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Abstract. We present a new method to analyze anisotropic flow from the genuine

correlation among a large number of particles, focusing on the practical implementation

of the method.

1. Introduction

Anisotropic collective flow is defined as a correlation between the azimuthal angle φ

of an arbitrary particle and the azimuth ΦR of the impact parameter in a non-central

nucleus–nucleus collision. It is commonly characterized by the Fourier coefficients of the

single-particle distribution [1]

vn ≡ 〈cos(n(φ− ΦR))〉 , (1)

where 〈. . .〉 here denotes an average over many particles and events. In particular,

elliptic flow v2 is recognized as a sensitive probe of thermalization at RHIC [2].

While anisotropic flow is by definition a collective effect that involves many

particles, it has mostly been analyzed using methods based either on a study of two-

particle correlations [3–5] or on the cumulants of correlations between a few (in practice,

up to 8) particles [6]. We recently proposed a new method of analysis [7, 8] that

remedies this limitation, and extracts flow from the correlation between a large number

of particles instead of only a few. In the following, we introduce the practical recipes for

implementing the method, referring the reader to Refs. [7,8] for theoretical justifications.

2. Integrated flow

For a given centrality bin, the first step in the analysis is to obtain an estimate of the

flow integrated over some phase-space region (typically corresponding to the acceptance

of a detector or a set of detectors). We define integrated flow as the average over events

Vn ≡

〈

M
∑

j=1

wj cos(n(φj − ΦR))

〉

, (2)
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where the sum runs over all particles detected in an event. As is usual in flow analyses,

wj is a weight attributed to the j-th particle so as to maximize the integrated flow

value. Further details regarding the choice of weights can be found in Ref. [6]. With

unit weights, and neglecting for simplicity multiplicity fluctuations, Vn = Mvn, where vn
is an average of the Fourier coefficient (1) over the phase space covered by the detector.

To derive an estimate of the integrated flow Vn (for practical purposes, n = 2 at

RHIC and LHC, n = 1 at AGS and below), one should first compute for each event the

complex-valued function‡

gθ(ir) ≡
M
∏

j=1

[1 + ir wj cos(n(φj − θ))] (3)

for various values of the real positive variable r and of the angle θ (0 ≤ θ < π/n;

in practice, 4 or 5 equally spaced values of θ are enough as shown in Ref. [8]). The

φj are the measured azimuthal angles of the particles, using a fixed reference in the

laboratory, and the product runs over all particles. Please note that the method is

stable against effects, like multiple hits or showering, which bias the results of other

methods of analysis, so that one should not refrain from using all detected particles,

combining information from different detectors: increasing the multiplicity results in

smaller statistical uncertainties on the flow estimates.

Together with values of gθ(ir), one should in each event compute the sums

Qx ≡
M
∑

j=1

wj cos(nφj), Qy ≡
M
∑

j=1

wj sin(nφj), (4)

as well as their squares Qx
2 and Qy

2.

Next, one should average gθ(ir) over events for each value of r and θ:

Gθ(ir) ≡
〈

gθ(ir)
〉

evts
≡

1

Nevts

∑

events

gθ(ir), (5)

where Nevts is the number of events used in the analysis. This is also a good time to

compute the averages over events 〈Qx〉, 〈Qy〉 and 〈Qx
2 +Qy

2〉.

For every θ value, one must then look for the position rθ0 of the first positive

minimum of the modulus |Gθ(ir)|. An estimate of the integrated flow Vn is given by

V θ
n {∞} ≡

j01
rθ0
, (6)

where j01 ≃ 2.40483 is the first zero of the Bessel function J0. If the detector acceptance

has reasonable azimuthal symmetry, the estimates do not depend on θ up to statistical

fluctuations (see below).§ One eventually averages V θ
n {∞} over θ. This yields a new

‡ In Refs. [7,8] we used a different generating function. The one defined in Eq. (3), which is introduced

in Appendix A of Ref. [8], actually yields more accurate results for higher harmonics v2n, v3n when

analyzing differential flow. However, both forms of generating functions are actually equivalent for the

most part, and the computations of Ref. [8] can easily be adapted to the present function Eq. (3).
§ For an anisotropic detector, V

θ
n
{∞} shows an oscillatory pattern that can be computed in terms of

the Fourier coefficients of the detector acceptance-efficiency profile. There is an extra proportionality

factor between Vn{∞} and Vn that can also be calculated and is close to unity in most cases, see Ref. [8]

for details.
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estimate Vn{∞} with smaller statistical errors. This estimate is then used to compute

the resolution parameter, which measures the relative strength of flow compared to

finite-multiplicity fluctuations: χ ≡ Vn{∞}/σ [4], with σ given by

σ2 ≡
〈

Qx
2 +Qy

2
〉

− 〈Qx〉
2 − 〈Qy〉

2 − Vn{∞}2. (7)

The relative statistical error on V θ
n {∞} due to the finite number of events is

〈

(δV θ
n {∞})2

〉

V 2
n

=
1

2Nevts j
2
01 J1(j01)2

[

exp

(

j2
01

2χ2

)

+ exp

(

−
j2
01

2χ2

)

J0(2j01)

]

, (8)

where J1 is the spherical Bessel function of order 1. The statistical uncertainty on the

estimate Vn{∞} is a about a factor of 2 smaller [8].

3. Differential flow

Once integrated flow estimates have been obtained, one can turn to the analysis of

differential flow, i.e., the flow of particles of a given type in a definite phase-space

window, which we shall call “protons” for the sake of brevity. A “proton” azimuth

will be denoted by ψ, and the corresponding differential flow vp(pT , y) by v′p. Using an

estimate of integrated flow in harmonic n, as e.g. V θ
n {∞}, one can derive an estimate

of v′p in any harmonic p which is a multiple of n, i.e., p = mn with m integer.

Now, for a given angle θ, with the help of the values of rθ0 and V θ
n {∞} determined

following the recipe of Sec. 2, an estimate of v′mn is given by

v′θmn{∞}

V θ
n {∞}

≡
J1(j01)

Jm(j01)
Re















〈

gθ(irθ0)
cos(mn(ψ − θ))

1 + irθ0wψ cos(n(ψ − θ))

〉

ψ

im−1

〈

gθ(irθ0)
∑

j

wj cos(n(φj − θ))

1 + irθ0wj cos(n(φj − θ))

〉

evts















. (9)

In the denominator, the average is over events and the sum runs over all particles in

each event. By contrast, the average 〈. . .〉ψ in the numerator is over protons, and we

have denoted by wψ the weight associated with a proton. Please note that the sum in

the denominator need only be computed once per event (it is actually the derivative of

gθ(ir) at the minimum rθ0), while the quantity to be averaged in the numerator varies

from one proton to the other, even for protons within the same event. Finally, Re

denotes the real part of the (complex-valued) ratio.

Denoting by N ′ the total number of “protons” in the phase-space bin under study,

the statistical uncertainty on the estimate v′θmn{∞} is

〈

(δv′
θ

mn{∞})2
〉

=
1

4N ′Jm(j01)2

[

exp

(

j2
01

2χ2

)

+ (−1)m exp

(

−
j2
01

2χ2

)

J0(2j01)

]

. (10)

As in the case of integrated flow, averaging the various estimates v′θmn{∞} results in a

new estimate v′mn{∞} with reduced statistical error bars (by a factor ≃ 2). Regarding

the effects of detector anisotropies, they are the same as above too [8]: a θ-dependence of

v′θmn{∞} and a multiplicative factor between the “true” v′mn and its estimate v′mn{∞}.
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Finally, let us briefly mention systematic errors inherent to the method. A careful

study in Ref. [8] allowed us to conclude that the relative error due the interplay of

nonflow effects and higher harmonics (in particular v2n) is of order

δv′mn{∞}

v′mn
= O

(

1

M

)

+ O

(

1

(Mvn)2

)

+ O

(

v2n

Mv2
n

)

. (11)

The relative error on integrated flow estimate Vn{∞} is of the same order of magnitude.

Actually, in the analysis of higher harmonics (m > 1), an extra error term arises

δv′mn{∞} = O

(

v′(m−1)n

Mvn

)

. (12)

Unlike the previous term, this is an absolute systematic error, not a relative error on

the flow. With any other method of flow analysis, the systematic error will always be

larger (or at least equal).

4. Discussion

The method of analysis we presented above is simple to implement: compute values of

the generating function (5) and find the first minimum of its modulus, then Eq. (6) gives

you the integrated flow. Knowing the position of the minimum, you can then compute

in a second pass through the data the quantities in the right-hand side of Eq. (9) and

deduce differential flow. Nothing more is required.

In addition, the method is conceptually rich. The minimum of |Gθ(ir)| is in fact

compatible with a zero of Gθ(z), where z is a complex variable. The mere existence

of such a zero close to the origin and scaling with the inverse of the system size (Vn in

Eq. (2) is roughly proportional to the multiplicity M) signals the presence of collective

effects. This is analogous to Lee–Yang theory of phase transitions [9] in which the zeroes

of the partition function come closer to the origin with increasing system size if, and

only if, there is a phase transition. Since anisotropic flow is a collective effect, Lee–Yang

zeroes definitely are the most natural method to analyze flow.
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