AliROOT, the ALICE extension of the ROOT framework, which can be obtained from
http://git.cern.ch/pub/AliRoot. The flow package itself is located in the folder $ALICE ROOT/PWG/FLOW/, where $ALICE ROOT refers to the
source directory of AliROOT.

http://git.cern.ch/pub/AliRoot

AliROOT Flow Package manual and documentation The FLOW team

1.2. DISCLAIMER Page 2 of 56

Chapter 2106

A Quick Start107

We’ll begin with a hands-on exercise in which you’ll get acquainted with some aspects of the flow package in a few minutes.108

We’ll do this by generating a few simple toy Monte Carlo events and performing a flow analysis on these simulated events109

without writing them (the events) to disk, a so called ‘flow analysis on-the-fly’a.110

2.1 On the fly - getting started on a Toy MC111

The steps which will be followed in this example will be the same as the steps we take when performing an analysis on112

datab:113

1. Prepare your (Ali)ROOT session by loaded the necessary libraries114

2. Create the analysis method objects115

3. Initialize the methods (which creates their histograms)116

4. Define track cuts117

5. Create flow events, which is a container class holding all necessary information (e.g. tracks) for the flow analysis of118

an event (collision) and actually do the analysis119

6. Finish the analysis, which will calculate the final vn values120

7. Write the results to an output file121

In this Monte Carlo exercise, the flow event class will not receive data from a detector, but instead generate toy events122

itself.123

We will now go through these step one-by-one. All the code that is used can also be found in the macro124

runFlowOnTheFlyExample.Cc.125

1. To use the flow code the flow library needs to be loaded. In AliROOT:126

127

1 gSystem ->Load("libPWGflowBase");128
129

In root additional libraries need to be loaded:130

131

1 gSystem ->Load("libGeom");132

2 gSystem ->Load("libVMC");133

3 gSystem ->Load("libXMLIO");134

4 gSystem ->Load("libPhysics");135

5 gSystem ->Load("libPWGflowBase");136
137

2. We need to instantiate the flow analysis methods which we want to use. In this example we will instantiate two138

methods: one which calculates the flow versus the Monte Carlo event plane (this our reference value: as the event139

plane orientation is known by this method, the v2 value we retrieve should be equal to the input v2 by definition)140

and as a second method the so called Q-cumulant analysis.141

142

1 AliFlowAnalysisWithMCEventPlane *mcep = new AliFlowAnalysisWithMCEventPlane ();143

2 AliFlowAnalysisWithQCumulants *qc = new AliFlowAnalysisWithQCumulants ();144
145

aIn this example the AliFlowEventSimple class will be used to generate toy events (which is described in detail in section 3). Another on-
the-fly routine is available in the AliFlowEventSimpleMakerOnTheFly, the original on-the-fly manual for that class is reprinted in the appendix
(see B) of this document.

bIn data, some of these steps are actually taken care of by an analysis task, but this will be described in more detail in the next chapter.
cIn aliroot, this macro can be found at

$ALICE ROOT/PWGCF/FLOW/Documentation/examples/manual/runFlowOnTheFlyExample

AliROOT Flow Package manual and documentation The FLOW team

3. Each of the methods needs to be initialized (e.g. to define the histograms):146

147

1 mcep ->Init();148

2 qc->Init();149
150

4. To define the particles we are going to use as Reference Particles (RP’s, particles used for the Q vector) and the151

Particles Of Interest (POI’s, the particles of which we calculate the differential flow) we have to define two track cut152

objects:153

154

1 AliFlowTrackSimpleCuts *cutsRP = new AliFlowTrackSimpleCuts ();155

2 AliFlowTrackSimpleCuts *cutsPOI = new AliFlowTrackSimpleCuts ();156

3 cutsPOI ->SetPtMin (0.2);157

4 cutsPOI ->SetPtMax (2.0);158
159

Particles will be selected as either POI or RP depending on whether or not they pass these cuts.160

5. Now we are ready to start the analysis. For a quick start we create a toy Monte Carlo event, tag the reference161

particles and particles of interest (which means that, if a particle passes the POI or RP cuts, it is flagged as ‘POI’162

or ‘RP’) and pass it to the two flow methods.163

Since we want to analyze more than one event, this step is performed in loop. First define the number of events164

that need to be created, their multiplicity, and a value v2 value, which can either be supplied as a fixed number (no165

pt dependence) of a function (to generate pt differential flowd
166

167

1 Int_t nEvents = 1000; // generate 1000 events168

2 Int_t mult = 2000; // use track multiplicity of 2000169

3 Double_t v2 = .05; // 5 pct integrated flow170

4 // or sample differential flow171

5 TF1* diffv2 = new TF1("diffv2", "((x<1.) *(0.1/1.)*x+(x>=1.) *0.1)", 0., 20.);172
173

Now we have all the ingredients to our first flow analysis174

175

1 for(Int_t i=0; i<nEvents; i++) {176

2 // make an event with mult particles177

3 AliFlowEventSimple* flowevent = AliFlowEventSimple(mult ,AliFlowEventSimple :: kGenerate);178

4 // modify the tracks adding the flow value v2179

5 flowevent ->AddV2(diffv2);180

6 // select the particles for the reference flow181

7 flowevent ->TagRP(cutsRP);182

8 // select the particles for differential flow183

9 flowevent ->TagPOI(cutsPOI);184

10 // do flow analysis with various methods:185

11 mcep ->Make(flowevent);186

12 qc->Make(flowevent);187

13 // delete the event from memory188

14 delete flowevent;189

15 }190
191

6. To fill the histograms which contain the final results we have to call Finish for each method:192

193

1 mcep ->Finish ();194

2 qc->Finish ();195
196

7. This concludes the analysis and now we can write the results into a file. Two options for writing the input to a file197

are available:198

• Create a new output file and write the output to this file199

200

1 TFile *outputFile = new TFile("outputMCEPanalysis.root","RECREATE");201

2 mcep ->WriteHistograms ();202

3 TFile *outputFile = new TFile("outputQCanalysis.root","RECREATE");203

4 qc->WriteHistograms ();204
205

Please note that this will create a new output file, and overwrite any existing file called AnalysisResults.root.206

• To write the output of multiple analyses into sub-directories of one file, one can do the following:207

208

1 TFile *outputFile = new TFile("AnalysisResults.root","RECREATE");209

2 TDirectoryFile* dirQC = new TDiretoryFile("outputQCanalysis", "outputQCanalysis");210

3 qc->WriteHistograms(dirQC);211

4 TDirectoryFile* dirMCEP = new TDiretoryFile("outputMCEPanalysis", "outputMCEPanalysis");212

5 mcep ->WriteHistograms(dirMCEP);213
214

dThe on the fly event generator is not limited to the generation of the second harmonic v2, but to get started, this is a nice example.

2.1. ON THE FLY - GETTING STARTED ON A TOY MC Page 4 of 56

AliROOT Flow Package manual and documentation The FLOW team

Note that AnalysisResults.root is the default name given to analyses in AliROOT. Many macros in AliROOT will215

expect a file AnalyisResults.root as input, so for most users it will be convenient to follow this convention.216

When done with running the analysis, do not forget to write the file to disk by calling217

218

1 TFile:: Close(); // write the buffered file to disk219
220

2.2 What is in the output file ?221

Now we have written the results into a file, but what is in there?222

Although the output of different flow analysis techniques might differ slightly as a result of their different approaches223

at estimating v2, the output files containers are always constructed in a similar way.224

2.2.1 AliFlowCommonHists - Output objects225

Objects of two types are stored in the output of the flow analysise
226

1. AliFlowCommonHist, which is a class that contains common histograms for the flow analysis (e.g. QA histograms227

and histograms that contain the analysis flags which were used). Depending on the type of flow analysis that was228

used, this object contains histograms from the following list:229

230

1 Bool_t fBookOnlyBasic; // book and fill only control histos needed for all methods231

2 TH1F* fHistMultRP; // multiplicity for RP selection232

3 TH1F* fHistMultPOI; // multiplicity for POI selection233

4 TH2F* fHistMultPOIvsRP; // multiplicity for POI versus RP234

5 TH1F* fHistPtRP; // pt distribution for RP selection235

6 TH1F* fHistPtPOI; // pt distribution for POI selection236

7 TH1F* fHistPtSub0; // pt distribution for subevent 0237

8 TH1F* fHistPtSub1; // pt distribution for subevent 1238

9 TH1F* fHistPhiRP; // phi distribution for RP selection239

10 TH1F* fHistPhiPOI; // phi distribution for POI selection240

11 TH1F* fHistPhiSub0; // phi distribution for subevent 0241

12 TH1F* fHistPhiSub1; // phi distribution for subevent 1242

13 TH1F* fHistEtaRP; // eta distribution for RP selection243

14 TH1F* fHistEtaPOI; // eta distribution for POI selection244

15 TH1F* fHistEtaSub0; // eta distribution for subevent 0245

16 TH1F* fHistEtaSub1; // eta distribution for subevent 1246

17 TH2F* fHistPhiEtaRP; // eta vs phi for RP selection247

18 TH2F* fHistPhiEtaPOI; // eta vs phi for POI selection248

19 TProfile* fHistProMeanPtperBin; // mean pt for each pt bin (for POI selection)249

20 TH2F* fHistWeightvsPhi; // particle weight vs particle phi250

21 TH1F* fHistQ; // Qvector distribution251

22 TH1F* fHistAngleQ; // distribution of angle of Q vector252

23 TH1F* fHistAngleQSub0; // distribution of angle of subevent 0 Q vector253

24 TH1F* fHistAngleQSub1; // distribution of angle of subevent 1 Q vector254

25 TProfile* fHarmonic; // harmonic255

26 TProfile* fRefMultVsNoOfRPs; // <reference multiplicity > versus # of RPs256

27 TH1F* fHistRefMult; // reference multiplicity distribution257

28 TH2F* fHistMassPOI; // mass distribution for POI selection258
259

This information is from the header file of the AliFlowCommonHist objectf
260

2. AliFlowCommonHistResults is an object designed to hold the common results of the flow analysisg. The possible261

common histograms stored in this object are262

263

1 TH1D* fHistIntFlow; // reference flow264

2 TH1D* fHistChi; // resolution265

3 // RP = Reference Particles:266

4 TH1D* fHistIntFlowRP; // integrated flow of RPs267

5 TH1D* fHistDiffFlowPtRP; // differential flow (Pt) of RPs268

6 TH1D* fHistDiffFlowEtaRP; // differential flow (Eta) of RPs269

7 // POI = Particles Of Interest:270

8 TH1D* fHistIntFlowPOI; // integrated flow of POIs271

9 TH1D* fHistDiffFlowPtPOI; // differential flow (Pt) of POIs272

10 TH1D* fHistDiffFlowEtaPOI; // differential flow (Eta) of POIs273
274

The titles of the histograms in the output object differ from the names of the pointers given in the two lists printed275

above, but the lists give an overview of what is available; the easiest way however of getting acquainted with where to find276

histograms in the output is browsing them in ROOT’s TBrowser (see figure 2.2).277

eMake sure that libPWGflowBase.so is loaded in your (Ali)ROOT session, otherwise these objects will be unknown.
fThe headers of both output objects can be found in $ALICE ROOT/PWG/FLOW/Base/.
gThe word common here is used to indicate histograms that hold observables which are evaluated in all flow analysis methods. Specific

analysis methods may however store additional histograms which are not covered in this list!

2.2. WHAT IS IN THE OUTPUT FILE ? Page 5 of 56

AliROOT Flow Package manual and documentation The FLOW team

Figure 2.1: Example of output file
opened in a TBrowser, results of dif-
ferential v2 analysis with second order
Q-cumulant analysis are shown.

Figure 2.2: Example of inspecting
the output file of the on the fly anal-
ysis with the compareFlowResults.C

macro.

278

1 new TBrowser ();279
280

The AliFlowCommonHist and AliFlowCommonHistResults classes are derived from the generic TNamed ROOT object281

and can be written to a ROOT file. The flow analysis tasks will, as output, write the complete AliFlowCommonHist282

and AliFlowCommonHistResults objects to file at the end of an analysis. To read the content of these objects, the283

libPWGflowBase library must be loaded in your ROOT session.284

Comparing flow results285

A convenient way of comparing the results of the different flow analysis strategies that have been used is invoking the macro286

compareFlowResults.Ch. This macro will read the analysis output file AnalysisResults.root, extract the requested287

results from it and plot them. For a full overview of what can be done with the macro, the reader is referred to the macro288

itself and its ample documentation. To run the macro on the data-set that we have just generated, simply do289

290

1 .L compareFlowResults.C291

2 compareFlowResults(TSring("")) // the empty suffix indicates on the fly events292
293

h$ALICE ROOT/PWGCF/FLOW/macros/compareFlowResults.C

2.2. WHAT IS IN THE OUTPUT FILE ? Page 6 of 56

Chapter 3294

The Program295

The basic idea behind the flow package is that from whatever input you have, a flow event is constructed, which is then296

passed to one or more flow analysis methods (e.g. the scalar product method or Q-cumulant method). The flow event is297

a collection of flow tracks, which are simple objects carrying only the kinematic information that is necessary to do flow298

analysis. By setting up the flow package in this way, the flow analysis methods can analyze input from various sources,299

be it ALICE data, Monte Carlo events, STAR data, etc, etc, as long as the flow event is properly filled . This might all300

sound a bit abstract at this point; this chapter however will explain all details and relevant classes in detail. For those301

who are impatient and prefer seeing the flow package in action, section 3.2.7 gives a step-by-step example of doing a π±302

v2 analysis in the AliROOT analysis framework.303

3.1 Overview304

Figure 3.1 gives a simple schematic representation of the flow package. Input events (in the case of the figure this is305

either ESDs or AODs) pass a set of event cuts (the common cuts) and are then converted to a flow event (stored as306

an AliFlowEventSimple object). This flow event holds a collection of flow tracks (AliFlowTrackSimple objects) which307

are passed to flow analysis methods. The only steps of this flow chart which depend on AliROOT libraries are the ones308

handling ALICE data types (the ESDs or AODs). The rest of the analysis chain (the AliFlowEventSimle and the analysis309

methods) have no specific AliROOT dependence and are just simple c++ objects. Therefore, the flow package is split into310

two libraries311

libPWGflowBase The base library, which has no specific AliROOT dependencies. This library holds objects such as the312

AliFlowEventSimple and AliFlowTrackSimple, and analysis methods classes. The analysis methods classes follow313

the naming scheme: AliFlowAnalysisWith∗ where ∗ denotes a specific analysis method. All classes which end up314

in the libPWGflowBase.so shared object can be found in $ALICE ROOT/PWG/FLOW/Base;315

libPWGflowTasks The tasks library, which has specific AliROOT dependencies. Contrary to what the name suggests,316

this library does not just hold tasks, but actually comprises all classes of the flow package which need to include317

AliROOT specific classes. This ranges from classes to read the AOD or ESD input data (important examples are the318

AliFlowEvent and AliFlowTrackCuts, which will be discussed later on in this chapter) and the AliAnalysisTask∗319

classes, which are analysis tasks, derived from AliAnalysisTaskSE which can be used in the AliROOT analysis320

framework and are actually just interface classes to the underlying flow analysis methods of libPWGflowBase. The321

classes which are bundled into the libPWGflowTasks.so shared object can be found in $ALICE ROOT/PWG/FLOW/Tasks;322

Some tools, such as the flow event or track cuts, have a ‘base’ component which name ends with the suffix ‘simple’, and323

an ‘tasks’ (AliROOT) component which does not have this suffix. The ‘tasks’ class in these cases inherits from the ‘base’324

class.325

Every flow analysis in the flow package starts with the flow event. As mentioned earlier, the flow event is a simple326

container class which holds a collection of flow tracks, which are in turn fed to the flow analysis methods. In the next327

section it will be explained how the flow event can be filled with ALICE data in the AliROOT analysis framework. The328

section after that will explain how the flow event can be filled with any type of data using just ROOT329

3.2 Analysis in the ALICE analysis framework330

In this section, you will see how a flow analysis can be performed in the AliROOT analysis framework.331

3.2.1 Input data332

Before passing the flow event to the flow analysis methods, it needs to be filled with a set of flow tracks. In general, a333

distinction is made between reference particles (or RP’s), which are particles that are used to build the Q vector(s), and334

AliROOT Flow Package manual and documentation The FLOW team

Figure 3.1: Schematic presentation of the organization of the flow package. Input, which can come from any kind of source, is
converted to a generic AliFlowEventSimple object, which in turn is passed to the analysis methods.

particles of interest (or POI’s), which are the particles of which you’ll calculate the differential flow. The flow event and335

the flow analysis methods are designed to keep track of which flow tracks are POI’s, RP’s (or even both at the same time),336

which is important to avoid auto-correlation effects which can distort the vn measurement. The user of the flow package337

however is responsible for properly setting up the analysis!338

The flow event can be filled with input from many sources. In the second chapter of this manual, a simple method has339

been shown where the flow event (the AliFlowEventSimple object) fills itself by generating a set of Monte Carlo tracks by340

sampling kinematic variables from supplied p.d.f.’s. Using this method is a very effective tool for testing and developing341

new flow analysis methods (if you generate events with a certain v2(pt) and then retrieve the same v2(pt) from your flow342

analysis method, you can use that as a tool to proof the validation of your analysis method) but if you want to do a data343

analysis, a somewhat more advanced - but not difficult - approach is necessary.344

Filling a flow event from data can be performed either ‘by-hand’ (which is covered in section 5 on more exotic analyses),345

but the most commonly used method of filling a flow event in the AliROOT analysis framework is using the dedicated task346

AliAnalysisTaskFlowEvent.347

The idea behind this is the following:348

1. Setup the AliAnalysisTaskFlowEvent task to receive input events (e.g. AODs, ESDs, MC, . . .;349

2. Define two sets of track selection criteria (colloquially referred to as track cuts), one for POI’s and one for RP’s;350

3. Pass these two sets of track cuts to the AliAnalysisTaskFlowEvent;351

4. The AliAnalysisTaskFlowEvent will convert the tracks of each input event to a set of AliFlowSimpleTracks.352

Depending on whether or not a track passes the track selection for POI’s or RP’s, the AliFlowSimpleTrack is353

labeled as a POI or RP (or both. In the case where a track does not meet any of the track selection criteria, it is354

omitted from the AliFlowSimpleTrack collection and not added to the flow event);355

5. All the AliFlowSimpleTracks are added to the flow event which is passed to the flow analysis methods.356

3.2.2 Event selection357

When using the AliAnalysisTaskFlowEvent task to create your flow event, the AliAnalysisTaskFlowEvent task is358

responsible for ensuring that only good quality tracks enter into your analysis by making sensible track selections. The first359

step however at safeguarding track quality is making sure that the events that are accepted by AliAnalysisTaskFlowEvent360

pass sane event selection criteria.361

Trigger selection362

A certain combination a of detector signals (a trigger) is required for an event to be written to storage. Different types of363

analyses might require different types of events, and hence, different types of triggers.364

You can set a trigger by calling365

366

1 AliAnalysisTaskFlowEvent :: SelectCollisionCandidates(UInt_t offlineTriggerMask);367
368

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 8 of 56

AliROOT Flow Package manual and documentation The FLOW team

where offlineTriggerMask is the trigger mask corresponding to the desired trigger. A list of all available triggers, with369

a short descrption, can be found in the header file of the AliVEvent classa. This function, however, is not implement370

in the AliAnalysisTaskFlowEvent itself, but rather in the base class of which most of the analysis task classes within371

AliROOT are derived: the AliAnalysisTaskSE class (which is designed to handle a single event, hence the suffix ‘SE’).372

For each event that is written from a file, but function AliAnalysisTaskSE::Exec() is called, which - among other373

things - checks if an event passes the requested trigger selection, and if so, calls the UserExec() function of your analysis374

task. In the case of the AliAnalysisTaskFlowEvent this is the AliAnalysisTaskFlowEvent::UserExec(), which creates375

AliFlowSimpleTracks and fills the flow event.376

A general remark about trigger selection in flow analyses is that the non-uniform acceptance correction methods that377

are implemented in the flow package assume a flat Q vector distribution. Specific triggers (e.g. EMCal triggers) result378

in a Q vector bias which should not be corrected as they invalidate that assumption. A safe approach is therefore using379

a minimum bias trigger for your analysis (such as AliVEvent::kMB), other triggers selections will not a-priori lead to380

problems, but use them with caution!381

Event cuts382

In addition to trigger selection, generally one wants to perform additional event (quality) selection. The flow package383

contains an event cuts class which can be used to perform event selection, the AliFlowEventCuts objectb.384

To use the event cuts object in combination with the AliAnalysisTaskFlowEvent task, simply create the event cuts385

object, configure it and pass it to the AliAnalysisTaskFlowEvent:386

387

1 AliFlowEventCuts* cutsEvent = new AliFlowEventCuts("EventCuts");388

2 // configure some event cuts , e.g. centrality389

3 cutsEvent ->SetCentralityPercentileRange (20., 30.);390

4 // pass it to the flow event task via the setter391

5 AliAnalysisTaskFlowEvent :: SetCutsEvent(cutsEvent);392
393

The available cut parameters in the flow event cuts object are394

395

1 Bool_t fCutNumberOfTracks;// cut on # of tracks396

2 Int_t fNumberOfTracksMax; // limits397

3 Int_t fNumberOfTracksMin; // limits398

4 Bool_t fCutRefMult; // cut on refmult399

5 refMultMethod fRefMultMethod; // how do we calculate refmult?400

6 Bool_t fUseAliESDtrackCutsRefMult; // use AliESDtrackCuts for refmult calculation401

7 AliESDtrackCuts :: MultEstTrackType fRefMultMethodAliESDtrackCuts;402

8 Int_t fRefMultMax; // max refmult403

9 Int_t fRefMultMin; // min refmult404

10 AliFlowTrackCuts* fRefMultCuts; // cuts405

11 AliFlowTrackCuts* fMeanPtCuts; // mean pt cuts406

12 AliFlowTrackCuts* fStandardTPCcuts; // Standard TPC cuts407

13 AliFlowTrackCuts* fStandardGlobalCuts; // StandardGlobalCuts408

14 Bool_t fCutPrimaryVertexX; // cut on x of prim vtx409

15 Double_t fPrimaryVertexXmax; // max x prim vtx410

16 Double_t fPrimaryVertexXmin; // min x prim vtx411

17 Bool_t fCutPrimaryVertexY; // cut on y of prim vtx412

18 Double_t fPrimaryVertexYmax; // max y prim vtx413

19 Double_t fPrimaryVertexYmin; // min y prim vtx414

20 Bool_t fCutPrimaryVertexZ; // cut on z of prim vtx415

21 Double_t fPrimaryVertexZmax; // max z prim vtx416

22 Double_t fPrimaryVertexZmin; // min z prim vtx417

23 Bool_t fCutNContributors; // cut on number of contributors418

24 Int_t fNContributorsMax; // maximal number of contrib419

25 Int_t fNContributorsMin; // minimal number of contrib420

26 Bool_t fCutMeanPt; // cut on mean pt421

27 Double_t fMeanPtMax; // max mean pt422

28 Double_t fMeanPtMin; // min mean pt423

29 Bool_t fCutSPDvertexerAnomaly; // cut on the spd vertexer anomaly424

30 Bool_t fCutSPDTRKVtxZ; // require compatibility between SPDvertexz TRKvertexz425

31 Bool_t fCutTPCmultiplicityOutliers; // cut TPC multiplicity outliers426

32 Bool_t fCutTPCmultiplicityOutliersAOD; // cut TPC outliers in 10h or 11h aod427

33 Bool_t fUseCentralityUnchecked; // use the unchecked method428

34 refMultMethod fCentralityPercentileMethod; // where to get the percentile from429

35 Bool_t fCutZDCtiming; // cut on ZDC timing430

36 AliTriggerAnalysis fTrigAna; // trigger analysis object431

37 Bool_t fCutImpactParameter; // cut on impact parameter (MC header)432

38 Double_t fImpactParameterMin; // min impact parameter433

39 Double_t fImpactParameterMax; // max impact parameter434

40 TH2F *fhistTPCvsGlobalMult; //! correlation between TPCMult and GlobalMult435

41 Bool_t fData2011; // 2011 data is used436
437

all of which are accessible via dedicated setters,438

a$ALICE ROOT/...
b$ALICE ROOT/PWG/FLOW/Tasks/AliFlowEventCuts.cxx

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 9 of 56

AliROOT Flow Package manual and documentation The FLOW team

439

1 void SetNumberOfTracksMax(Int_t value) {fNumberOfTracksMax=value;fCutNumberOfTracks=kTRUE ;}440

2 void SetNumberOfTracksMin(Int_t value) {fNumberOfTracksMin=value;fCutNumberOfTracks=kTRUE ;}441

3 void SetNumberOfTracksRange(Int_t min , Int_t max) {fNumberOfTracksMin=min;fNumberOfTracksMax=max;442

fCutNumberOfTracks=kTRUE;}443

4 void SetRefMultMax(Int_t value) {fRefMultMax=value;fCutRefMult=kTRUE;}444

5 void SetRefMultMin(Int_t value) {fRefMultMin=value;fCutRefMult=kTRUE;}445

6 void SetRefMultRange(Int_t min , Int_t max) {fRefMultMin=min;fRefMultMax=max;fCutRefMult=kTRUE;}446

7 void SetImpactParameterMax(Double_t value) {fImpactParameterMax=value;fCutImpactParameter=kTRUE;}447

8 void SetImpactParameterMin(Double_t value) {fImpactParameterMin=value;fCutImpactParameter=kTRUE;}448

9 void SetImpactParameterRange(Double_t min , Double_t max) {fImpactParameterMin=min;449

fImpactParameterMax=max;fCutImpactParameter=kTRUE;}450

10 void SetPrimaryVertexXrange(Double_t min , Double_t max)451

11 void SetPrimaryVertexYrange(Double_t min , Double_t max)452

12 void SetPrimaryVertexZrange(Double_t min , Double_t max)453

13 void SetNContributorsRange(Int_t min , Int_t max=INT_MAX)454

14 void SetMeanPtRange(Double_t min , Double_t max) {fCutMeanPt=kTRUE; fMeanPtMax=max; fMeanPtMin=min455

;}456

15 void SetCutSPDvertexerAnomaly(Bool_t b=kTRUE) {fCutSPDvertexerAnomaly=b;}457

16 void SetCutZDCtiming(Bool_t c=kTRUE) {fCutZDCtiming=c;}458

17 void SetCutSPDTRKVtxZ(Bool_t b=kTRUE) {fCutSPDTRKVtxZ=b;}459

18 void SetCutTPCmultiplicityOutliers(Bool_t b=kTRUE) {fCutTPCmultiplicityOutliers=b;}460

19 void SetCutTPCmultiplicityOutliersAOD(Bool_t b=kTRUE) {fCutTPCmultiplicityOutliersAOD=b;}461

20 void SetRefMultMethod(refMultMethod m) {fRefMultMethod=m;}462

21 void SetRefMultMethod(AliESDtrackCuts :: MultEstTrackType m) { fRefMultMethodAliESDtrackCuts=m;463

22 void SetRefMultCuts(AliFlowTrackCuts* cuts) {fRefMultCuts=static_cast <AliFlowTrackCuts *>(cuts ->464

Clone());}465

23 void SetMeanPtCuts(AliFlowTrackCuts* cuts) {fMeanPtCuts=static_cast <AliFlowTrackCuts *>(cuts ->466

Clone());}467

24 void SetQA(Bool_t b=kTRUE) {if (b) DefineHistograms ();}468

25 void SetCentralityPercentileMethod(refMultMethod m) {fCentralityPercentileMethod=m;}469

26 void SetUseCentralityUnchecked(Bool_t b=kTRUE) {fUseCentralityUnchecked=b;}470

27 void SetUsedDataset(Bool_t b=kTRUE) {fData2011=b;} // confusing name , better use different471

interface472

28 void SetLHC10h(Bool_t b=kTRUE) {fData2011 =(!b);} // TODO let cut object determine runnumber473

and period474

29 void SetLHC11h(Bool_t b=kTRUE) {fData2011=b;} // use this only as ’manual override ’475
476

Caveats and remarks477

Some caveats and remarks about using the event cuts object478

Default behavior By default, the event cuts object accepts all events. All desired cuts have to be set by the user. This479

is also reflected in the design of the setters: most of the setters will, when called, set a Bool t to true which enables480

a cut on a certain parameter;481

Applicability of cuts to different data types Not all the cuts can be applied to all input data types. In e.g. the482

process of filtering AODs from ESDs, ‘technical’ event cuts are made and not all events are stored in the AOD format.483

Because of this, information that can be required from ESDs might not be available (as it is not necessary) in AODs.484

To see whether or not a cut you set is actually applied to the data type you’re using, take a look at485

486

1 Bool_t AliFlowEventCuts :: PassesCuts(AliVEvent *event , ALIMCEvent *mcevent)487
488

This function determines whether or not an event is accepted: it starts by converting the virtual event type that is489

passed as argument to either an ESD or AOD event, and goes through selection criteria accordingly.490

Event cuts outside of the AliAnalysisTaskFlowEvent class When you perform a flow analysis without using the491

AliAnalysisTaskFlowEvent class (which is done e.g. in the analyses explained in section 5), you can still use the492

event cuts class by creating an instance of the object, passing it to your analysis class and ‘manually’ checking the493

return value of the function494

495

1 Bool_t AliFlowEventCuts :: PassesCuts(AliVEvent *event , ALIMCEvent *mcevent)496
497

Data taking period Most event cuts will be tuned specifically to the LHC10h or LHC11h data taking periods. The498

event cuts class might need to be updated to accommodate specific cuts for different periods - do not hesitate write499

patches for this!500

for e.g. each event that is passed to your ::UserExec() function.501

3.2.3 Track cuts and the track cuts object502

As explained in the previous subsection, flow events are filled with tracks which fulfill certain track selection criteria.503

These criteria are checked using the AliFlowTrackCuts class. The AliFlowTrackCuts class can handle different types of504

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 10 of 56

AliROOT Flow Package manual and documentation The FLOW team

input from different data-types (e.g. ESD or AOD) and information from different sub-detector systems. All input is in the505

end converted to AliFlowSimpleTracks which are added to the flow event. To understand how the AliFlowTrackCuts506

object works and how it should be configured, it is good to make a few distinctions and remarks.507

The term ‘track’ is generally used for reconstructed particle trajectories which are constructed from information coming508

from the tracking detectors in central barrel of the ALICE detector (more specifically from information from the ITS and509

TPC detectors). Tracks are the most commonly used data source, and the translation from ‘track’ to AliFlowTrackSimple510

is trivial, as it merely comprises copying kinematic information (pt, ϕ, η) from the barrel track to the AliFlowTrackSimple511

object.512

When using information that is not coming from tracking detectors, e.g. information from the VZERO system, this513

procedure of simply copying variables is not suitable as the VZERO system does not measure pt, ϕ, η of particles, but is an514

array of scintillators with limited spatial resolution. Nevertheless, the AliFlowTrackCuts class converts the VZERO signal515

to AliFlowTrackSimples which are, to the flow event, indistinguishable from barrel tracks. As the procedure of accepting516

these tracks is very different from the procedure of accepting barrel tracks, they will be treated separately in the following517

subsections.518

ESD tracks as data source519

The safest and most convenient way of using ESD tracks as a data source is by using one of the pre-defined track cuts520

sets that are available in the AliFlowTrackCuts class. These sets of track cuts mimic the cuts that are defined in the521

AliESDtrackCuts classc. The following default track cuts sets are available:522

523

1 static AliFlowTrackCuts* GetStandardTPCStandaloneTrackCuts ();524

2 static AliFlowTrackCuts* GetStandardTPCStandaloneTrackCuts2010 ();525

3 static AliFlowTrackCuts* GetStandardGlobalTrackCuts2010 ();526

4 static AliFlowTrackCuts* GetStandardITSTPCTrackCuts2009(Bool_t selPrimaries=kTRUE);527

5 static AliFlowTrackCuts* GetStandardMuonTrackCuts(Bool_t isMC=kFALSE , Int_t passN =2);528

6529
530

All these are static methods which create a new track cuts object and configure it properly, so to use these track cuts it531

suffices to type e.g.532

533

1 AliFlowTrackCuts* myCuts = AliFlowTrackCuts :: GetStandardGlobalTrackCuts2010 ();534
535

To get a better understanding of what the AliFlowTrackCuts class actually does, let’s take a look at what how the cut536

object is configured in this case:537

538

1 AliFlowTrackCuts* AliFlowTrackCuts :: GetStandardGlobalTrackCuts2010 ()539

2 {540

3 // get standard cuts541

4 AliFlowTrackCuts* cuts = new AliFlowTrackCuts("standard Global tracks");542

5 cuts ->SetParamType(kGlobal);543

6 cuts ->SetPtRange (0.2 ,5.);544

7 cuts ->SetEtaRange (-0.8 ,0.8);545

8 cuts ->SetMinNClustersTPC (70);546

9 cuts ->SetMinChi2PerClusterTPC (0.1);547

10 cuts ->SetMaxChi2PerClusterTPC (4.0);548

11 cuts ->SetMinNClustersITS (2);549

12 cuts ->SetRequireITSRefit(kTRUE);550

13 cuts ->SetRequireTPCRefit(kTRUE);551

14 cuts ->SetMaxDCAToVertexXY (0.3);552

15 cuts ->SetMaxDCAToVertexZ (0.3);553

16 cuts ->SetAcceptKinkDaughters(kFALSE);554

17 cuts ->SetMinimalTPCdedx (10.);555

18 return cuts;556

19 }557
558

The configuration falls into three categories:559

1. A number of track quality cuts is set;560

2. Some kinematic cuts are set;561

3. The parameter type is set by calling AliFlowTrackCuts::SetParamType() (in this case to562

AliFlowTrackCuts::kGlobal). This last step is of particular importance as it takes care disentangling the563

POI and RP selection and removing a vn bias due to auto-correlations. When the flow event is filled (the relevant564

piece of code is printed under section 3.2.5), a check is done to see if the POI’s and RP’s are of the same type.565

If not, a track cannot be a POI and RP at the same time (as they are from different sources). However, if566

POI’s and RP’s originate from the same source, an AliFlowTrackSimple can be both a POI and RP at the same567

time if it satisfies both the POI and RP track selection criteria. By specifying the parameter type by calling568

AliFlowTrackCuts::SetParamType() the flow event is configured to properly deal with overlapping or exclusive569

POI and RP selections. A wrongly configured parameter type can lead to double counting of tracks and nonsensical570

analysis results! The following list of track parameter types is available as an enum in AliFlowTrackCuts.h571

c$ALICE ROOT/ANALYSIS/AliESDtrackCuts.cxx

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 11 of 56

AliROOT Flow Package manual and documentation The FLOW team

572

1 enum trackParameterType { kMC ,573

2 kGlobal ,574

3 kTPCstandalone ,575

4 kSPDtracklet ,576

5 kPMD ,577

6 kV0 , // neutral reconstructed v0 particle578

7 kVZERO , // forward VZERO detector579

8 kMUON ,580

9 kKink ,581

10 kAODFilterBit ,582

11 kUserA , // reserved for custom cuts583

12 kUserB // reserved for custom cuts584

13 };585
586

Note that kV0 is reserved to denote a decay vertex of a neutral particle, and kVZERO is used to indicate the VZERO587

detector system. kUserA and kUserB are additional flags which can selected for ‘custom’ track selection sets.588

AOD tracks as data source589

AOD tracks are derived from ESD tracks via process called ‘filtering’. If an ESD track meets a pre-defined set of track cuts,590

it is converted to an AOD track which is stored in an AOD event. The AOD track carries a specific flag (called filterbit)591

which corresponds to the specific set of cuts that was applied to create accept the track. A full list of track selection592

criteria corresponding to distinct filterbits can be found here. Note that different AOD productions might have different593

filterbit definitions!594

In AOD analysis it generally suffices to select tracks of a certain filterbit, instead of checking quality criteria ‘by-hand’595

as is done in ESD analyses (some variables which one would cut on in ESD tracks might not even be available in the AOD596

tracks as the AOD is designed to be a light-weight ‘end-user’ data format). To get an instance of the AliFlowTrackCuts597

object which only selects tracks based on a specific filterbit, one can call598

599

1 static AliFlowTrackCuts* GetAODTrackCutsForFilterBit(UInt_t bit = 1);600
601

which is defined as602

603

1 AliFlowTrackCuts* AliFlowTrackCuts :: GetAODTrackCutsForFilterBit(UInt_t bit)604

2 {605

3 // object which in its default form only cuts on filterbit (for AOD analysis)606

4 AliFlowTrackCuts* cuts = new AliFlowTrackCuts(Form("AOD fitlerbit %i", (int)bit));607

5 cuts ->SetMinimalTPCdedx (-999999999);608

6 cuts ->SetAODfilterBit(bit);609

7 cuts ->SetParamType(AliFlowTrackCuts :: kAODFilterBit);610

8 return cuts;611

9 }612
613

The SetMinimalTPCdedx(-999999999); is kept here for backward-compatibility.614

Note that also in the case of AOD analyses the parameter type is set to (if necessary) decouple POI and RP selections.615

3.2.4 Additional options616

As stated, input data needn’t necessarily come in the form of barrel tracks - we can use other detector systems as well.617

When dealing with barrel tracks, quality criteria might not be the only thing you want to select your tracks on: perhaps618

you want to do analysis on identified particles. The following sub-sections explain how the AliFlowTrackCuts object can619

be used to achieve this.620

Identified particles621

The AliFlowTrackCuts object can do particle selection for a number of particles that are defined in the AliPIDd. To622

enable particle identification as a selection criterion, call the function623

624

1 void AliFlowTrackCuts :: SetPID(625

2 AliPID :: EParticleType pid ,626

3 PIDsource s=kTOFpid ,627

4 Double_t prob =0.9)628

5 {fParticleID=pid; fPIDsource=s; fParticleProbability=prob; fCutPID=kTRUE; InitPIDcuts ();629

6 }630
631

The first argument specifies the particle species that will be selected via the EParticleType enum. The total list of632

particles as defined in the AliPID class reads633

d$ALICE ROOT/STEER/STEERBas/AliPID.h

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 12 of 56

AliROOT Flow Package manual and documentation The FLOW team

634

1 enum EParticleType {635

2 kElectron = 0,636

3 kMuon = 1,637

4 kPion = 2,638

5 kKaon = 3,639

6 kProton = 4,640

7641

8 kDeuteron = 5,642

9 kTriton = 6,643

10 kHe3 = 7,644

11 kAlpha = 8,645

12646

13 kPhoton = 9,647

14 kPi0 = 10,648

15 kNeutron = 11,649

16 kKaon0 = 12,650

17 kEleCon = 13,651

18652

19 kUnknown = 14653

20 };654
655

Note that not all these particles may be available for selection via AliFlowTrackCuts!656

The second argument tells the AliFlowTrackCuts class which particle identification method should be used. The657

available methods are658

659

1 enum PIDsource {660

2 kTPCpid , // default TPC pid (via GetTPCpid)661

3 kTOFpid , // default TOF pid (via GetTOFpid)662

4 kTOFbayesian , // TOF bayesian pid (F.Noferini)663

5 kTOFbeta , // asymmetric cuts of TOF beta signal664

6 kTPCdedx , // asymmetric cuts of TPC dedx signal665

7 kTOFbetaSimple , // simple TOF only cut666

8 kTPCbayesian , // bayesian cutTPC667

9 kTPCNuclei , // added by Natasha for Nuclei668

10 kTPCTOFNsigma // simple cut on combined tpc tof nsigma669

11 };670
671

The third argument (with a default value of 0.9) gives the analyzer control over the purity of the particle sample by672

setting a lower bound on the probability that a particle is of a certain species (where 0 would mean no selection and 1673

-theoretically - means a 100% pure sample). To see how - and if - this parameter is used in a certain identification routine,674

take a look at the source code.675

The best way of understanding how particles are identified is by just browsing the relevant pieces of the code in the676

AliFlowTrackCuts.cxx file (look at the list of Passes∗Cuts(), but to give a very short overview:677

kTPCpid Return particle identity as stored in the AliESDtrack, TPC information only;678

kTOFpid Return particle identify as stored in the AliESDtrack, TOF information only;679

kTOFbayesian Combined TPC and TOF Bayesian PID method;680

kTOFbeta PID based on asymmetric TOF β cut;681

kTPCdedx PID cut using TPC dE
dx measurements stored in the AliESDtrack,682

kTOFbetaSimple PID cut based on TOF time stored in the AliESDtrack;683

kTPCbayesian Bayesian cut based on TPC or TOF signal;684

kTPCNuclei PID selection for heavy nuclei;685

kTPCTOFNsigma Cut based in a simple combined cut on the n-σ signal from TPC and TOF, requires PID response686

object. The PID response object is created by the PID response task, and thus requires that the PID response task687

runs in an analysis train before the AliFlowTrackCuts class does its selection. To enable the PID response task,688

add the following lines to your run macro:689

690

1 gROOT ->LoadMacro("ANALYSIS/macros/AddTaskPIDResponse.C");691

2 AddTaskPIDResponse ();692
693

The default value for n-σ is 3, but it can be set to a different value using694

695

1 void AliFlowTrackCuts :: SetNumberOfSigmas(Float_t val);696
697

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 13 of 56

AliROOT Flow Package manual and documentation The FLOW team

Caveats and notes698

Applicability of cuts to different data types Just as not all event and track cuts that are available for all data types.699

For the track quality cuts this has been explained in the previous subsections, but one has to realize that in addition,700

not all particle identification methods are available for all types of data. At the time of writing, the ESD particle701

identification is more elaborate than the AOD counterpart. To see which PID methods exist for the different data702

types, check the AliFlowTrackCuts::Passes∗pidCut() functions, printed below for your convenience.703

704

1 Bool_t AliFlowTrackCuts :: PassesAODpidCut(const AliAODTrack* track)705

2 {706

3 if(!track ->GetAODEvent ()->GetTOFHeader ()){707

4 AliAODPid *pidObj = track ->GetDetPid ();708

5 if (! pidObj) fESDpid.GetTOFResponse ().SetTimeResolution (84.);709

6 else{710

7 Double_t sigmaTOFPidInAOD [10];711

8 pidObj ->GetTOFpidResolution(sigmaTOFPidInAOD);712

9 if(sigmaTOFPidInAOD [0] > 84.){713

10 fESDpid.GetTOFResponse ().SetTimeResolution(sigmaTOFPidInAOD [0]); // use the electron714

TOF PID sigma as time resolution (including the T0 used)715

11 }716

12 }717

13 }718

14719

15 // check if passes the selected pid cut for ESDs720

16 Bool_t pass = kTRUE;721

17 switch (fPIDsource)722

18 {723

19 case kTOFbeta:724

20 if (! PassesTOFbetaCut(track)) pass=kFALSE;725

21 break;726

22 case kTOFbayesian:727

23 if (! PassesTOFbayesianCut(track)) pass=kFALSE;728

24 break;729

25 case kTPCbayesian:730

26 if (! PassesTPCbayesianCut(track)) pass=kFALSE;731

27 break;732

28 case kTPCTOFNsigma:733

29 if (! PassesTPCTOFNsigmaCut(track)) pass = kFALSE;734

30 break;735

31 default:736

32 return kTRUE;737

33 break;738

34 }739

35 return pass;740

36741

37 }742

38 // ---743

39 Bool_t AliFlowTrackCuts :: PassesESDpidCut(const AliESDtrack* track)744

40 {745

41 // check if passes the selected pid cut for ESDs746

42 Bool_t pass = kTRUE;747

43 switch (fPIDsource)748

44 {749

45 case kTPCpid:750

46 if (! PassesTPCpidCut(track)) pass=kFALSE;751

47 break;752

48 case kTPCdedx:753

49 if (! PassesTPCdedxCut(track)) pass=kFALSE;754

50 break;755

51 case kTOFpid:756

52 if (! PassesTOFpidCut(track)) pass=kFALSE;757

53 break;758

54 case kTOFbeta:759

55 if (! PassesTOFbetaCut(track)) pass=kFALSE;760

56 break;761

57 case kTOFbetaSimple:762

58 if (! PassesTOFbetaSimpleCut(track)) pass=kFALSE;763

59 break;764

60 case kTPCbayesian:765

61 if (! PassesTPCbayesianCut(track)) pass=kFALSE;766

62 break;767

63 case kTOFbayesian:768

64 if (! PassesTOFbayesianCut(track)) pass=kFALSE;769

65 break;770

66 case kTPCNuclei:771

67 if (! PassesNucleiSelection(track)) pass=kFALSE;772

68 break;773

69 case kTPCTOFNsigma:774

70 if (! PassesTPCTOFNsigmaCut(track)) pass = kFALSE;775

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 14 of 56

AliROOT Flow Package manual and documentation The FLOW team

71 break;776

72 default:777

73 printf("AliFlowTrackCuts :: PassesCuts () this should never be called !\n");778

74 pass=kFALSE;779

75 break;780

76 }781

77 return pass;782

78 }783
784

In general, particle identification is not a trivial procedure, and one needs to find a balance between purity and785

efficiency. Which particle identification to choose depends heavily on the desired outcome of the analysis. In case of786

e.g. a high-precision measurement of π v2, a method which has a very high purity but low efficiency can be chosen:787

π’s are an abundant particle species and high precision requires high purity. On the other hand, if one does selection788

for kaons to reconstruct ϕ-mesons, loose cuts with high efficiency can be chosen, as the ϕ-meson is a rare probe and789

invariant mass requirements on the kaon pairs will take care of mis-identifications.790

To get access to QA information on track selection before and after PID cuts, the QA mode of the AliFlowTrackCuts791

can be selected.792

Track cuts outside of the AliAnalysisTaskFlowEvent class Just as the flow event cuts can be used outside of the793

AliAnalysisTaskFlowEvent class, one can use the AliFlowTrackCuts class in a similar way, by calling, for each794

track,795

796

1 Bool_t AliFlowTrackCuts :: IsSelected(TObject* obj , Int_t id)797
798

or directly one of the PassesCuts(∗) functions which IsSelected() calls.799

VZERO800

Now that the barrel tracks have been explained, let’s continue to the treatment of VZERO information. The VZERO801

detector consists of two scintillator arrays at opposite sides of the interaction point (VZEROA and VZEROC) each802

containing 32 readout channels. To convert the VZERO information to AliFlowTrackCuts, two steps are taken:803

1. A ‘track’ is built from a VZERO tile by taking the geometric mean of the tile as the track direction (from which η804

and ϕ can be constructed);805

2. The VZERO analogue signal strength within a VZERO tile (which is proportional to charge deposition) is taken as806

a weight when evaluating the total Q vector.807

As there is no straightforward way to convert VZERO multiplicity to pt, the VZERO signal can in principle not be used808

as POI in the flow analysis, neither can a pt range be selected when using the VZERO as RP selection. In addition to809

this, the ‘raw’ VZERO signal itself cannot be used directly for flow analysis but needs to be calibrated tile-by-tile. To810

understand how this calibration is performed in the flow package, we need to go into a little bit of detail on how to build811

a Q vector.812

In general, a Q vector is defined as813

Q =
∑

tracks

wi exp (inϕ) (3.2.4.1)

where wi is a track weight, n is the harmonic, and ϕ is the azimuthal angle of a track. As explained, in the case of814

VZERO tiles, ϕ is derived from the position of the VZERO tile and wi is the VZERO signal which is proportional to815

multiplicity. However, not all VZERO tiles are equally sensitive, and the sensitivity (can have) a run-number dependence,816

which results in a non-flat VZERO Q vector distribution. As this effect might be different run-by-run, it cannot be817

corrected by applying a non-uniform acceptance correction at the end of your analysis, as an analysis generally comprises818

running over multiple run-numbers and the non-uniform acceptance correction corrects only for non-uniformity which is819

equal for all runs. Hence, the VZERO non-uniformity needs to be corrected at the time of the construction of the Q820

vectors.821

The functions in the flow package which are responsible for building the Q vectors (or sub-event Q vectors, the use of822

which will be described in subsection 4.3) are823

824

1 // Q-vector calculation825

2 AliFlowVector AliFlowEventSimple ::GetQ(826

3 Int_t n, // harmonic827

4 TList *weightsList , // weight list828

5 Bool_t usePhiWeights , // use phi weights?829

6 Bool_t usePtWeights , // use pt weights?830

7 Bool_t useEtaWeights // use eta weights?831

8)832

9833

10 // Q-vectors of sub -events834

11 void AliFlowEventSimple :: Get2Qsub(835

12 AliFlowVector* Qarray , // array with q-vectors836

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 15 of 56

AliROOT Flow Package manual and documentation The FLOW team

13 Int_t n,837

14 TList *weightsList ,838

15 Bool_t usePhiWeights ,839

16 Bool_t usePtWeights ,840

17 Bool_t useEtaWeights841

18)842

19843

20 // overloaded implementation of Q-vectors of sub -events for VZERO information844

21 void AliFlowEvent :: Get2Qsub(845

22 AliFlowVector* Qarray ,846

23 Int_t n,847

24 TList *weightsList ,848

25 Bool_t usePhiWeights ,849

26 Bool_t usePtWeights ,850

27 Bool_t useEtaWeights851

28)852
853

These functions are called by the flow analysis tasks and generally not by the user directly, but it is good to know where854

they can be found. The first two functions merely loop over all tracks in a flow event and fill the Q vector. The last855

function is designed for building a Q vector from VZERO information, applying a calibration step to the VZERO signal.856

To make life complicated, the calibration of the VZERO Q vector in LHC10h is not the same as the calibration of the857

VZERO Q vector LHC11h data. Let’s start by taking a look at the LHC10h case.858

LHC10h The calibration of LHC10h data is a two-step procedure.859

• The first step is evaluating the Q vector using equation 3.2.4.1. However, the VZERO signal of each tile is860

re-weighted before it is used as a weight in equation 3.2.4.1. The re-weighting comprises861

1. Taking a TProfile with average multiplicity per cell (these profiles are stored in a OADB file for each862

run-number)863

2. Fitting a constant line per disc (or ring) y = a (see next slide for example)864

3. Evaluating the track weight for each VZERO cell is now calculated in a second iteration as865

track weight =
cell multiplicity ∗ a

average multiplicity in a cell
(3.2.4.2)

• After the Q vectors have been built, they are re-centered. Re-centering is basically a small adjustment of the866

components of the Q vector, changing its angle event-by-event so that on average a flat Q vector distribution867

is obtained. The steps that are taken for re-centering are the following:868

1. Retrieve the average mean and spread of the Q vector distribution from a database file;869

2. The corrected Q vectors can now be obtained by doing870

Qn −→
Qn − 〈Qn〉

σQn

(3.2.4.3)

where brackets denote the one-run average, and σQn
the standard deviation of Qn in the sample871

Note that the calibration is only available for n = 2 and n = 3. For higher harmonics, the flow package will use the872

equalized VZERO multiplicity873

874

1 AliVEvent :: GetVZEROEqMultiplicity(Int_t i);875
876

to build the Q vectors, whether this is satisfactory for an analysis, or if non-uniform acceptance effects can be877

reverted by performing a correction on a run-by-run basis is up to the analyzer. The Q vector distributions of total878

Q vectors and sub-event vectors can always be checked via the AliFlowCommonHists classes (see section 2.2.1) via879

880

1 TH1F* GetHistQ () {return fHistQ; } ;881

2 TH1F* GetHistAngleQ () {return fHistAngleQ; }882

3 TH1F* GetHistAngleQSub0 () {return fHistAngleQSub0; }883

4 TH1F* GetHistAngleQSub1 () {return fHistAngleQSub1; }884
885

LHC11h The calibration of the LHC11h VZERO information is not performed by the flow package, but by an external886

class, name the VZEROEPselection task, which will store the corrected Q vectors in the AliVEvent header, from887

which they are retrieved by the AliFlowTrackCuts class. To use this method, make sure that you run this888

VZEROEPselection task before your flow analysis tasks in an analysis train. To enable this task, add the following889

lines to your analysis macro890

891

1 gROOT ->LoadMacro("$ALICE_ROOT/ANALYSIS/macros/AddTaskVZEROEPSelection.C");892

2 AddTaskVZEROEPSelection ();893
894

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 16 of 56

AliROOT Flow Package manual and documentation The FLOW team

Note that for LHC11h data, calibration is performed only for the second harmonic (n = 2). For higher harmonics, the895

flow package uses equalized VZERO multiplicity to build Q vectors (as indicated for the LHC10h data).896

After describing how and why calibration is performed, it is now time to indicate how to set up this calibration routine.897

Just as selecting barrel tracks, this can be done by creating an AliFlowTrackCuts object via a static access method,898

899

1 AliFlowTrackCuts* cutsVZERO = GetStandardVZEROOnlyTrackCuts ();900
901

At run-time, the flow package will detector whether LHC10h or LHC11h data is used by reading the analyzed events’902

run-number. This can be convenient when having these cuts defined in a script which is designed to run on multiple types903

of input data. However, one can also call the LHC10h or LHC11h specific cuts directly via dedicated functions, which are904

reprinted here as the comments are important905

906

1 AliFlowTrackCuts* AliFlowTrackCuts :: GetStandardVZEROOnlyTrackCuts2010 ()907

2 {908

3 // get standard VZERO cuts909

4 // DISCLAIMER : LHC10h VZERO calibration consists (by default) of two steps910

5 //1) re -weigting of signal911

6 //2) re -centering of q-vectors912

7 // step 2 is available only for n==2 and n==3, for the higher harmonics the user913

8 //is repsonsible for making sure the q-sub distributions are (sufficiently) flat914

9 //or a sensible NUA procedure is applied !915

10 AliFlowTrackCuts* cuts = new AliFlowTrackCuts("standard vzero flow cuts");916

11 cuts ->SetParamType(AliFlowTrackCuts :: kVZERO);917

12 cuts ->SetEtaRange(-10, +10);918

13 cuts ->SetEtaGap (-1., 1.);919

14 cuts ->SetPhiMin(0);920

15 cuts ->SetPhiMax(TMath::TwoPi ());921

16 // options for the reweighting922

17 cuts ->SetVZEROgainEqualizationPerRing(kFALSE);923

18 cuts ->SetApplyRecentering(kTRUE);924

19 // to exclude a ring , do e.g.925

20 // cuts -> SetUseVZERORing (7, kFALSE);926

21 // excluding a ring will break the re - centering as re - centering relies on a927

22 // database file which tuned to receiving info from all rings928

23 return cuts;929

24 }930

25 // ---931

26 AliFlowTrackCuts* AliFlowTrackCuts :: GetStandardVZEROOnlyTrackCuts2011 ()932

27 {933

28 // get standard VZERO cuts for 2011 data934

29 //in this case , the vzero segments will be weighted by935

30 // VZEROEqMultiplicity ,936

31 //if recentering is enableded , the sub -q vectors937

32 // will be taken from the event header , so make sure to run938

33 // the VZERO event plane selection task before this task !939

34 // DISCLAIMER : recentering is only available for n==2940

35 // for the higher harmonics the user941

36 //is repsonsible for making sure the q-sub distributions are (sufficiently) flat942

37 //or a sensible NUA procedure is applied !943

38 // recentering replaces the already evaluated q-vectors , so944

39 // when chosen , additional settings (e.g. excluding rings)945

40 // have no effect. recentering is true by default946

41 //947

42 // NOTE user is responsible for running the vzero event plane948

43 // selection task in advance , e.g. add to your launcher macro949

44 //950

45 // gROOT -> LoadMacro (" $ALICE_ROOT /ANALYSIS/macros/ AddTaskVZEROEPSelection .C");951

46 // AddTaskVZEROEPSelection ();952

47 //953

48 AliFlowTrackCuts* cuts = new AliFlowTrackCuts("standard vzero flow cuts 2011");954

49 cuts ->SetParamType(kVZERO);955

50 cuts ->SetEtaRange(-10, +10);956

51 cuts ->SetEtaGap (-1., 1.);957

52 cuts ->SetPhiMin(0);958

53 cuts ->SetPhiMax(TMath::TwoPi ());959

54 cuts ->SetApplyRecentering(kTRUE);960

55 cuts ->SetVZEROgainEqualizationPerRing(kFALSE);961

56 return cuts;962

57 }963
964

Caveats and remarks965

Using the VZERO as reference detector in a flow analysis certainly has its benefits (such as suppressing the non-flow966

contribution to the vn signal) but a few remarks have to be made967

Applicability to flow analysis methods As the calibration affects the information that is returned by the function968

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 17 of 56

AliROOT Flow Package manual and documentation The FLOW team

969

1 void AliFlowEvent :: Get2Qsub ()970
971

only flow analysis methods which call this function (and thus use sub-events) can use the calibrated VZERO signal.972

Most notably, this is the scalar product method. In combination with this, one should keep in mind that the two973

VZERO detectors have different η coverage. For the recent ALICE paper on the flow of identified particles, the scalar974

product method with VZERO sub-events was used, where the two VZERO detectors comprised the two sub-events.975

For more information on this, take a look at the description of the scalar product method in subsection 4.3.976

VZERO as RP source The VZERO signal should only be used as source for reference flow. Although technically there977

is no objection to using the VZERO signal as POI’s (you will probably get output) there is no guarantee that this978

makes sense from a ‘physics’ viewpoint;979

Tuning of the calibration The calibration in the LHC11h data is taken from an external class and therefore, as far as980

the flow package is considered, as-is (although the calibration can be disabled). The LHC10h calibration however is981

done within the package, and can be tuned quite a bit.982

Tuning the calibration is done by functions of the AliFlowTrackCuts class. Some of these functions apply to both983

LHC10h and LHC11h data but can have slightly different effects:984

985

1 // to either enable or disable the recentering986

2 // (for 11h this will mean that no calibration is performed ,987

3 // for 10h it will result in only doing a re -weighting)988

4 void SetApplyRecentering(Bool_t r)989

5 // to enable a per -ring instead of per -disc gain equalization (=re - weighting)990

6 // (for 11h this has no effect)991

7 void SetVZEROgainEqualizationPerRing(Bool_t s)992

8 // exclude vzero rings: 0 through 7 can be excluded by calling this setter multiple times993

9 // 0 corresponds to segment ID 0 through 7, etc994

10 // disabled vzero rings get weight 0995

11 // with this function you can omit information from entire vzero rings996

12 // might be useful for runs where there is a bad signal in one of the tiles997

13 // (sometimes referred to as ’clipping ’)998

14 void SetUseVZERORing(Int_t i, Bool_t u)999
1000

Be warned however: the databases which are read during the calibration however are tuned to the combination of re-1001

weighting of all rings with re-centering. Changing this combination might lead to biases in the Q vector distribution,1002

so: playing with the calibration settings might be interesting for e.g. evaluating systematic uncertainties, but keep1003

an eye on the control histograms!1004

Track weights1005

When it is a-priori know that a track sample needs to be weighted in ϕ, η or pt (e.g. to correct for a non-uniform acceptance1006

bias in azimuth by using weight which are inversely proportional to the azimuthal track distribution) histograms with1007

weight distributions can be supplied to the flow package. The weights are supplied to flow analysis tasks, which then1008

apply these weights by passing them to the Q vector calculation functions which are printed in the previous subsection.1009

The weights have to be supplied as TH1F objects (or objects which can be dynamically cast to a TH1F encapsulated1010

in TList. The histograms have to have specific names: "phi weights" for ϕ weights, "pt weights" for pt weights and1011

"eta weights" for η weights. The binning of the histograms is not important, as long as bins are of equal width. The1012

weights are disabled by default and have to be passed to specific flow analysis tasks (as not all tasks support weights) via1013

1014

1 // set weight list1015

2 AliFlowAnalysisWith *:: SetWeightsList(TList* const)1016

3 // toggle phi weights on / off1017

4 AliFlowAnalysisWith *:: SetUsePhiWeights(Bool_t const)1018

5 // toggle eta weighs on / off1019

6 AliFlowAnalysisWith *:: SetUseEtaWeights(Bool_t const)1020

7 // toggle pt weights on / off1021

8 AliFlowAnalysisWith *:: SetUsePtWeights(Bool_t const)1022
1023

and are applied to total Q vectors and sub-event Q vectors.1024

The tasks which support weights are1025

• AliFlowAnalysisWithNestedLoops1026

• AliFlowAnalysisWithScalarProduct1027

• AliFlowAnalysisWithQCumulants1028

• AliFlowAnalysisTemplate1029

• AliFlowAnalysisWithFittingQDistribution1030

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 18 of 56

AliROOT Flow Package manual and documentation The FLOW team

• AliFlowAnalysisWithCumulants1031

• AliFlowAnalysisWithMixedHarmonics1032

For details on how the weighting is implemented (and defined) the user is referred to the specific Q vector evaluation1033

functions given in the previous subsection.1034

AliFlowCommonConstants - The Common Constants class1035

All flow analysis use a common output container to store their histograms. To set the configuration for the histograms1036

in these containers - e.g. the pt ranges of histograms, the number of bins, etc, etc - all flow analysis methods initialize1037

their output containers using variables from a static (global) instance of the AliFlowCommonConstants class. This object,1038

which can be obtained via the a static function1039

1040

1 static AliFlowCommonConstants* GetMaster ();1041
1042

can be tuned to the user’s liking by requesting a pointer to it via the static access method, and using the available setter1043

functions, e.g. the following1044

1045

1 AliFlowCommonConstants* cc = AliFlowCommonConstants :: GetMaster ();1046

2 cc->SetNbinsPt (100);1047

3 cc->SetPtMin (0);1048

4 cc->SetPtMax (10);1049
1050

will result in an analysis which is performed in 100 pt bins of 0.1 GeV/c width. The full set of histogram sizes and limits1051

that can be set is1052

1053

1 // histogram sizes1054

2 Int_t fNbinsMult; // histogram size1055

3 Int_t fNbinsPt; // histogram size1056

4 Int_t fNbinsPhi; // histogram size1057

5 Int_t fNbinsEta; // histogram size1058

6 Int_t fNbinsQ; // histogram size1059

7 Int_t fNbinsMass; // histogram size1060

81061

9 // Histograms limits1062

10 Double_t fMultMin; // histogram limit1063

11 Double_t fMultMax; // histogram limit1064

12 Double_t fPtMin; // histogram limit1065

13 Double_t fPtMax; // histogram limit1066

14 Double_t fPhiMin; // histogram limit1067

15 Double_t fPhiMax; // histogram limit1068

16 Double_t fEtaMin; // histogram limit1069

17 Double_t fEtaMax; // histogram limit1070

18 Double_t fQMin; // histogram limit1071

19 Double_t fQMax; // histogram limit1072

20 Double_t fMassMin; // histogram limit1073

21 Double_t fMassMax; // histogram limit1074

22 Double_t fHistWeightvsPhiMin; // histogram limit1075

23 Double_t fHistWeightvsPhiMax; // histogram limit1076
1077

via the setters1078

1079

1 void SetNbinsMult(Int_t i) { fNbinsMult = i; }1080

2 void SetNbinsPt(Int_t i) { fNbinsPt = i; }1081

3 void SetNbinsPhi(Int_t i) { fNbinsPhi = i; }1082

4 void SetNbinsEta(Int_t i) { fNbinsEta = i; }1083

5 void SetNbinsQ(Int_t i) { fNbinsQ = i; }1084

6 void SetNbinsMass(Int_t i) { fNbinsMass = i; }1085

7 void SetMultMin(Double_t i) { fMultMin = i; }1086

8 void SetMultMax(Double_t i) { fMultMax = i; }1087

9 void SetPtMin(Double_t i) { fPtMin = i; }1088

10 void SetPtMax(Double_t i) { fPtMax = i; }1089

11 void SetPhiMin(Double_t i) { fPhiMin = i; }1090

12 void SetPhiMax(Double_t i) { fPhiMax = i; }1091

13 void SetEtaMin(Double_t i) { fEtaMin = i; }1092

14 void SetEtaMax(Double_t i) { fEtaMax = i; }1093

15 void SetQMin(Double_t i) { fQMin = i; }1094

16 void SetQMax(Double_t i) { fQMax = i; }1095

17 void SetMassMin(Double_t i) { fMassMin = i; }1096

18 void SetMassMax(Double_t i) { fMassMax = i; }1097

19 void SetHistWeightvsPhiMax(Double_t d) {fHistWeightvsPhiMax=d;}1098

20 void SetHistWeightvsPhiMin(Double_t d) {fHistWeightvsPhiMin=d;}1099
1100

Note that the common constants object is static, meaning that, within a process (e.g. an analysis train) just one1101

instance of the object is created. The histogram limits and sizes that are set via the common constants object therefore1102

affect all histograms within an analysis chain.1103

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 19 of 56

AliROOT Flow Package manual and documentation The FLOW team

AliFlowCommonHist and AliFlowCommonHistResults - details1104

Both the AliFlowCommonHist and AliFlowCommonHistResults classes do not only contain (pointers to) histograms and1105

profiles, but also have a collection of ‘getters’e which you can use to retrieve histograms of profiles using the ROOT command1106

line in stead of the TBrowser, which may come in handy when one needs to read the output of the flow analysis tasks in1107

a macro.1108

Using the output file that was generated in the example given in the previous sections of this chapter, reading the1109

objects of the common histogram classes is done in the following way. First, start an (Ali)ROOT session, and load the1110

prerequisite libraries,1111

1112

1 gSystem ->Load("libPWGflowBase");1113
1114

Then, open the analysis file and grab the common histogram objects1115

1116

1 // open the file1117

2 TFile f("AnalysisResults.root");1118

3 // get the qc analysis output directory1119

4 TDirectoryFile* dir = (TDirectoryFile *)f.Get("outputQCanalysis");1120

5 // and retrieve the output list of the analysis1121

6 TList* outputList = (TList *)dir ->Get("cobjQC")1122
1123

The TList that you have just obtained holds not only the common histogram objects, but can also hold additional1124

information that has been added to the analysis output by a specific flow analysis task. To read the entire content of the1125

TList, you can type1126

1127

1 outputList ->ls();1128
1129

However, in this example we want to retrieve the common histogram objects. To do so, type1130

1131

1 // get common histogram object from the TList1132

2 AliFlowCommonHist* commonHist = (AliFlowCommonHist *)outputList ->FindObject("AliFlowCommonHistQC");1133

3 // get the results for the 2 particle cumulant from the TList1134

4 AliFlowCommonHistResults* commonHistResults2 = (AliFlowCommonHistResults *)outputList ->FindObject("1135

AliFlowCommonHistResults2ndOrderQC");1136
1137

Once you have retrieved the pointers to the AliFlowCommonHist or AliFlowCommonHistResults objects, you can use the1138

getters to retrieve a histogram. To e.g. draw the η distribution of POI’s, type1139

1140

1 commonHist ->GetHistEtaPOI ()->Draw();1141
1142

The following getters are available in AliFlowCommonHist1143

1144

1 Double_t GetEntriesInPtBinRP(Int_t iBin); // gets entries from fHistPtRP1145

2 Double_t GetEntriesInPtBinPOI(Int_t iBin); // gets entries from fHistPtPOI1146

3 Double_t GetEntriesInEtaBinRP(Int_t iBin); // gets entries from fHistEtaRP1147

4 Double_t GetEntriesInEtaBinPOI(Int_t iBin); // gets entries from fHistEtaPOI1148

5 Double_t GetMeanPt(Int_t iBin); // gets the mean pt for this bin from1149

fHistProMeanPtperBin1150

6 TH1F* GetHistMultRP () {return fHistMultRP; } ;1151

7 TH1F* GetHistMultPOI () {return fHistMultPOI; } ;1152

8 TH2F* GetHistMultPOIvsRP () {return fHistMultPOIvsRP; } ;1153

9 TH1F* GetHistPtRP () {return fHistPtRP; } ;1154

10 TH1F* GetHistPtPOI () {return fHistPtPOI; } ;1155

11 TH1F* GetHistPtSub0 () {return fHistPtSub0; } ;1156

12 TH1F* GetHistPtSub1 () {return fHistPtSub1; } ;1157

13 TH1F* GetHistPhiRP () {return fHistPhiRP; } ;1158

14 TH1F* GetHistPhiPOI () {return fHistPhiPOI; } ;1159

15 TH1F* GetHistPhiSub0 () {return fHistPhiSub0; } ;1160

16 TH1F* GetHistPhiSub1 () {return fHistPhiSub1; } ;1161

17 TH1F* GetHistEtaRP () {return fHistEtaRP; } ;1162

18 TH1F* GetHistEtaPOI () {return fHistEtaPOI; } ;1163

19 TH1F* GetHistEtaSub0 () {return fHistEtaSub0; } ;1164

20 TH1F* GetHistEtaSub1 () {return fHistEtaSub1; } ;1165

21 TH2F* GetHistPhiEtaRP () {return fHistPhiEtaRP; } ;1166

22 TH2F* GetHistPhiEtaPOI () {return fHistPhiEtaPOI; } ;1167

23 TProfile* GetHistProMeanPtperBin () {return fHistProMeanPtperBin; } ;1168

24 TH2F* GetHistWeightvsPhi () {return fHistWeightvsPhi; } ;1169

25 TH1F* GetHistQ () {return fHistQ; } ;1170

26 TH1F* GetHistAngleQ () {return fHistAngleQ; }1171

27 TH1F* GetHistAngleQSub0 () {return fHistAngleQSub0; }1172

28 TH1F* GetHistAngleQSub1 () {return fHistAngleQSub1; }1173

29 TProfile* GetHarmonic () {return fHarmonic; } ;1174

30 TProfile* GetRefMultVsNoOfRPs () {return fRefMultVsNoOfRPs; } ;1175

31 TH1F* GetHistRefMult () {return fHistRefMult; } ;1176

32 TH2F* GetHistMassPOI () {return fHistMassPOI; }1177

33 TList* GetHistList () {return fHistList ;} ;1178
1179

eA ‘getter’ in this manual will be used to describe a function of the form Get∗() which returns a (pointer to) a member of a class and is
used to interface with the class.

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 20 of 56

AliROOT Flow Package manual and documentation The FLOW team

and in AliFlowCommonHistResults1180

1181

1 TH1D* GetHistChi (){return fHistChi ;};1182

2 TH1D* GetHistIntFlow (){return fHistIntFlow ;};1183

3 TH1D* GetHistIntFlowRP (){return fHistIntFlowRP ;};1184

4 TH1D* GetHistDiffFlowPtRP (){return fHistDiffFlowPtRP ;};1185

5 TH1D* GetHistDiffFlowEtaRP (){return fHistDiffFlowEtaRP ;};1186

6 TH1D* GetHistIntFlowPOI (){return fHistIntFlowPOI ;};1187

7 TH1D* GetHistDiffFlowPtPOI (){return fHistDiffFlowPtPOI ;};1188

8 TH1D* GetHistDiffFlowEtaPOI (){return fHistDiffFlowEtaPOI ;};1189

9 TList* GetHistList (){return fHistList ;};1190
1191

Afterburner1192

To e.g. test your analysis setup, an ‘afterburner’ can be called which adds user-defined flow to (isotropic) events. Two1193

afterburner techniques are implemented.1194

Differential v2 The first technique injects differential v2 into events, using the following steps: As a starting point, an1195

isotropic distribution of tracks is used1196

dN

dϕ0
=

1

2π
. (3.2.4.4)

Adding a periodic azimuthal modulation, this is translated to1197

dN

dϕ
=

1

2π
(1 + v2 cos [2 (ϕ−Ψ)]) (3.2.4.5)

which can be re-written as1198

dN

dϕ
=
dN

dϕ0

dϕ0

dϕ
=

1

2π

dϕ0

dϕ
(3.2.4.6)

so that for each track the following equation can be solved by Newton-Raphson iteration1199

ϕ = ϕ0 − v2 sin [2 (ϕ−Ψ)] . (3.2.4.7)

Integrated vn The second option is adding integrated vn by sampling the azimuthal distribution of an event from a1200

Fourier series1201

dN

dϕ
∝ 1 +

1

2

∑
n

vn (n∆ϕ) . (3.2.4.8)

In the ‘quick start’ of this manual you have already see how you can generate flow events with a certain vn value by1202

generating flow events by hand. The afterburner routine can also be called from the AliAnalysisTaskFlowEvent via the1203

functions1204

1205

1 // setters for adding by hand flow values (afterburner)1206

21207

3 // toggle the afterburner on / off1208

4 void SetAfterburnerOn(Bool_t b=kTRUE) {fAfterburnerOn=b;}1209

5 // set differential v2 via a TF11210

6 void SetPtDifferentialV2(TF1 *gPtV2) {fDifferentialV2 = gPtV2;}1211

7 // set integrated flow (used when the gPtV2 = NULL)1212

8 void SetFlow(Double_t v1, Double_t v2 , Double_t v3=0.0, Double_t v4=0.0, Double_t v5=0.0)1213

9 {fV1=v1;fV2=v2;fV3=v3;fV4=v4;fV5=v5;}1214
1215

To introduce non-flow effects to using the afterburner, tracks can be cloned. To clone, for each event, a given number n1216

of tracks, enable the afterburner and call1217

1218

1 void SetNonFlowNumberOfTrackClones(Int_t n) {fNonFlowNumberOfTrackClones=n;}1219
1220

Effectively this will result in n tracks appearing twice in the track sample, mimicking the effects of e.g. resonance decays1221

of track splitting on vn.1222

3.2.5 Relevant pieces of code1223

The best way of getting familiar with the flow package is perhaps browsing the source code, but it can be difficult to find1224

a good starting point for this. Two relevant pieces of code have been selected here which are at the heart of the flow1225

package:1226

1. The AliAnalysisTaskFlowEvent::UserExec() function, which is called for each event that enters an analysis train;1227

2. AliFlowEvent::Fill(), which selects POI’s and RP’s following the track selection criteria and fills the flow event which1228

is passed to the analysis methods. The functions are shortened and simplified and provided with additional lines of1229

comments.1230

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 21 of 56

AliROOT Flow Package manual and documentation The FLOW team

AliAnalysisTaskFlowEvent::UserExec()1231

This function is called for each event.1232

1233

1 void AliAnalysisTaskFlowEvent :: UserExec(Option_t *)1234

2 {1235

3 // Main loop1236

4 // Called for each event1237

5 // delete fFlowEvent ;1238

6 AliMCEvent* mcEvent = MCEvent (); // from TaskSE1239

7 AliESDEvent* myESD = dynamic_cast <AliESDEvent *>(InputEvent ()); // from TaskSE1240

8 AliAODEvent* myAOD = dynamic_cast <AliAODEvent *>(InputEvent ()); // from TaskSE1241

91242

10 // the rp and poi cuts will be used to fill the flow event1243

11 // so they have to be defined here1244

12 if (!(fCutsRP && fCutsPOI && fCutsEvent))1245

13 {1246

14 AliError("cuts not set");1247

15 return;1248

16 }1249

171250

18 // DEFAULT - automatically takes care of everything1251

19 // the flow package will determine the datatype that you are using1252

20 if (fAnalysisType == "AUTOMATIC")1253

21 {1254

22 // check event cuts1255

23 if (InputEvent () && !fCutsEvent ->IsSelected(InputEvent (),MCEvent ()))1256

24 return;1257

251258

26 // first attach all possible information to the cuts1259

27 // the track cuts will make the track selection , so they1260

28 // have to be supplied with the current event1261

29 // the mc event is NULL unless it is retrieved by AliAnalysisTaskSE1262

30 fCutsRP ->SetEvent(InputEvent (), MCEvent ()); // attach event1263

31 fCutsPOI ->SetEvent(InputEvent (), MCEvent ());1264

321265

33 // then make the event1266

34 // this function will fill the flow event with selected poi ’s and rp’s1267

35 // the implementation is printed below1268

36 fFlowEvent ->Fill(fCutsRP , fCutsPOI);1269

371270

38 // pass some event info to the flow event1271

39 fFlowEvent ->SetReferenceMultiplicity(fCutsEvent ->GetReferenceMultiplicity(InputEvent (),mcEvent))1272

;1273

40 fFlowEvent ->SetCentrality(fCutsEvent ->GetCentrality(InputEvent (),mcEvent));1274

41 if (mcEvent && mcEvent ->GenEventHeader ()) fFlowEvent ->SetMCReactionPlaneAngle(mcEvent);1275

42 }1276

431277

44 // a lot of code is omitted here //1278

451279

46 // //1280

47 // ///////////////////////// AFTERBURNER1281

48 if (fAfterburnerOn)1282

49 {1283

50 //if reaction plane not set from elsewhere randomize it before adding flow1284

51 if (!fFlowEvent ->IsSetMCReactionPlaneAngle ())1285

52 fFlowEvent ->SetMCReactionPlaneAngle(gRandom ->Uniform (0.0, TMath :: TwoPi()));1286

531287

54 if(fDifferentialV2)1288

55 fFlowEvent ->AddV2(fDifferentialV2);1289

56 else1290

57 fFlowEvent ->AddFlow(fV1 ,fV2 ,fV3 ,fV4 ,fV5); // add flow1291

58 fFlowEvent ->CloneTracks(fNonFlowNumberOfTrackClones); // add nonflow by cloning tracks1292

59 }1293

60 // //1294

611295

62 // tag subEvents1296

63 // some flow analysis methods (such as the scalar product)1297

64 // use sub -events. by calling this function , all tracks in the1298

65 // flow event are tagged as belonging to either sub -event a or b1299

66 fFlowEvent ->TagSubeventsInEta(fMinA ,fMaxA ,fMinB ,fMaxB);1300
1301

AliFlowEvent::Fill()1302

This function fills the flow event with AliFlowSimpleTracks. One important thing to notice here, is that both POI’s and1303

RP’s are stored in a common array of flow tracks, internally only referred to as POI’s. What distinguishes the POI’s and1304

RP’s is their type: RP’s are stored as type 0 POI’s, and POI’s are stored as non-zero type POI’s (where nonzero means1305

1, 2, 3 ...).1306

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 22 of 56

AliROOT Flow Package manual and documentation The FLOW team

1307

1 // ---1308

2 void AliFlowEvent ::Fill(AliFlowTrackCuts* rpCuts ,1309

3 AliFlowTrackCuts* poiCuts)1310

4 {1311

5 // Fills the event from a vevent: AliESDEvent ,AliAODEvent , AliMCEvent1312

6 // the input data needs to be attached to the cuts1313

7 //we have two cases , if we’re cutting the same collection of tracks1314

8 //(same param type) then we can have tracks that are both rp and poi1315

9 //in the other case we want to have two exclusive sets of rps and pois1316

10 //e.g. one tracklets , the other PMD or global - USER IS RESPOSIBLE1317

11 // FOR MAKING SURE THEY DONT OVERLAP OR ELSE THE SAME PARTICLE WILL BE1318

12 // TAKEN TWICE1319

131320

14 // remove the previous event1321

15 ClearFast ();1322

16 if (! rpCuts || !poiCuts) return;1323

17 // check the source of rp’s1324

18 AliFlowTrackCuts :: trackParameterType sourceRP = rpCuts ->GetParamType ();1325

19 // and ditto for the poi ’s1326

20 AliFlowTrackCuts :: trackParameterType sourcePOI = poiCuts ->GetParamType ();1327

211328

22 AliFlowTrack* pTrack=NULL;1329

231330

24 // if the source for rp’s or poi ’s is the VZERO detector , get the calibration1331

25 // and set the calibration parameters1332

26 if (sourceRP == AliFlowTrackCuts :: kVZERO) {1333

27 SetVZEROCalibrationForTrackCuts(rpCuts);1334

28 if(!rpCuts ->GetApplyRecentering ()) {1335

29 // if the user does not want to recenter , switch the flag1336

30 fApplyRecentering = -1;1337

31 }1338

32 // note: this flag is used in the overloaded implementation of Get2Qsub ()1339

33 // and tells the function to use as Qsub vectors the recentered Q-vectors1340

34 // from the VZERO oadb file or from the event header1341

35 }1342

36 if (sourcePOI == AliFlowTrackCuts :: kVZERO) {1343

37 // probably no -one will choose vzero tracks as poi ’s ...1344

38 SetVZEROCalibrationForTrackCuts(poiCuts);1345

39 }1346

401347

411348

42 if (sourceRP == sourcePOI)1349

43 {1350

44 // loop over tracks1351

45 Int_t numberOfInputObjects = rpCuts ->GetNumberOfInputObjects ();1352

46 for (Int_t i=0; i<numberOfInputObjects; i++)1353

47 {1354

48 // get input object (particle)1355

49 TObject* particle = rpCuts ->GetInputObject(i);1356

501357

51 Bool_t rp = rpCuts ->IsSelected(particle ,i);1358

52 Bool_t poi = poiCuts ->IsSelected(particle ,i);1359

531360

54 if (!(rp||poi)) continue;1361

551362

56 // make new AliFlowTrack1363

57 if (rp)1364

58 {1365

59 pTrack = rpCuts ->FillFlowTrack(fTrackCollection ,fNumberOfTracks);1366

60 if (! pTrack) continue;1367

61 pTrack ->Tag(0); IncrementNumberOfPOIs (0);1368

62 if (poi) {pTrack ->Tag(1); IncrementNumberOfPOIs (1);}1369

63 if (pTrack ->GetNDaughters () >0) fMothersCollection ->Add(pTrack);1370

64 }1371

65 else if (poi)1372

66 {1373

67 pTrack = poiCuts ->FillFlowTrack(fTrackCollection ,fNumberOfTracks);1374

68 if (! pTrack) continue;1375

69 pTrack ->Tag(1); IncrementNumberOfPOIs (1);1376

70 if (pTrack ->GetNDaughters () >0) fMothersCollection ->Add(pTrack);1377

71 }1378

72 fNumberOfTracks ++;1379

73 }// end of while (i < numberOfTracks)1380

74 }1381

75 else if (sourceRP != sourcePOI)1382

76 {1383

77 // here we have two different sources of particles , so we fill1384

78 // them independently1385

79 // POI1386

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 23 of 56

AliROOT Flow Package manual and documentation The FLOW team

80 for (Int_t i=0; i<poiCuts ->GetNumberOfInputObjects (); i++)1387

81 {1388

82 TObject* particle = poiCuts ->GetInputObject(i);1389

83 Bool_t poi = poiCuts ->IsSelected(particle ,i);1390

84 if (!poi) continue;1391

85 pTrack = poiCuts ->FillFlowTrack(fTrackCollection ,fNumberOfTracks);1392

86 if (! pTrack) continue;1393

87 pTrack ->Tag(1);1394

88 IncrementNumberOfPOIs (1);1395

89 fNumberOfTracks ++;1396

90 if (pTrack ->GetNDaughters () >0) fMothersCollection ->Add(pTrack);1397

91 }1398

92 //RP1399

93 Int_t numberOfInputObjects = rpCuts ->GetNumberOfInputObjects ();1400

94 for (Int_t i=0; i<numberOfInputObjects; i++)1401

95 {1402

96 TObject* particle = rpCuts ->GetInputObject(i);1403

97 Bool_t rp = rpCuts ->IsSelected(particle ,i);1404

98 if (!rp) continue;1405

99 pTrack = rpCuts ->FillFlowTrack(fTrackCollection ,fNumberOfTracks);1406

100 if (! pTrack) continue;1407

101 pTrack ->Tag(0);1408

102 IncrementNumberOfPOIs (0);1409

103 fNumberOfTracks ++;1410

104 if (pTrack ->GetNDaughters () >0) fMothersCollection ->Add(pTrack);1411

105 }1412

106 }1413

107 }1414
1415

3.2.6 Some words on the ALICE analysis framework1416

Many of the classes which are described in the previous section deal with ALICE data (e.g. event and track selection).1417

Generally, this data is analyzed in ALICE analysis framework. This framework is setup in the following way1418

1. An analysis manager analysis manager is created;1419

2. The manager is connected to a source of input data (this can be data that is stored on your local machine, but more1420

often data comes in the form of .xml files which point to data on GRID storage elements);1421

3. A number of analysis tasks is initialized, configured, and added to the analysis manager (so that you construct an1422

‘analysis train’);1423

4. The analysis is performed, which in effect means that the manager reads an event, passes it to the analysis tasks1424

(who analyze it sequentially), and repeats this until all events are read. In this way, an event can be analyzed by1425

many tasks whilst reading it from file just once;1426

5. The analysis outputs are gathered by the manager and written to an output file.1427

In this case of the flow package, the most common way of using this framework is1428

• Creating flow events using the dedicated flow event task AliAnalysisTaskFlowEvent;1429

• Analyzing these events using the AliROOT interface to the generic flow analysis tasks.1430

AliAnalysisTaskSE1431

All analysis tasks that are called by the analysis manager have to be derived from a common class, the AliAnalysisTaskSEf
1432

(where the suffix ‘SE’ stands for ‘single event’). AliAnalysisTaskSE has a few virtual functions which can be called in1433

user tasks by the analysis manager at specific times. Most notably these are1434

UserCreateOutputObjects This function is called before the analysis starts;1435

UserExec This function is called for each event;1436

Terminate Called at the end of the analysis (after the last event has been processed).1437

So, why is this important for the flow package? As said, the analysis manager can only handle tasks that derive from1438

AliAnalysisTaskSE. Therefore, all flow analysis in the flow package consist of two classes:1439

AliAnalysisTask∗ These can be found in the ‘tasks’ directory of the flow package and are derived of AliAnalysisTaskSE.1440

These classes interface with AliROOT;1441

fThis section is very brief an incomplete, but keep in mind that this is a flow package manual, and not an AliROOT tutorial.

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 24 of 56

AliROOT Flow Package manual and documentation The FLOW team

AliFlowAnalysisWith∗ These can be found in the ‘base’ folder of the flow package and perform the actual flow analysis.1442

In chapter 2 of this manual, you have seen that, using just the AliFlowAnalysisWith∗ class, a flow analysis basically1443

follows the path1444

1. Init(): called once to initialize the task and histograms;1445

2. Make(): called for each event, does the analysis;1446

3. Finish(): wrap up the analysis.1447

When doing the analysis in the analysis framework, you will not use the AliFlowAnalysisWith∗ class, but instead use1448

the AliAnalysisTask∗ which calls the AliFlowAnalysisWith∗ class for you via the calls from AliAnalysisTaskSE. To1449

be more specific:1450

1. Init() is called in UserCreateOutputObjects();1451

2. Make() is called in UserExec();1452

3. Finish() is called in Terminate().1453

All of this may still seem a bit abstract at this point, but in principle you now know all you need to know about the1454

structure of the flow package. It is recommended however that you take a look at the example in 3.2.7, to get a step-by-step1455

explanation of how these things work in the real world.1456

Analysys on grid: redoFinish.C1457

As explained in 2 and in the previous subsection, a flow analysis is finished by a call to Finish(). Although the exact1458

implementation of Finish() is different for each flow analysis method, the general principle method in most methods is1459

that calculations on event-averaged values are performed to end up with a final value for an observable.1460

When an analysis is run in parallel on many nodes (e.g. when running on GRID) the output of the flow analysis tasks1461

in AnalysisResults.root is typically wrong, as merging files via ROOT’s TFileMerger will trivially sum up results in all1462

histograms.1463

The redoFinish.Cg macro re-evaluates all output that cannot trivially be merged and re-calls the Finish() method.1464

To use redoFinish.C, make sure your analysis output file is called mergedAnalysisResults.root and simply run the1465

macro1466

1467

1 .L redoFinish.C1468

2 redoFinish ();1469
1470

redoFinish.C will produce a new AnalysisResults.root file with the corrected results by calling the ::Finish()1471

function on all known output structures in the mergedAnalysisResults.root file. Additionally redoFinish.C can be1472

used to repeat the call to ::Finish() with different settings, which might alter the outcome of the flow analysis (e.g. use1473

a different strategy to correct for non-uniform acceptance).1474

The macro itself is well documented and lists several options that are available at the time of running:1475

1476

1 // Macro redoFinish .C is typically used after the merging macros (mergeOutput .C or1477

2 // mergeOutputOnGrid .C) have been used to produce the merged , large statistics1478

3 // file of flow analysis. Results stored in merged file are WRONG because after1479

4 // merging the results from small statistics files are trivially summed up in all1480

5 // histograms . This is taken into account and corrected for with macro redoFinish .C.1481

6 // Another typical use of the macro redoFinish .C is to repeat the call to Finish ()1482

7 // in all classes , but with different values of some settings which might modify1483

8 // the final results (Example: redo the Finish () and apply correction for detector1484

9 // effects in QC code because by default this correction is switched off).1485

101486

11 // Name of the merged , large statistics file obtained with the merging macros:1487

12 TString mergedFileName = "mergedAnalysisResults.root";1488

13 // Final output file name holding correct final results for large statistics sample:1489

14 TString outputFileName = "AnalysisResults.root";1490

151491

16 Bool_t bApplyCorrectionForNUA = kFALSE; // apply correction for non -uniform acceptance1492

17 Bool_t bApplyCorrectionForNUAVsM = kFALSE; // apply correction for non -uniform acceptance in each1493

multiplicity bin independently1494

18 Bool_t bPropagateErrorAlsoFromNIT = kFALSE; // propagate error also from non -isotropic terms1495

19 Bool_t bMinimumBiasReferenceFlow = kTRUE; // store in CRH for reference flow the result obtained1496

wihout rebinning in multiplicity (kTRUE)1497

20 Bool_t checkForCommonHistResults = kTRUE; // check explicitely if the TList AliFlowCommonHistResults1498

is available in the output1499
1500

Flow analysis output is recognized by keywords in output list names (e.g. a Q-cumulant output needs to have the1501

letters ‘QC’ somewhere in the name to be recognized).1502

When your analysis output is in the form of a merged file, always run redoFinish.C to get your results!1503

g$ALICE ROOT/PWGCF/FLOW/macros/refoFinish.C

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 25 of 56

AliROOT Flow Package manual and documentation The FLOW team

3.2.7 Example: π± vn1504

As an example of how to do a flow analysis using the flow package within the AliROOT analysis framework, this section1505

will guide you through the process of measuring π± v2, v3 and v4 step-by-step, using the Q-vector cumulant flow analysis1506

method.1507

Generally, doing an analysis in the AliROOT is a ‘two-file process’, where one runs a run.C script in AliROOT (coloquially1508

referred to as ‘steering macro’), which sets up the analysis framework and takes care of the interface to the analysis GRID,1509

and calls an AddTask∗.C macro which in turn creates and configures instances of the relevant analysis tasks. In this1510

example, the distinction will not be so clear, but mentioned in the text. In practice of course, you would copy these1511

steps into macros and launch the macros from the AliROOT command line when doing analysis. We will not run this test1512

on GRID, but assume that you have some AliAOD.root files available on your local system. Note that this example is a1513

guideline, there are many ways leading to Rome, and many ways of setting up an analysis. Some of the variables that are1514

set in the code examples below are actually also set by default. This may seem a little bit redundant, but it is done to1515

make the reader aware of the fact that they exist.1516

A script which contains all the steps described below and should work ‘out-of-the-box’ can be found at1517

$ALICE ROOT/PWGCF/FLOW/Documentation/examples/manual/runFlowOnDataExample.C.1518

Preparing the session First, we need to prepare the framework and root session (these steps would go into your run.C1519

macro). Launch AliROOT and load the necessary libraries1520

1521

1 // load libraries1522

2 gSystem ->Load("libCore.so");1523

3 gSystem ->Load("libGeom.so");1524

4 gSystem ->Load("libVMC.so");1525

5 gSystem ->Load("libPhysics.so");1526

6 gSystem ->Load("libTree.so");1527

7 gSystem ->Load("libSTEERBase.so");1528

8 gSystem ->Load("libESD.so");1529

9 gSystem ->Load("libAOD.so");1530

10 gSystem ->Load("libANALYSIS.so");1531

11 gSystem ->Load("libANALYSISalice.so");1532

12 gSystem ->Load("libEventMixing.so");1533

13 gSystem ->Load("libCORRFW.so");1534

14 gSystem ->Load("libPWGTools.so");1535

15 gSystem ->Load("libPWGCFebye.so");1536

16 gSystem ->Load("libPWGflowBase.so");1537

17 gSystem ->Load("libPWGflowTasks.so");1538
1539

Creating the manager and connecting input data Create an analysis manager and create a TChain which we will1540

point to the data you have stored locally on your machine1541

1542

1 // create the analysis manager1543

2 AliAnalysisManager* mgr = new AliAnalysisManager("MyManager");1544

3 // create a tchain which will point to an aod tree1545

4 TChain* chain = new TChain("aodTree");1546

5 // add a few files to the chain1547

6 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1548

AOD086 /0003/ AliAOD.root");1549

7 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1550

AOD086 /0003/ AliAOD.root");1551

8 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1552

AOD086 /0004/ AliAOD.root");1553

9 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1554

AOD086 /0005/ AliAOD.root");1555

10 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1556

AOD086 /0006/ AliAOD.root");1557

11 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1558

AOD086 /0007/ AliAOD.root");1559

12 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1560

AOD086 /0008/ AliAOD.root");1561

13 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1562

AOD086 /0009/ AliAOD.root");1563

14 chain ->Add("/home/rbertens/Documents/CERN/ALICE_DATA/data /2010/ LHC10h /000139510/ ESDs/pass2/1564

AOD086 /0010/ AliAOD.root");1565

15 // create an input handler1566

16 AliVEventHandler* inputH = new AliAODInputHandler ();1567

17 // and connect it to the manager1568

18 mgr ->SetInputEventHandler(inputH);1569
1570

Great, at this point we have created an analysis manager, which will read events from a chain of AliAOD.root files.1571

The next step will be adding specific analyses to the analysis manager. This is usually done by calling an AddTask∗.C1572

macro, which creates instances of analysis tasks, connects input (events from the analysis manager) to these tasks,1573

and then connects output from the task back to the analysis manager (which will take care of writing the analysis1574

to a common output file). These next steps show what would be in your AddTask∗.C macro.1575

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 26 of 56

AliROOT Flow Package manual and documentation The FLOW team

The heart of our flow analysis will be the flow event. To fill a flow event from the input AOD events, we will use1576

the AliAnalysisTaskFlowEvent class. The AOD input events have to be supplied by the analysis manager, so first1577

things first, retrieve the manager to which you will connect your flow analysis tasksh:1578

1579

1 // the manager is static , so get the existing manager via the static method1580

2 AliAnalysisManager *mgr = AliAnalysisManager :: GetAnalysisManager ();1581

3 if (!mgr) {1582

4 printf("No analysis manager to connect to!\n");1583

5 return NULL;1584

6 }1585

71586

8 // just to see if all went well , check if the input event handler has been connected1587

9 if (!mgr ->GetInputEventHandler ()) {1588

10 printf("This task requires an input event handler !\n");1589

11 return NULL;1590

12 }1591
1592

Setting up the flow event task The manager and input data are present, so we can create the flow event task and do1593

some basic configuration1594

1595

1 // create instance of the class. because possible qa plots are added in a second ouptut slot ,1596

2 // the flow analysis task must know if you want to save qa plots at the time of class1597

construction1598

3 Bool_t doQA = kTRUE;1599

4 // craete instance of the class1600

5 AliAnalysisTaskFlowEvent* taskFE = new AliAnalysisTaskFlowEvent("FlowEventTask", "", doQA);1601

6 // add the task to the manager1602

7 mgr ->AddTask(taskFE);1603

8 // set the trigger selection1604

9 taskFE ->SelectCollisionCandidates(AliVEvent ::kMB);1605
1606

Note that in the last step you have set the trigger configuration. Always make sure that you run on a trigger that1607

makes sense for your analysis. A general remark is that the non-uniform acceptance correction methods that are1608

implemented in the flow package, assume a flat Q vector distribution. Specific triggers (e.g. EMCal triggers) result1609

in a Q vector bias which should not be corrected as they invalidate that assumptioni.1610

In addition to the trigger selection, one might want to do some more event selection. The flow package has a common1611

event selection class, which we will add to your flow event1612

1613

1 // define the event cuts object1614

2 AliFlowEventCuts* cutsEvent = new AliFlowEventCuts("EventCuts");1615

3 // configure some event cuts , starting with centrality1616

4 cutsEvent ->SetCentralityPercentileRange (20., 30.);1617

5 // method used for centrality determination1618

6 cutsEvent ->SetCentralityPercentileMethod(AliFlowEventCuts ::kV0);1619

7 // vertex -z cut1620

8 cutsEvent ->SetPrimaryVertexZrange (-10. ,10.);1621

9 // enable the qa plots1622

10 cutsEvent ->SetQA(doQA);1623

11 // explicit multiplicity outlier cut1624

12 cutsEvent ->SetCutTPCmultiplicityOutliersAOD(kTRUE);1625

13 cutsEvent ->SetLHC10h(kTRUE);1626

141627

151628

16 // and , last but not least , pass these cuts to your flow event task1629

17 taskFE ->SetCutsEvent(cutsEvent);1630
1631

Track selection Now that the flow event task has been created and some basic configuration has been done, it’s time to1632

specify the POI and RP selection. This is done by defining sets of track selection criteria for both POI’s and RP’s:1633

tracks in an event that pass the track selection criteria are used as POI or RP. The track selection is defined in1634

AliFlowTrackCuts objects which are passed to the AliAnalysisTaskFlowEvent task which does the actual selection1635

based on the passed criteria. So, let’s create some track selection objects!1636

Starting with the RP’s, for which we’ll just use a uniform selection of charged tracks,1637

1638

1 // create the track cuts object using a static function of AliFlowTrackCuts1639

2 AliFlowTrackCuts* cutsRP = AliFlowTrackCuts :: GetAODTrackCutsForFilterBit (1, "RP cuts");1640

3 // specify the pt range1641

4 cutsRP ->SetPtRange (0.2, 5.);1642

hIn the example macro this is a not necessary as you already have a pointer to the manager in your macro. However, if you split the macro
into a steering macro and AddTask macro, the AddTask macro needs to retrieve a pointer to the manager which is created in the steering
macro.

iThe actual event selection based on triggers is done in the AliAnalysisTaskSE class (to be specific, the trigger is checked in
AliAnalysisTaskSE::Exec()) from which the AliAnalysisTaskFlowEvent is derived. The full set of available triggers can be found in the
virtual event header AliVEvent.h.

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 27 of 56

AliROOT Flow Package manual and documentation The FLOW team

5 // specify eta range1643

6 cutsRP ->SetEtaRange (-0.8, 0.8);1644

7 // specify track type1645

8 cutsRP ->SetParamType(AliFlowTrackCuts :: kAODFilterBit);1646

9 // enable saving qa histograms1647

10 cutsRP ->SetQA(kTRUE);1648
1649

The particles in this example of which we want to measure the differential v2 (the POI’s) are the charged pi-1650

ons. To measure the v2 of charged pions, one must of course identify tracks are pions: for this we will use the1651

AliFlowTrackCuts class. First, we do the basic setup, creating the cut object and setting some kinematic variables:1652

1653

1 // create the track cuts object using a static function of AliFlowTrackCuts1654

2 AliFlowTrackCuts* cutsPOI = AliFlowTrackCuts :: GetAODTrackCutsForFilterBit (1, "pion selection");1655

3 // specify the pt range1656

4 cutsPOI ->SetPtRange (0.2, 5.);1657

5 // specify eta range1658

6 cutsPOI ->SetEtaRange (-0.8, 0.8);1659

7 // specify the track type1660

8 cutsRP ->SetParamType(AliFlowTrackCuts :: kAODFilterBit);1661

9 // enable saving qa histograms1662

10 cutsPOI ->SetQA(kTRUE);1663
1664

Once this is done, the particle identification routine is defined. In this example, the particle identification will be1665

done using a Bayesian approach, combining the signals from the TPC and TOF detectors.1666

1667

1 // which particle do we want to identify ?1668

2 AliPID :: EParticleType particleType=AliPID ::kPion;1669

3 // specify the pid method that we want to use1670

4 AliFlowTrackCuts :: PIDsource sourcePID=AliFlowTrackCuts :: kTOFbayesian;1671

5 // define the probability (between 0 and 1)1672

6 Double_t probability = .9;1673

7 // pass these variables to the track cut object1674

8 cutsPOI ->SetPID(particleType , sourcePID , probability);1675

9 // the bayesian pid routine uses priors tuned to an average centrality1676

10 cutsPOI ->SetPriors (35.);1677
1678

Now that the track cuts for both POI’s and RP’s are defined, we can connect them to the flow event task,1679

1680

1 // connect the RP’s to the flow event task1681

2 taskFE ->SetCutsRP(cutsRP);1682

3 // connect the POI ’s to the flow event task1683

4 taskFE ->SetCutsPOI(cutsPOI);1684
1685

Connecting input and output At this point, the event and track cuts have been set and connected to the flow event1686

task. The next step will be connecting the flow event task to the analysis manager (so that it can receive input1687

events) and subsequently connecting the flow event task to flow analysis tasks, so that the flow events can be analyzed1688

by our favorite flow analysis methods.1689

1690

1 // get the default name of the output file (" AnalysisResults .root ")1691

2 TString file = GetCommonFileName ();1692

3 // get the common input container from the analysis manager1693

4 AliAnalysisDataContainer *cinput = mgr ->GetCommonInputContainer ();1694

5 // create a data container for the output of the flow event task1695

6 // the output of the task is the AliFlowEventSimle class which will1696

7 // be passed to the flow analysis tasks. note that we use a kExchangeContainer here ,1697

8 // which exchanges data between classes of the analysis chain , but is not1698

9 // written to the output file1699

10 AliAnalysisDataContainer *coutputFE = mgr ->CreateContainer(1700

11 "FlowEventContainer",1701

12 AliFlowEventSimple ::Class (),1702

13 AliAnalysisManager :: kExchangeContainer);1703

14 // connect the input data to the flow event task1704

15 mgr ->ConnectInput(taskFE ,0,cinput);1705

16 // and connect the output to the flow event task1706

17 mgr ->ConnectOutput(taskFE ,1, coutputFE);1707

18 // create an additional container for the QA output of the flow event task1708

19 // the QA histograms will be stored in a sub -folder of the output file called ’QA’1709

20 TString taskFEQAname = file;1710

21 taskFEQAname += ":QA";1711

22 AliAnalysisDataContainer* coutputFEQA = mgr ->CreateContainer(1712

23 "FlowEventContainerQA",1713

24 TList:: Class(),1714

25 AliAnalysisManager :: kOutputContainer ,1715

26 taskFEQAname.Data()1716

27);1717

28 // and connect the qa output container to the flow event.1718

3.2. ANALYSIS IN THE ALICE ANALYSIS FRAMEWORK Page 28 of 56

AliROOT Flow Package manual and documentation The FLOW team

29 // this container will be written to the output file1719

30 mgr ->ConnectOutput(taskFE ,2, coutputFEQA);1720
1721

Flow analysis tasks Now that the flow event task is connected to input data, the flow analysis tasks can be set up:1722

1723

1 // declare necessary pointers1724

2 AliAnalysisDataContainer *coutputQC [3];1725

3 AliAnalysisTaskQCumulants *taskQC [3];1726

41727

5 // the tasks will be created and added to the manager in a loop1728

6 for(Int_t i = 0; i < 3; i++) {1729

7 // create the flow analysis tasks1730

8 taskQC[i] = new AliAnalysisTaskQCumulants(Form("TaskQCumulants_n =%i", i+2));1731

9 // set thei triggers1732

10 taskQC[i]->SelectCollisionCandidates(AliVEvent ::kMB);1733

11 // and set the correct harmonic n1734

12 taskQC[i]->SetHarmonic(i+2);1735

131736

14 // connect the task to the analysis manager1737

15 mgr ->AddTask(taskQC[i]);1738

161739

17 // create and connect the output containers1740

18 TString outputQC = file;1741

19 // create a sub -folder in the output file for each flow analysis task ’s output1742

20 outputQC += Form(":QC_output_for_n =%i", i+2);1743

21 /// create the output containers1744

22 coutputQC[i] = mgr ->CreateContainer(1745

23 outputQC.Data(),1746

24 TList::Class (),1747

25 AliAnalysisManager :: kOutputContainer ,1748

26 outputQC);1749

27 // connect the output of the flow event task to the flow analysis task1750

28 mgr ->ConnectInput(taskQC[i], 0, coutputFE);1751

29 // and connect the output of the flow analysis task to the output container1752

30 // which will be written to the output file1753

31 mgr ->ConnectOutput(taskQC[i], 1, coutputQC[i]);1754

32 }1755
1756

Launching the analysis With this, the AddTask∗.C is concluded. The only thing that is left to do, is (from the run.C1757

macro) see if all tasks and containers are properly connected and initialized and launch the analysis locally:1758

1759

1 // check if we can initialize the manager1760

2 if(!mgr ->InitAnalysis ()) return;1761

3 // print the status of the manager to screen1762

4 mgr ->PrintStatus ();1763

5 // print to screen how the analysis is progressing1764

6 mgr ->SetUseProgressBar (1, 25);1765

7 // start the analysis locally , reading the events from the tchain1766

8 mgr ->StartAnalysis("local", chain);1767
1768

3.3 Flow analysis in ROOT: Using TTree’s and TNTuples1769

As stated at the beginning of this chapter, every flow analysis in the flow package starts by filling the flow event. The flow1770

event base class, AliFlowEventSimple, is a class in libPWGflowBase which has no dependencies other than some ROOT1771

libraries; the same is true for the implementation of the flow analysis methods. This means that when you do not need the1772

AliROOT interface for e.g. track and event selection, the flow package can be used by just invoking the libPWGflowBase.so1773

library in ROOTj. The steps that are necessary to use the flow package in a bare ROOT environment are similar to those1774

explained in chapter 2, with the exception that instead of generating events on-the-fly, we need to fill the flow event with1775

information from the source of data which we want to analyze. In the next two subsections we will take a look at how to1776

do a flow analysis on generic data in just ROOT. To start, pseudo-code of how to setup an analysis on a TTree will filled1777

with particles be given. This example can be used as a starting point for running the flow package on any kind of input1778

data. After this, we will work through an example of reading and analyzing STAR data.1779

3.3.1 A custom class derived from AliFlowEventSimple1780

In this example, an analysis on a TTree is performed by deriving a class from the flow event class AliFlowEventSimple,1781

MyFlowEvent, which can read a specific input format (in this case a branchTTree!branch of a TTree) and fills the flow1782

event from this input. Of course you can design your task in a different way, but in this section we will stick to that1783

example. Note that the following suggestions are all written in pseudo-code, so copy-pasting it will lead to nothing ...1784

jA makefile to compile the libPWGflowBase.so library from the command line will be added to $ALICE ROOT/PWGCF/FLOW/macros/ ...

3.3. FLOW ANALYSIS IN ROOT: USING TTREE’S AND TNTUPLES Page 29 of 56

AliROOT Flow Package manual and documentation The FLOW team

Let’s start with writing an an event loop. In this example the assumption is made that you have a TTree with1785

events, called ‘myTree’, which contains a branch holding a TClonesArray of ‘myParticle’ objects, which contain kinematic1786

information. The ‘myParticle’ class could look a bit like1787

1788

1 class myParticle : public TObject1789

2 {1790

3 public:1791

4 myParticle(Float_t eta , Float_t phi , Float_t pt, Int_t charge) : fEta(eta), fPhi(phi), fpT(1792

pt), fCharge(charge) { }1793

5 ~myParticle () {}1794

6 virtual Double_t P() const { return fp; }1795

7 virtual Double_t Pt() const { return fpT; }1796

8 virtual Double_t Phi() const { return fPhi; }1797

9 virtual Double_t Eta() const { return fEta; }1798

10 virtual Int_t Charge () const { return fCharge; }1799

11 private:1800

12 Float_t fEta; // eta1801

13 Float_t fPhi; // phi1802

14 Float_t fpT; // pT1803

15 Int_t fCharge; // charge1804

16 ClassDef(myParticle , 1); // example class1805

17 };1806
1807

Note that the members of this class (pt, η, ϕ, charge) are all the information that an AliFlowTrackSimple needs to hold.1808

In the event loop, we’ll retrieve the track array from the TTree and pass it to your derived flow event class. As we1809

have seen in earlier examples, tracks in a flow event are classified as POI’s or RP’s via track cuts objects. We’ll initialize1810

these classes as well.1811

1812

1 // first , define a set of simple cuts (the kinematic cuts)1813

2 // which will define our poi and rp selection1814

3 AliFlowTrackSimpleCuts *cutsRP = new AliFlowTrackSimpleCuts ();1815

4 AliFlowTrackSimpleCuts *cutsPOI = new AliFlowTrackSimpleCuts ();1816

5 cutsPOI ->SetPtMin (0.2);1817

6 cutsPOI ->SetPtMax (2.0);1818

7 // get number of entries from your ttree1819

8 Int_t nEvents = myTree ->GetEntries ();1820

9 // loop over all entries1821

10 for(Int_t i = 0; i < nEvents; i++) {1822

11 // get the track array from the ttree1823

12 TClonesArray* particleArray = 0x0;1824

13 // get the branch address by name1825

14 myTree ->SetBranchAddress("myParticles", &particleArray);1826

15 // switch to the tree ’s i-th entry1827

16 myTree ->GetEntry(i);1828

17 // now we do some magic: with a dedicated inherited class1829

18 // we construct a flow event from your ttree1830

19 AliFlowEventSimple* flowEvent = new MyFlowEvent(particleArray , cutsPOI , cutsRP);1831

20 // and from here we know how to proceed: connect the flow event1832

21 // to the flow analysis classes , and do the analysis1833

22 qc->Make(flowEvent);1834

23 // memory management1835

24 delete flowEvent;1836

25 }1837

26 qc->Finish ();1838

27 }1839
1840

So what is ‘the magic’? This is filling your flow event from the TTree. As we have seen in the previous sections, filling1841

means that need to select our tracks, tag them as POI’s and RP’s, and add them to the flow event. Our derived class,1842

AliFlowEventSimple::MyFlowEvent will take care of this. A possible constructor for this class, which performs the ‘magic’,1843

could look like the following piece of pseudo-code:1844

1845

1 // class constructor of an example class which reads a ttree ,1846

2 // selects poi ’s and rp’s and fills a flow event.1847

3 // this class is derived from the flow event simple class1848

4 // and therefore can be passed to the flow analysis methods1849

51850

6 // we’ll feed to class with your custom particles ,1851

7 // so this include will be necessary1852

8 #include myParticle.h1853

91854

10 // this is the class constructor1855

11 MyFlowEvent :: MyFlowEvent(1856

12 // start with the input tracks1857

13 TClonesArray* particleArray ,1858

14 // and pass the poi and rp cuts1859

15 const AliStarTrackCuts* cutsRP ,1860

16 const AliStarTrackCuts* cutsPOI) :1861

17 // derived from AliFlowEventSimple , initialized to hold a certain number of1862

3.3. FLOW ANALYSIS IN ROOT: USING TTREE’S AND TNTUPLES Page 30 of 56

AliROOT Flow Package manual and documentation The FLOW team

18 // tracks1863

19 AliFlowEventSimple(particleArray ->GetEntries ())1864

20 {1865

21 // the next step will be filling the flow event1866

22 // with POI ’s and RP’s according to our1867

23 // POI and RP cuts1868

241869

25 for (Int_t i = 0; i < particleArray ->GetEntries (); i++)1870

26 {1871

27 // get a particle from the particle array1872

28 const myParticle* part = static_cast <myParticle*>particleArray ->At(i);1873

29 if (! myParticle) continue;1874

301875

31 // build flow track simple (for the flow event)1876

32 AliFlowTrackSimple* flowtrack = new AliFlowTrackSimple ();1877

33 // copy the kinematic information from the star track1878

34 flowtrack ->SetPhi(part ->Phi());1879

35 flowtrack ->SetEta(part ->Eta());1880

36 flowtrack ->SetPt(part ->Pt());1881

37 flowtrack ->SetCharge(part ->Charge ());1882

38 // see if the track is a reference track1883

39 if (cutsRP)1884

40 {1885

41 Bool_t pass = rpCuts ->PassesCuts(flowtrack);1886

42 flowtrack ->TagRP(pass); // tag RPs1887

43 if (pass) IncrementNumberOfPOIs (0);1888

44 }1889

45 // see if the track is a particle of interest1890

46 if (poiCuts)1891

47 {1892

48 flowtrack ->TagPOI(poiCuts ->PassesCuts(flowtrack));1893

49 }1894

50 // add the track to the flow event1895

51 AddTrack(flowtrack);1896

52 }1897

53 }1898
1899

That’s it! Following (variations on) these steps, you’ll be able to connect any type of input data to the flow package. Note1900

that compiling the scripts in which you define these steps will be much faster than running your code in the interpreter1901

mode of ROOT. The next subsection will show these steps in action in the for of a flow analysis on STAR data.1902

3.3.2 A realistic example: flow package analysis on STAR data1903

The following section will show you how to use non-ALICE data in a realistic example, using events from the STAR exper-1904

iment at RHIC. STAR data is stored in a TTree. To use the flow package for flow analysis on this data, the information1905

from the TTree needs to be converted into an AliFlowEventSimple. In the specific case of the STAR data, things are a bit1906

more complicated than in the pseudo-code example given in the previous section. Event- and track-level cuts still have1907

to be applied to the STAR data, therefore a reader class is written which reads data from file, applies track and event1908

cuts and converts the STAR data to ‘star flow events’. This reading is left to a dedicated class, AliStarEventReader,1909

which reads a TTree and for each event creates an AliStarEvent. The AliStarEvent is a derived class which in-1910

herits from AliFlowEventSimple (similar to the MyFlowEvent class from the example in the previous subsection). To1911

understand this process a bit better, we’ll take a look at a few code snippets from the relevant classes and macros1912

which are currently present in AliROOT. A macro which reads STAR data and performs a flow analysis can be found at1913

$ALICE ROOT/PWGCF/FLOW/macros/runStarFlowAnalysis.C.1914

1915

1 // connect the class which can read and understand your ttree to1916

2 // the input data1917

3 AliStarEventReader starReader(inputDataFiles) ;1918

4 // loop as long as there are events1919

5 while (starReader.GetNextEvent ()) // Get next event1920

6 {1921

7 // read a star event from the ttree1922

8 AliStarEvent* starEvent = starReader.GetEvent ();1923

9 // see if the event meets event cuts (of course these are1924

10 // specific for STAR analysis , whether or not your ttree would1925

11 // need such a cut is up to you1926

12 if (!starEventCuts ->PassesCuts(starEvent)) continue;1927

131928

14 // this is where flow package comes into play.1929

15 // at this moment , a star event has been read from a ttree ,1930

16 // and is stored as a ’AliStarEvent ’1931

17 // in the next step , we’ll create an AliFlowEventSimple from1932

18 // this star event using the AliFlowEventStar class , which is derived1933

19 // from the AliFlowEventSimple class.1934

20 // as input , the AliFlowEventStar class receives the star event ,1935

21 // and a set of poi and rp cuts1936

3.3. FLOW ANALYSIS IN ROOT: USING TTREE’S AND TNTUPLES Page 31 of 56

AliROOT Flow Package manual and documentation The FLOW team

22 AliFlowEventSimple* flowEvent = new AliFlowEventStar(starEvent ,rpCuts ,poiCuts); // make a flow1937

event from a star event (aka "the magic ")1938

23 // for the scalar product method , we need to tag subevents1939

24 flowEvent ->TagSubeventsInEta(minA , maxA , minB , maxB);1940

251941

26 qc->Make(flowEvent);1942

27 delete flowEvent;1943

28 }1944
1945

The most important piece of the code snippet printed here is the routine where the AliFlowEventSimple is formed from1946

the AliStarEvent. What happens in the AliFlowEventStar class is the following:1947

1948

1 // class constructor1949

2 AliFlowEventStar :: AliFlowEventStar(const AliStarEvent* starevent ,1950

3 const AliStarTrackCuts* rpCuts ,1951

4 const AliStarTrackCuts* poiCuts):1952

5 // derived from AliFlowEventSimple , initialized to hold a certain number of1953

6 // tracks1954

7 AliFlowEventSimple(starevent ->GetNumberOfTracks ())1955

8 {1956

9 // construct the flow event from the star event information1957

10 SetReferenceMultiplicity(starevent ->GetRefMult ());1958

11 // track loop1959

12 for (Int_t i=0; i<starevent ->GetNumberOfTracks (); i++)1960

13 {1961

14 // get star track from the star event1962

15 const AliStarTrack* startrack = starevent ->GetTrack(i);1963

16 if (! startrack) continue;1964

17 // build flow track simple (for the flow event)1965

18 AliFlowTrackSimple* flowtrack = new AliFlowTrackSimple ();1966

19 // copy the kinematic information from the star track1967

20 flowtrack ->SetPhi(startrack ->GetPhi ());1968

21 flowtrack ->SetEta(startrack ->GetEta ());1969

22 flowtrack ->SetPt(startrack ->GetPt());1970

23 flowtrack ->SetCharge(startrack ->GetCharge ());1971

24 // see if the track is a reference track1972

25 if (rpCuts)1973

26 {1974

27 Bool_t pass = rpCuts ->PassesCuts(startrack);1975

28 flowtrack ->TagRP(pass); // tag RPs1976

29 if (pass) IncrementNumberOfPOIs (0);1977

30 }1978

31 // see if the track is a particle of interest1979

32 if (poiCuts)1980

33 {1981

34 flowtrack ->TagPOI(poiCuts ->PassesCuts(startrack)); // tag POIs1982

35 }1983

36 // add the track to the flow event1984

37 AddTrack(flowtrack);1985

38 }1986

39 }1987
1988

3.3. FLOW ANALYSIS IN ROOT: USING TTREE’S AND TNTUPLES Page 32 of 56

Chapter 41989

Methods1990

The flow package aims at providing the user with most of the known flow analysis methods. Detailed the-1991

oretical overview of the methods can be found in the following papers, which are included in the folder1992

$ALICE ROOT/PWGCF/FLOW/Documentation/otherdocs/1993

• Scalar Product Method1994

EventPlaneMethod/FlowMethodsPV.pdf1995

• Generating Function Cumulants1996

GFCumulants/Borghini GFCumulants PracticalGuide.pdf1997

• Q-vector Cumulant method1998

QCumulants/QCpaperdraft.pdf1999

• Lee-Yang Zero Method2000

LeeYangZeroes/Borghini LYZ PracticalGuide.pdf2001

• Lee-Yang Zero Method2002

LeeYangZeroesEP/LYZ RP.pdf2003

The structure of this chapter is as follows: of each of the available methods a short description is given in the theory2004

subsection (for more detailed information, see the papers listed above) followed by details which are specific to the2005

implementation in the subsection implementation. Caveats, possible issues, etc, are listed in the caveats subsections.2006

4.1 AliFlowAnalysisWithMCEventPlane2007

4.1.1 Theory2008

From the .cxx of the task:2009

2010

1 // Description : Maker to analyze Flow from the generated MC reaction plane.2011

2 // This class is used to get the real value of the flow2012

3 // to compare the other methods to when analysing simulated events.2013
2014

This method can be used to check what vn was generated in an on-the-fly flow study or using the2015

AliAnalysisTaskFlowEvent with afterburner.2016

4.1.2 Implementation2017

There is no specific information on the implementation here, for details the reader is referred to the source code.2018

4.2 AliFlowAnalysisWithQCumulants2019

4.2.1 Implementation2020

A how-to of the QC method in the flow-package is written by the author of the analysis software and is available on the2021

FLOW-PAG twiki page (https://twiki.cern.ch/twiki/bin/view/ALICE/FlowPackageHowto). This section is copied from2022

the twiki page (and may therefore overlap with other parts of this manual).2023

To get the first feeling how the FLOW package and QC output are organized, perhaps you can just trivially execute2024

one ’on-the-fly’ example2025

Essentially, you have to do two things:2026

https://twiki.cern.ch/twiki/bin/view/ALICE/FlowPackageHowto

AliROOT Flow Package manual and documentation The FLOW team

2027

1 cp $ALICE_ROOT/PWGCF/FLOW/macros/runFlowAnalysisOnTheFly.C .2028

2 aliroot runFlowAnalysisOnTheFly.C2029
2030

In the analysis on-the-fly particles are sampled from hardwired Fourier-like p.d.f, so input vn harmonics are completely2031

under control. Please have a look at the steering macro runFlowAnalysisOnTheFly.C and corresponding class AliFlow-2032

EventSimpleMakerOnTheFly.cxx in the FLOW package, which are easily written (no fancy C++ features in my code!),2033

and well documented.2034

If you have landed successfully, you will get an output AnalysisResults.root, where the results from each method are2035

structured in directories.2036

To make a size of the file lighter (which matters a lot during merging!), you may want not to use all the methods. You2037

can make your selection of the methods via:2038

2039

1 Bool_t MCEP = kTRUE; // Monte Carlo Event Plane2040

2 Bool_t SP = kTRUE; // Scalar Product (a.k.a ’flow analysis with eta gaps ’)2041

3 Bool_t GFC = kTRUE; // Generating Function Cumulants2042

4 Bool_t QC = kTRUE; // Q- cumulants2043

5 Bool_t FQD = kTRUE; // Fitted q- distribution2044

6 Bool_t LYZ1SUM = kTRUE; // Lee -Yang Zero (sum generating function), first pass over the data2045

7 Bool_t LYZ1PROD = kTRUE; // Lee -Yang Zero (product generating function), first pass over the data2046

8 Bool_t LYZ2SUM = kFALSE; // Lee -Yang Zero (sum generating function), second pass over the data2047

9 Bool_t LYZ2PROD = kFALSE; // Lee -Yang Zero (product generating function), second pass over the data2048

10 Bool_t LYZEP = kFALSE; // Lee -Yang Zero Event Plane2049

11 Bool_t MH = kFALSE; // Mixed Harmonics (used for strong parity violation studies)2050

12 Bool_t NL = kFALSE; // Nested Loops (neeed for debugging , only for developers)2051
2052

Next important remark, if you want to browse through AnalysisResults.root, make sure that in AliROOT prompt you2053

have loaded the FLOW library:2054

2055

1 root [0] gSystem ->Load("libPWGflowBase");2056
2057

In the AnalysisResults.root, the QC output is stored in ”outputQCanalysis”. Just browse there, browse in ”cobjQC”, and2058

you will see the directory structure. ”Integrated Flow” ⇒ contains all results needed for reference flow. Browse in, and2059

explore the directory (in fact, TList) ”Results”. The names of the histos should be self-explanatory; ”Differential Flow”2060

⇒ browse further into ”Results”, and you will find a bunch of things that you can explore. For instance, in the directory2061

”Differential Q-cumulants (POI,pT)” you will find histos holding differential QC{2} vs pt, QC{4} vs pT , etc. On the other2062

hand, the flow estimates themselves, namely differential vn{2} vs pt, vn{4} vs pt you can fetch from TList ”Differential2063

Flow (POI,pT)” I hope that the names for all other things you might need are self-explanatory. You configure QC method2064

in the steering macro via setters:2065

2066

1 qc->SetHarmonic (2);2067

2 qc->SetCalculateDiffFlow(kTRUE);2068

3 qc->SetCalculate2DDiffFlow(kFALSE); // vs (pt ,eta)2069

4 qc->SetApplyCorrectionForNUA(kFALSE);2070

5 qc->SetFillMultipleControlHistograms(kFALSE);2071

6 qc->SetMultiplicityWeight("combinations"); // default (other supported options are "unit" and "2072

multiplicity ")2073

7 qc->SetCalculateCumulantsVsM(kFALSE);2074

8 qc->SetCalculateAllCorrelationsVsM(kFALSE); // calculate all correlations in mixed harmonics "vs M"2075

9 qc->SetnBinsMult (10000);2076

10 qc->SetMinMult (0);2077

11 qc->SetMaxMult (10000);2078

12 qc->SetBookOnlyBasicCCH(kFALSE); // book only basic common control histograms2079

13 qc->SetCalculateDiffFlowVsEta(kTRUE); // if you set kFALSE only differential flow vs pt is2080

calculated2081

14 qc->SetCalculateMixedHarmonics(kFALSE); // calculate all multi -partice mixed -harmonics correlators2082
2083

You can make QC output lighter by setting2084

2085

1 qc->SetBookOnlyBasicCCH(kTRUE);2086
2087

(to book only basic control histograms, and disabling lot of 2D beasts), and2088

2089

1 qc->SetCalculateDiffFlowVsEta(kFALSE);2090
2091

(if not interested in differential flow vs eta ⇒ this will make the final output smaller) In the ”cobjQC” you might also2092

consider ”AliFlowCommonHistQC” to be useful thing, which contains a lot of trivial but still important control histograms2093

(eg multiplicity distribution of RPs, POIs, etc). I think this is the best and fastest way for you to get familiar with the2094

FLOW package =¿ once you send the QC code over the real data, you get the output organized in the very same way. I2095

will send you shortly an example set of macros which get be used for the analysis on Grid over the real data. Differential2096

QC{2} and QC{4} implementation is generic. You can tag as RP and POI whatever you want, and it will give you2097

results automatically decoupled from any autocorrelation effects. For this reason, it is important that if you have certain2098

particles which is classified both as RP and POI, to be explicitly tagged also as RPs and POI once you are building the2099

”flow event”. The basic feature in the FLOW package is that from whichever input you start, we have to build the same2100

4.2. ALIFLOWANALYSISWITHQCUMULANTS Page 34 of 56

AliROOT Flow Package manual and documentation The FLOW team

intermediate step called ”flow event”, with which than we feed all methods (SP, QC, etc) in the very same way. To see2101

what ”flow event” does, and what does it need as an input, you may want to consult task AliAnalysisTaskFlowEvent.cxx2102

and classes needed there-in.2103

4.3 AliFlowAnalysisWithScalarProduct2104

4.3.1 Theory2105

2106

1 // ///2107

2 // Description : Maker to analyze Flow from the Event Plane method.2108

3 // Adaptation based on Scalar Product2109

4 // authors: Naomi van del Kolk2110

5 // Ante Bilandzic2111

6 // mods: Carlos Perez2112

7 // ///2113
2114

The scalar product method2115

The scalar product method estimates vn directly from Q vectors:2116

vn =
〈u·Q〉√
〈QA·QB〉

(4.3.1.1)

The denominator of equation 4.3.1.1 consists of two sub-event Q vectors, QA and QB . Sub-events are built from RP’s.2117

These sub-event vectors are in the flow package defined as coming from different η ranges.2118

To setup the different η ranges, one can use the AliAnalysisTaskFlowEvent directly by calling2119

2120

1 AliAnalysisTaskFlowEvent :: void SetSubeventEtaRange(Double_t minA , Double_t maxA , Double_t minB ,2121

Double_t maxB)2122

2 {this ->fMinA = minA; this ->fMaxA = maxA; this ->fMinB = minB; this ->fMaxB = maxB; }2123
2124

Sub-events can be re-tagged using the filter task, which will be described in section 5. Internally, the tagging is performed2125

by the function2126

2127

1 AliFlowEventSimple :: TagSubEventsInEta(Double_t etaMinA , Double_t etaMaxA , Double_t etaMinB , Double_t2128

etaMaxB);2129
2130

which should be called when you fill your flow events ‘by-hand’ and want to tag sub-events.2131

The numerator of equation 4.3.1.1 is the correlator of the POI Q vector (u) and a sub-event Q vector which is generally2132

referred to as the reference detector. In the flow package, this sub-event Q vector is called ‘total q-vector’. The user of2133

the task needs to specify what part of the RP selection (that is, which sub-events) are used as total Q vector. Passing2134

this information to the scalar product task is done in the following way2135

2136

1 AliAnalysisTaskScalarProduct :: void SetTotalQvector(const char *tqv) {*this ->fTotalQvector = tqv ;};2137
2138

where the following options are available2139

2140

1 TString *fTotalQvector; // total Q-vector is: "QaQb" (means Qa+Qb), "Qa" or "Qb"2141
2142

In general, one has to be a bit careful with setting up sub-events. Make sure that the combination of reference detector2143

and sub-events is mathematically sound! An example of how to deal with complex setups is given in the VZERO scalar2144

product subsection (4.3.1).2145

VZERO scalar product2146

The VZEROA and VZEROC detectors have different η coverage w.r.t the TPC, so to evaluate v2 from VZERO-SP, do2147

vn =

√
〈ui·QA〉√
〈QA·QB〉

· 〈uj ·QB〉√
〈QA·QB〉

(4.3.1.2)

• QA and QB are the VZEROC and VZEROA RP’s2148

What is up for debate is the following: how do we defined the POI’s?2149

• Take u = full TPC = uj = ui, or do uj = η < 0, ui = η > 0 ?2150

In the elliptic flow analysis of identified particles, majority vote has yielded the following:2151

• u = full TPC = uj = ui2152

4.3. ALIFLOWANALYSISWITHSCALARPRODUCT Page 35 of 56

AliROOT Flow Package manual and documentation The FLOW team

so that in the end the published points were obtained using2153

vn =

√
〈u·QA〉√
〈QA·QB〉

· 〈u·QB〉√
〈QA·QB〉

(4.3.1.3)

Note that this requires running two scalar product tasks in the flow package (one for each reference detector) the output2154

v2 of which was in turn multiplied point-by-point in pt.2155

Extension to Event Plane method2156

By normalizing the Q vectors, the scalar product method is essentially reduced to the ‘classic’ event plane method.2157

Normalization of the Q vectors can be set using2158

2159

1 AliAnalysisTaskScalarProduct :: SetBehaveAsEP ()2160
2161

4.4 AliFlowAnalysisWithCumulants2162

4.4.1 Theory2163

2164

1 /* **2165

2 * Flow analysis with cumulants. In this class *2166

3 * cumulants are calculated by making use of the *2167

4 * formalism of generating functions proposed by *2168

5 * Ollitrault et al. *2169

6 * *2170

7 * Author: Ante Bilandzic *2171

8 ** */2172
2173

4.4.2 Implementation2174

There is no specific information on the implementation here, for details the reader is referred to the source code. Do not2175

confuse this method with the often used Q-cumulant method!2176

4.5 AliFlowAnalysisWithMixedHarmonics2177

4.5.1 Theory2178

There is no specific information on the theory here, for details the reader is referred to the source code.2179

4.5.2 Implementation2180

There is no specific information on the implementation here, for details the reader is referred to the source code.2181

4.6 AliFlowAnalysisWithFittingQDistribution2182

4.6.1 Theory2183

2184

1 /* *******************************2185

2 * estimating reference flow by *2186

3 * fitting q- distribution *2187

4 * *2188

5 * author: Ante Bilandzic *2189

6 * *2190

7 * based on the macro written *2191

8 * by Sergei Voloshin *2192

9 ****************************** */2193
2194

4.6.2 Implementation2195

There is no specific information on the implementation here, for details the reader is referred to the source code.2196

4.4. ALIFLOWANALYSISWITHCUMULANTS Page 36 of 56

AliROOT Flow Package manual and documentation The FLOW team

4.7 AliFlowAnalysisWithMultiparticleCorrelations2197

4.7.1 Theory2198

2199

1 /* ***2200

2 * In this class azimuthal correlators in mixed harmonics *2201

3 * are implemented in terms of Q-vectors. This approach *2202

4 * doesn ’t require evaluation of nested loops. This class *2203

5 * can be used to: *2204

6 * *2205

7 * a) Extract subdominant harmonics (like v1 and v4); *2206

8 * b) Study flow of two -particle resonances ; *2207

9 * c) Study strong parity violation . *2208

10 * *2209

11 * Author: Ante Bilandzic *2210

12 ** */2211
2212

4.7.2 Implementation2213

There is no specific information on the implementation here, for details the reader is referred to the source code.2214

4.8 AliFlowAnalysisWithLeeYangZeros2215

4.8.1 Theory2216

2217

1 // //2218

2 // Description : Maker to analyze Flow by the LeeYangZeros method2219

3 // One needs to do two runs over the data;2220

4 // First to calculate the integrated flow2221

5 // and in the second to calculate the differential flow2222

6 // Author: Naomi van der Kolk2223

7 // //2224
2225

4.8.2 Implementation2226

There is no specific information on the implementation here, for details the reader is referred to the source code. This2227

method requires two passes over the data. You can take a look at the on-the-fly analysis example macro to see how these2228

two steps can be set up:2229

2230

1 Bool_t LYZ1SUM = kTRUE; // Lee -Yang Zero (sum generating function), first pass over the data2231

2 Bool_t LYZ1PROD = kTRUE; // Lee -Yang Zero (product generating function), first pass over the data2232

3 Bool_t LYZ2SUM = kFALSE; // Lee -Yang Zero (sum generating function), second pass over the data2233

4 Bool_t LYZ2PROD = kFALSE; // Lee -Yang Zero (product generating function), second pass over the data2234
2235

4.9 AliFlowAnalysisWithLYZEventPlane2236

4.9.1 Theory2237

2238

1 // AliFlowAnalysisWithLYZEventPlane :2239

2 // Class to do flow analysis with the event plane2240

3 // from the LYZ method2241
2242

4.9.2 Implementation2243

There is no specific information on the implementation here, for details the reader is referred to the source code.2244

4.10 Developing your own task2245

Of course this list of flow analysis methods could be extended. Adding a new flow analysis method means developing two2246

classes: a ‘base’ class where the method is implemented and a ‘tasks’ class to interface with the analysis manager. As a2247

starting point, ‘templates’ have been developed, which are just empty base and task classes in the flow package. You can2248

find these at2249

base $ALICE ROOT/PWG/FLOW/Base/AliFlowAnalysisTemplate.cxx (h)2250

tasks $ALICE ROOT/PWG/FLOW/Tasks/AliAnalysisTaskTemplate.cxx (h)2251

4.7. ALIFLOWANALYSISWITHMULTIPARTICLECORRELATIONS Page 37 of 56

AliROOT Flow Package manual and documentation The FLOW team

4.10. DEVELOPING YOUR OWN TASK Page 38 of 56

Chapter 52252

More exotic uses2253

This chapter deals with more ‘exotic’ uses of the flow package.2254

5.1 Flow analysis in the LEGO framework: re-tagging your POI and RP2255

selections2256

To save resources, it is beneficial to construct analysis trains in which just one flow event is created which is passed2257

to multiple analysis tasks. This can be inconvenient when the different analysis tasks require different POI and RP2258

selectionsa. To overcome this, a filter task, AliAnalysisTaskFilterFE, has been developed, which can run between the2259

AliAnalysisTaskFlowEvent and a specific flow analysis task, and can re-tag POI’s and RP’s. The re-tagging is performed2260

by looping over all tracks in an event and checking whether or not these tracks pass a selection of simple cuts. The filter2261

task can only re-tag existing tracks in the flow event, it cannot add new tracks to the flow event. To illustrate the2262

functionality of the filtertask, we’ll take the example of section 3.2.7 but perform the analysis using different |η| windows2263

for RP’s.2264

The first step towards filtering is setting up the filtering criteria. These are defined using the AliFlowTrackSimpleCuts2265

object:2266

2267

1 // create the simple cuts object2268

2 AliFlowTrackSimpleCuts* filterRP = new AliFlowTrackSimpleCuts("filterRP");2269

3 // specify a rapidity interval2270

4 filterRP ->SetEtaMin (-0.4);2271

5 filterRP ->SetEtaMax (0.4);2272
2273

All available filtering options in AliFlowTrackSimpleCuts are:2274

2275

1 // setters2276

2 void SetPtMax(Double_t max) {this ->fPtMax = max; fCutPt=kTRUE; }2277

3 void SetPtMin(Double_t min) {this ->fPtMin = min; fCutPt=kTRUE; }2278

4 void SetEtaMax(Double_t max) {this ->fEtaMax = max; fCutEta=kTRUE; }2279

5 void SetEtaMin(Double_t min) {this ->fEtaMin = min; fCutEta=kTRUE; }2280

6 void SetEtaGap(Double_t min , Double_t max)2281

7 {fEtaGapMin = min , fEtaGapMax = max , fCutEtaGap = kTRUE; }2282

8 void SetPhiMax(Double_t max) {this ->fPhiMax = max; fCutPhi=kTRUE; }2283

9 void SetPhiMin(Double_t min) {this ->fPhiMin = min; fCutPhi=kTRUE; }2284

10 void SetPID(Int_t pid) {this ->fPID = pid; fCutPID=kTRUE; }2285

11 void SetCharge(Int_t c) {this ->fCharge = c; fCutCharge=kTRUE; }2286

12 void SetMassMax(Double_t max) {this ->fMassMax = max; fCutMass=kTRUE; }2287

13 void SetMassMin(Double_t min) {this ->fMassMin = min; fCutMass=kTRUE; }2288
2289

All cuts are disabled by default.2290

The second step is constructing the filter class object itself:2291

2292

1 // create the filter task object. note that the desired cuts have to be passed2293

2 // in the constructor , the 0x0 that is passed means that POI ’s will not be filtered2294

3 AliAnalysisTaskFilterFE* filterTask = AliAnalysisTaskFilterFE("filter task", filterRP , 0x0);2295
2296

Sub-events can also be re-defined using the filter task. To do so, call2297

2298

1 AliAnalysisTaskFilterFE :: SetSubeventEtaRange(Double_t minA , Double_t maxA , Double_t minB , Double_t2299

maxB)2300

2 {this ->fMinA = minA; this ->fMaxA = maxA; this ->fMinB = minB; this ->fMaxB = maxB; }2301
2302

If yo use the filter task for a flow analysis method which uses sub-events, make sure that you set the correct η ranges!2303

Otherwise, the default values will be used, which may (or may not) be correct for your analysis.2304

The UserExec() of the filter task is as follows:2305

aA notable example of this is doing an invariant mass analysis, which will briefly be touched in the next section.

AliROOT Flow Package manual and documentation The FLOW team

2306

1 void AliAnalysisTaskFilterFE :: UserExec(Option_t *)2307

2 {2308

3 // Main loop2309

4 fFlowEvent = dynamic_cast <AliFlowEventSimple *>(GetInputData (0)); // from TaskSE2310

5 if (! fFlowEvent) return;2311

6 if(fCutsRFP) fFlowEvent ->TagRP(fCutsRFP);2312

7 if(fCutsPOI) fFlowEvent ->TagPOI(fCutsPOI);2313

8 fFlowEvent ->TagSubeventsInEta(fMinA ,fMaxA ,fMinB ,fMaxB);2314

9 PostData(1, fFlowEvent);2315

10 }2316
2317

Now that the filter task has been configured, it needs to be added to the analysis chain. As stated, the task needs to2318

be put in between the flow event task and the flow analysis method.2319

2320

1 // get the analysis manager2321

2 AliAnalysisManager *mgr = AliAnalysisManager :: GetAnalysisManager ();2322

3 // add the fitler task to the manager (should be done before the2323

4 // analysis task is added !)2324

5 mgr ->AddTask(filterTask);2325

6 // create a temporary container which the filter task will pass to the2326

7 // analysis task2327

8 AliAnalysisDataContainer *coutputFilter = mgr ->CreateContainer(2328

9 "FilterContainer",2329

10 AliFlowEventSimple ::Class (),2330

11 AliAnalysisManager :: kExchangeContainer);2331

12 // connect the output of the flow analysis task as input to the filter task2332

13 mgr ->ConnectInput(filterTask , 0, coutputFE);2333

14 // and connect the filter container as output2334

15 mgr ->ConnectOutput(filterTask , 1, coutputFilter);2335

16 // pass the filter task output to the analysis method2336

17 // (this is assuming you already have setup the analysis task as2337

18 // explained in the example in section 3.4.32338

19 mgr ->ConnectInput(taskQC[i], 0, coutputFilter);2339
2340

5.1.1 Caveats2341

Note that the filter task will change the tags of the flow tracks in the flow event. Every analysis task that runs after the2342

filter task in an analysis train will therefore be affected by the re-taggging that is performed by the filter task. Often it2343

can be useful to run multiple filter tasks with different configurations in an analysis train.2344

5.2 Flow analysis of resonances2345

One notable case in which the filter task is useful, is the flow analysis of rapidly decaying particles via the invariant mass2346

method. If a particle decays to daughter particles, e.g.2347

Λ −→ π + p (5.2.0.1)

one can do an invariant mass flow analysis, which basically comprises2348

1. Take all the π + p pairs in an event and plot their invariant mass2349

2. Extract the signal yield NS and total yield NT from this distribution2350

3. Measure v2 of all π + p pairs2351

Under the assumption that signal and background flow are additive, their contributions can be disentangled by solving2352

vT2 (minv) = vS2
NS

NS +NB
(minv) + vB2 (minv)

NB

NS +NB
(minv) (5.2.0.2)

for vS2 . To do so, vT2 (minv) must be measured. This can be done by measuring the v2 of all possible π +2353

p pairs in different invariant mass intervals. When a flow event is filled by-hand with π + p pairs, the fil-2354

ter task can then be in turn be used to split the flow event into invariant mass intervals and perform flow2355

analysis on those separately, thereby extracting all necessary information. Examples of such analyses are e.g.2356

the -meson flow analysis ($ALICE ROOT/PWG/FLOW/Tasks/AliAnalylsisTaskPhiFlow) or the Λ and K0 flow task2357

($ALICE ROOT/PWG/FLOW/Tasks/AliAnalysisTaskFlowStrange).2358

5.2. FLOW ANALYSIS OF RESONANCES Page 40 of 56

AliROOT Flow Package manual and documentation The FLOW team

5.3 Non-uniform acceptance correction2359

In practice a detector can have inefficiencies which result in a non-uniform acceptance which might bias the measured vn2360

signal. One way of compensating for this is using track weights (as explained in section 3.2.4. Another way of correcting2361

for these effects is by adjusting the Q vectors based on the assumption that the underlying Q vector distribution itself is2362

flat.2363

By default all necessary information to perform such a correction is stored when running a flow analysis task. The2364

actual correction itself is performed when Finish() is called, depending whether or not the flag to perform the correction2365

is set to kTRUE.2366

The effects of the acceptance correction can always be checked by running the redoFinish.C macro, by toggling the2367

flag2368

2369

1 Bool_t bApplyCorrectionForNUA = kFALSE; // apply correction for non -uniform acceptance2370
2371

to either false or true.2372

5.3.1 Caveats2373

The non-uniform acceptance correction is based on the assumption that the physical Q vector distribution in your event2374

sample is flat. This works for minimum bias events, but might not work for e.g. triggered events or for event samples2375

where the detector efficiency varies event-by-event. Details pertaining to the implementation can be found in the Finish()2376

methods of the various flow analysis tasks.2377

5.3. NON-UNIFORM ACCEPTANCE CORRECTION Page 41 of 56

AliROOT Flow Package manual and documentation The FLOW team

5.3. NON-UNIFORM ACCEPTANCE CORRECTION Page 42 of 56

Chapter 62378

Summary2379

After reading the documentation, you should have a general feeling of how the flow package is organized and be able to2380

do a standard flow analysis. This however is just where the fun begins! Connect your classes, write a new method, add2381

new routines · · · and publish your paper!2382

AliROOT Flow Package manual and documentation The FLOW team

Page 44 of 56

Chapter 72383

Bibliography2384

[1] J. Y. Ollitrault, Phys. Rev. D 46 (1992) 229.2385

[2] P. Danielewicz, Nucl. Phys. A 661 (1999) 82.2386

[3] D. H. Rischke, Nucl. Phys. A 610 (1996) 88C.2387

[4] J. Y. Ollitrault, Nucl. Phys. A 638 (1998) 195.2388

[5] S. Voloshin and Y. Zhang, Z. Phys. C 70 (1996) 665.2389

[6] K. H. Ackermann et al. [STAR Collaboration], Phys. Rev. Lett. 86 (2001) 4022390

[7] C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 87 (2001) 1823012391

[8] T.D. Lee et al., New Discoveries at RHIC: Case for the Strongly Interacting Quark-Gluon Plasma. Contributions2392

from the RBRC Workshop held May 14-15, 2004. Nucl. Phys. A 750 (2005) 1-1712393

AliROOT Flow Package manual and documentation The FLOW team

Page 46 of 56

Appendix A2394

About this document2395

A.1 Specifics and webpage2396

Typeset using LATEX, converted to HTML using pandoc via pandoc -r latex -w html -S -s -m2397

-N --toc --highlight-style tango --indented-code-classes numberLines --self-contained -o2398

FlowPackageManual.html FlowPackageManual.tex2399

AliROOT Flow Package manual and documentation The FLOW team

A.1. SPECIFICS AND WEBPAGE Page 48 of 56

Appendix B2400

Flow analysis ‘on-the-fly’2401

The original ‘on-the-fly’ manual by Ante Bilandžić is reprinted here in this appendix2402

B.1 Introduction2403

Flow analysis ‘on the fly’ is a feature in the ALICE flow packagea which can serve both as a demo for the potential users2404

of the package and as an important debugging tool for the core flow code developers. Underlying idea is very simple: To2405

simulate events of interest for flow analysis (in what follows we shall refer to such events as flow events) in the computers2406

memory and than pass them ‘on the fly’ to the implemented methods for flow analysis. Benefits of this approach include:2407

1. No need to store data on disk (storing only the output files with the final results and not the simulated events2408

themselves);2409

2. Enormous gain in statistics;2410

3. Speed (no need to open the files from disk to read the events);2411

4. Random generators initialized with the same and random seed (if the same seed is used simulations are reproducible) .2412

In Section B.2 we indicate how the user can immediately in a few simple steps start flow analysis ‘on the fly’ with the2413

default settings both within AliRoot and Root. In Section B.3 we explain how the user can modify the default settings2414

and create ‘on the fly’ different flow events by following the guidance of his own taste.2415

B.2 Kickstart2416

We divide the potential users of ALICE flow package into two groups, namely the users which are using AliRoot (default)2417

and the users which are using only Root.2418

B.2.1 AliRoot users2419

To run flow analysis ‘on the fly’ with the default settings within AliRoot and to see the final results obtained from various2420

implemented methods for flow analysis, the user should execute the following steps:2421

Step 1: Turn off the lights ...2422

Step 2: ... take a deep breath ...2423

Step 3: ... start to copy macros runFlowAnalysisOnTheFly.C and2424

compareFlowResults.C from AliRoot/PWG2/FLOW/macros to your favorite directory slowly.2425

Step 4: Once you have copied those macros in your favorite directory simply go to that directory and type2426

aliroot runFlowAnalysisOnTheFly.C2427

Step 5: If you have a healthy AliRoot version the flow analysis ‘on the fly’ will start. Once it is finished in your2428

directory you should have the following files:2429

ahttp://alisoft.cern.ch/viewvc/trunk/PWG2/FLOW/?root=AliRoot .

AliROOT Flow Package manual and documentation The FLOW team

runFlowAnalysisOnTheFly.C

compareFlowResults.C

outputLYZ1PRODanalysis.root

outputQCanalysis.root

outputFQDanalysis.root

outputLYZ1SUManalysis.root

outputSPanalysis.root

outputGFCanalysis.root

outputMCEPanalysis.root

2430

Each implemented method for flow analysis produced its own output file holding various output histograms. The final2431

flow results are stored in the common histogram structure implemented in the class AliFlowCommonHistResults.2432

Step 6: To access and compare those final flow results automatically there is a dedicated macro available, so execute2433

> aliroot

root [0] .x compareFlowResults.C("")

2434

Step 7: If you want to rerun and get larger statistics modify2435

Int t nEvts=4402436

in the macro runFlowAnalysisOnTheFly.C .2437

Step 8: Have fun!2438

In the next section we outline the steps for the Root users.2439

B.2.2 Root users2440

To be written at Nikhef...2441

B.3 Making your own flow events2442

This section is common both for AliRoot and Roor users. In this section we outline the procedure the user should2443

follow in order to simulate ‘on the fly’ the events with his own settings by making use of the available setters.2444

Those setters are implemented in the class AliFlowEventSimpleMakerOnTheFly and user shall use them in the macro2445

runFlowAnalysisOnTheFly.C.2446

B.3.1 pT spectra2447

Transverse momentum of particles is sampled from the predefined Boltzmann distribution2448

dN

dpT
= MpT exp

(
−
√
m2 + p2

T

T

)
, (B.3.1.1)

where M is the multiplicity of the event, T is “temperature” and m is the mass of the particle. By increasing the parameter2449

T one is increasing the number of high pT particles and this parameter is the same for all events. On the other hand,2450

multiplicity M will in general vary from event to event. In the macro runFlowAnalysisOnTheFly.C one can modify2451

distribution (B.3.1.1) by using setter for “temperature” T and various setters for multiplicity M .2452

Example: If one wants to increase/decrease the number of high pT particles, one should modify the line2453

Double t dTemperatureOfRP = 0.44;2454

Examples of pT spectra for two different values of T are shown in Figures B.1 and B.2.2455

What is shown in Figures B.1 and B.2 is only one example of the so called common control histograms. They are the2456

histograms organized in the same structure and implemented in the class AliFlowCommonHist. In output file of each2457

method one can access those histograms with TBrowser.2458

When it comes to multiplicity M , one has a choice to sample it event-by-event from two different distributions before2459

plugging its value into Eq. (B.3.1.1) which than will be used to sample transverse momenta of M particles in that event.2460

Example: If one wants to sample multiplicity event-by-event from Gaussian distribution with mean 500 and spread 10,2461

one should have the following relevant settings2462

B.3. MAKING YOUR OWN FLOW EVENTS Page 50 of 56

AliROOT Flow Package manual and documentation The FLOW team

 (GeV/c) for RP selectiontP
0 1 2 3 4 5

C
o

u
n

ts

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure B.1: T = 0.2 GeV/c .

 (GeV/c) for RP selectiontP
0 1 2 3 4 5

C
o

u
n

ts

0

500

1000

1500

2000

2500

3000

3500

Figure B.2: T = 0.5 GeV/c .

Multiplicity for RP selection
460 470 480 490 500 510 520 530

C
o

u
n

ts

0

50

100

150

200

250

300

350

400

Figure B.3: Gaussian multiplicity distribution.

Multiplicity for RP selection
400 450 500 550 600

C
o

u
n

ts
0

10

20

30

40

50

60

70

Figure B.4: Uniform multiplicity distribution.

Bool t bMultDistrOfRPsIsGauss = kTRUE;

Int t iMultiplicityOfRP = 500;

Double t dMultiplicitySpreadOfRP = 10;

2463

Example plot for multiplicity distribution with these settings is shown in Figure B.3.2464

Another way to sample multiplicity event-by-event is by using uniform distribution.2465

Example: If one wants to sample multiplicity event-by-event from uniform distribution in the interval [400,600], one2466

must have the following relevant settings2467

Bool t bMultDistrOfRPsIsGauss = kFALSE;

Int t iMinMultOfRP = 400;

Int t iMaxMultOfRP = 600;

2468

Example plot for multiplicity distribution with these settings is shown in Figure B.4.2469

One can also fix multiplicity to be the same for each event.2470

Example: If one wants to have the same fixed multiplicity of 500 for each event one can use the following settings:2471

Bool t bMultDistrOfRPsIsGauss = kTRUE;

Int t iMultiplicityOfRP = 500;

Double t dMultiplicitySpreadOfRP = 0;

2472

These are all manipulations available at the moment with pT spectra given in Eq. (B.3.1.1).2473

B.3.2 Azimuthal distribution2474

If the anisotropic flow exists, it will manifest itself in the anisotropic azimuthal distribution of outgoing particles measured2475

with respect to the reaction plane:2476

E
d3N

d3~p
=

1

2π

d2N

pT dpT dη

(
1 +

∞∑
n=1

2vn(pT , η) cos (n (φ−ΨRP))

)
. (B.3.2.1)

B.3. MAKING YOUR OWN FLOW EVENTS Page 51 of 56

AliROOT Flow Package manual and documentation The FLOW team

Flow harmonics vn quantify anisotropic flow and are in general function of transverse momentum pT and pseudorapidity2477

η. Orientation of reaction plane ΨRP fluctuates randomly event-by-event and cannot be measured directly. In the2478

implementation ‘on the fly’ reaction plane is sampled uniformly event-by-event from the interval [0o, 360o]. When it comes2479

to flow harmonics, there are two modes which we outline next.2480

Constant flow harmonics2481

In this mode all flow harmonics are treated as a constant, event-wise quantities, meaning that for a particular event2482

azimuthal angles of all particles will be sampled from the same azimuthal distribution in which flow harmonics appear2483

just as fixed parameters. The implemented most general azimuthal distribution for this mode reads2484

dN

dφ
= 1 + 2v1 cos(φ−ΨRP) + 2v2 cos(2(φ−ΨRP)) + 2v4 cos(4(φ−ΨRP)) . (B.3.2.2)

In the macro runFlowAnalysisOnTheFly.C one can use the dedicated setters and have handle on the flow harmonics v1,2485

v2 and v4. The most important harmonic is v2, the so called elliptic flow, so we start with it first.2486

Example: If one wants to sample particle azimuthal angles from azimuthal distribution parameterized only with constant2487

elliptic flow of 5%, namely2488

dN

dφ
= 1 + 2 · 0.05 · cos(2(φ−ΨRP)) , (B.3.2.3)

then one should use the following settings2489

Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kTRUE;

Double t dV2RP = 0.05;

Double t dV2SpreadRP = 0.0;

Double t dV1RP = 0.0;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.0;

Double t dV4SpreadRP = 0.0;

2490

In this mode the flow coefficients are constant for all particles within particular event, but still the flow coefficients can2491

fluctuate event-by-event.2492

Example: If one wants to sample particle azimuthal angles from azimuthal distribution parameterized only with elliptic2493

flow which fluctuates event-by-event according to Gaussian distribution with mean 5% and spread 1%, than one should use2494

the following settings2495

Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kTRUE;

Double t dV2RP = 0.05;

Double t dV2SpreadRP = 0.01;

Double t dV1RP = 0.0;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.0;

Double t dV4SpreadRP = 0.0;

2496

On can also study uniform flow fluctuations.2497

Example: If one wants to sample particle azimuthal angles from azimuthal distribution parameterized only with elliptic2498

flow which fluctuates event-by-event according to uniform distribution in interval [4%,6%], than one should use the following2499

settings2500

Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kFALSE;

Double t dMinV2RP = 0.04;

Double t dMinV2RP = 0.06;

Double t dV1RP = 0.0;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.0;

Double t dV4SpreadRP = 0.0;

2501

B.3. MAKING YOUR OWN FLOW EVENTS Page 52 of 56

AliROOT Flow Package manual and documentation The FLOW team

T
p

0 1 2 3 4 5 6 7 8 9 10

2v

0

0.05

0.1

0.15

0.2

0.25

Figure B.5: pT dependent elliptic flow.

It is of course possible to simulate simultanously nonvanishing v1, v2 and v4.2502

Example: If one wants to sample particle azimuthal angles from azimuthal distribution parameterized by harmonics2503

v1 = 2%, v2 = 5% and v4 = 1%, namely2504

dN

dφ
= 1 + 2 · 0.02 · cos(φ−ΨRP) + 2 · 0.05 · cos(2(φ−ΨRP))

+ 2 · 0.01 · cos(4(φ−ΨRP)) (B.3.2.4)

then one should use the following settings2505

Bool t bConstantHarmonics = kTRUE;

Bool t bV2DistrOfRPsIsGauss = kTRUE;

Double t dV2RP = 0.05;

Double t dV2SpreadRP = 0.0;

Double t dV1RP = 0.02;

Double t dV1SpreadRP = 0.0;

Double t dV4RP = 0.01;

Double t dV4SpreadRP = 0.0;

2506

In the next section we outline the procedure for simulating flow events with pT dependent flow harmonics.2507

pT dependent flow harmonics2508

In this mode the functional dependence of flow harmonics on transverse momentum is treated as an event-wise quantity,2509

while within the particular event the flow harmonics will change from particle to particle depending on its transverse2510

momentum. The implemented azimuthal distribution for this case reads2511

dN

dφ
= 1 + 2v2(pT) cos(2(φ−ΨRP)) , (B.3.2.5)

and the functional dependence v2(pT) is implemented as follows:2512

v2(pT) =

{
vmax(pT /pcutoff) pT < pcutoff ,
vmax pT ≥ pcutoff .

(B.3.2.6)

In the macro runFlowAnalysisOnTheFly.C one can have the handle on the parameters vmax and pcutoff .2513

Example: If one wants to set vmax = 0.2 and pcutoff = 2 GeV/c, than one should use the following settings:2514

Bool t bConstantHarmonics = kFALSE;

Double t dV2RPMax = 0.20;

Double t dPtCutOff = 2.0;

2515

Example plot is given in Figure B.5.2516

(Remark: Add further explanation here.)2517

B.3. MAKING YOUR OWN FLOW EVENTS Page 53 of 56

AliROOT Flow Package manual and documentation The FLOW team

 for RP selectionφ
0 1 2 3 4 5 6

C
o

u
n

ts

0

1000

2000

3000

4000

5000

6000

7000

Figure B.6: Non-uniform acceptance.

 for RP selectionφ
0 1 2 3 4 5 6

C
o

u
n

ts

0

1000

2000

3000

4000

5000

6000

7000

Figure B.7: Non-uniform acceptance.

B.3.3 Nonflow2518

One can simply simulate strong 2-particle nonflow correlations by taking each particle twice.2519

Example: If one wants to simulate strong 2-particle nonflow correlations one should simply set2520

Int t iLoops = 2;2521

B.3.4 Detector inefficiencies2522

In reality we never deal with a detector with uniform azimuthal coverage, hence a need for a thorough studies of the2523

systematic bias originating from the non-uniform acceptance.2524

Example: One wants to simulate a detector whose acceptance is uniform except for the sector which spans the azimuthal2525

interval [60o, 120o]. In this sector there are some issues, so only half of the particles are reconstructed. To simulate this2526

acceptance one should use the following settings:2527

Bool t uniformAcceptance = kFALSE;

Double t phimin1 = 60;

Double t phimax1 = 120;

Double t p1 = 1/2.;

Double t phimin2 = 0.0;

Double t phimax2 = 0.0;

Double t p2 = 0.0;

2528

The resulting azimuthal profile is shown in Figure (B.6).2529

One can also simulate two problematic sectors.2530

Example: One wants to simulate a detector whose acceptance is uniform except for the two sectors which span azimuth2531

[60o, 120o] and [270o, 330o], respectively. In the first sector only 1/2 of the particles are reconstructed and only 1/3 of the2532

particles are reconstructed in the second. To simulate this acceptance one should use the following settings:2533

Bool t uniformAcceptance = kFALSE;

Double t phimin1 = 60;

Double t phimax1 = 120;

Double t p1 = 1/2.;

Double t phimin2 = 270.0;

Double t phimax2 = 330.0;

Double t p2 = 1/3.;

2534

The resulting azimuthal profile is shown in Figure (B.7).2535

B.3. MAKING YOUR OWN FLOW EVENTS Page 54 of 56

Index

AddTask macro, 262536

afterburner, 212537

AliAnalysisManager, 262538

AliAnalysisTaskFilterFE, 392539

AliAnalysisTaskFlowEvent, 82540

AliAnalysisTaskFlowEvent::UserExec(), 212541

ALICE flow package, see flow package2542

AliFlowAnalysisWithCumulants, 362543

AliFlowAnalysisWithFittingQDistribution, 362544

AliFlowAnalysisWithLeeYangZeros, 372545

AliFlowAnalysisWithLYZEventPlane, 372546

AliFlowAnalysisWithMCEventPlane, 332547

AliFlowAnalysisWithMixedHarmonics, 362548

AliFlowAnalysisWithMultiparticleCorrelations, 372549

AliFlowAnalysisWithQCumulants, 332550

AliFlowAnalysisWithScalarProduct, 352551

AliFlowCommonConstants, 192552

AliFlowCommonHist, 52553

details, 202554

AliFlowCommonHistResults, 52555

details, 202556

AliFlowEvent, 72557

AliFlowEvent::Fill(), 222558

AliFlowEventCuts, 92559

AliFlowEventSimple, 7, 292560

AliFlowTrackCuts, 7, 112561

AliFlowTrackSimple, 72562

AliFlowTrackSimpleCuts, 392563

AliROOT, 12564

AliStarEvent, 312565

AliStarEventReader, 312566

AliVEventHandler, 262567

AliAODInputHandler, 262568

analysis framework, 262569

analysis manager, 262570

analysis train, 242571

AnalysisResults.root, 52572

compareFlowResults, 62573

connecting containers, 282574

event selection, 82575

caveats, 102576

data types, 102577

event cuts, 92578

parameters, 92579

setters, 92580

trigger selection, 82581

example, 262582

AliAnalysisTaskFlowEvent, 272583

connecting containers, 282584

event selection, 272585

launch analysis, 292586

track selection, 272587

trigger selection, 272588

ExchangeContainer, 282589

filterbit, 122590

Finish(), 252591

flow analysis method, 72592

flow analysis methods, 332593

flow event, 72594

flow package, 12595

flow track, 72596

flowchart, 72597

GRID, 252598

initialize methods, 42599

input data, 72600

InputContainer, 282601

LEGO framework, 392602

libPWGflowBase, 72603

libPWGflowTasks, 72604

libraries, AliROOT, 32605

libraries, ROOT, 32606

mergedAnalysisResults, 252607

methods, 332608

AliFlowAnalysisWithCumulants, 362609

AliFlowAnalysisWithFittingQDistribution, 362610

AliFlowAnalysisWithLeeYangZeros, 372611

AliFlowAnalysisWithLYZEventPlane, 33, 372612

AliFlowAnalysisWithMixedHarmonics, 362613

AliFlowAnalysisWithMultiparticleCorrelations, 372614

AliFlowAnalysisWithQCumulants, 332615

AliFlowAnalysisWithScalarProduct, 352616

Monte Carlo input, 72617

non uniform acceptance, 412618

NUA, 412619

On the fly, 32620

output file, 52621

OutputContainer, 282622

particle identification, 122623

caveats, 142624

methods, 132625

particles of interest, 42626

POI, see particles of interest2627

Q-cumulant, 72628

redoFinish.C, 252629

reference particles, 42630

AliROOT Flow Package manual and documentation The FLOW team

RP, see reference particles2631

run.C, 262632

runFlowOnTheFlyExample.C, 32633

runStarFlowAnalysis.C, 312634

scalar product, 72635

STAR input, 72636

steering macro, 262637

TBrowser, 52638

TChain, 262639

TClonesArray, 302640

Terminate, 242641

TFileMerger, 252642

TNamed, 62643

track cut object, simple, 42644

track selection, 102645

AOD filterbit, 122646

AOD tracks, 122647

ESD tracks, 112648

parameter type, 112649

particle identification, 122650

VZERO, 152651

track weights, 182652

TTree, 12653

UserCreateOutputObjects, 242654

UserExec, 242655

VZERO, 11, 152656

calibration, 152657

LHC10h, 162658

LHC11h, 162659

caveats, 172660

xml, 242661

INDEX Page 56 of 56

	1 Introduction
	1.1 This manual
	1.2 Disclaimer

	2 A Quick Start
	2.1 On the fly - getting started on a Toy MC
	2.2 What is in the output file ?
	2.2.1 AliFlowCommonHists - Output objects

	3 The Program
	3.1 Overview
	3.2 Analysis in the ALICE analysis framework
	3.2.1 Input data
	3.2.2 Event selection
	3.2.3 Track cuts and the track cuts object
	3.2.4 Additional options
	3.2.5 Relevant pieces of code
	3.2.6 Some words on the ALICE analysis framework
	3.2.7 Example: vn

	3.3 Flow analysis in ROOT: Using TTree's and TNTuples
	3.3.1 A custom class derived from AliFlowEventSimple
	3.3.2 A realistic example: flow package analysis on STAR data

	4 Methods
	4.1 AliFlowAnalysisWithMCEventPlane
	4.1.1 Theory
	4.1.2 Implementation

	4.2 AliFlowAnalysisWithQCumulants
	4.2.1 Implementation

	4.3 AliFlowAnalysisWithScalarProduct
	4.3.1 Theory

	4.4 AliFlowAnalysisWithCumulants
	4.4.1 Theory
	4.4.2 Implementation

	4.5 AliFlowAnalysisWithMixedHarmonics
	4.5.1 Theory
	4.5.2 Implementation

	4.6 AliFlowAnalysisWithFittingQDistribution
	4.6.1 Theory
	4.6.2 Implementation

	4.7 AliFlowAnalysisWithMultiparticleCorrelations
	4.7.1 Theory
	4.7.2 Implementation

	4.8 AliFlowAnalysisWithLeeYangZeros
	4.8.1 Theory
	4.8.2 Implementation

	4.9 AliFlowAnalysisWithLYZEventPlane
	4.9.1 Theory
	4.9.2 Implementation

	4.10 Developing your own task

	5 More exotic uses
	5.1 Flow analysis in the LEGO framework: re-tagging your POI and RP selections
	5.1.1 Caveats

	5.2 Flow analysis of resonances
	5.3 Non-uniform acceptance correction
	5.3.1 Caveats

	6 Summary
	7 Bibliography
	A About this document
	A.1 Specifics and webpage

	B Flow analysis `on-the-fly'
	B.1 Introduction
	B.2 Kickstart
	B.2.1 AliRoot users
	B.2.2 Root users

	B.3 Making your own flow events
	B.3.1 pT spectra
	B.3.2 Azimuthal distribution
	B.3.3 Nonflow
	B.3.4 Detector inefficiencies

	Index

