2e23a22fe8d8c3968b7ded6b29c00bbe9a8725c8
[u/mrichter/AliRoot.git] / PWGJE / AliAnalysisTaskJetCore.h
1 #ifndef ALIANALYSISTASKJETCORE_H
2 #define ALIANALYSISTASKJETCORE_H
3
4 /* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
5  * See cxx source for full Copyright notice                               */
6
7 // **************************************
8 // This task computes several jet observables like 
9 // the fraction of energy in inner and outer coronnas,
10 // the distance from track to jet axis and a 
11 // correlation strength distribution of particles inside jets.    
12 // Author: lcunquei@cern.ch
13 // *******************************************
14
15 class TH1F;
16 class TH1I;
17 class TH2F;
18 class TH3F;
19 class THnSparse;
20 class AliESDEvent;
21 class AliAODExtension;
22 class AliAODEvent;
23
24 #include "AliAnalysisTaskSE.h"
25 #include "AliVEvent.h"
26
27 class AliAnalysisTaskJetCore : public AliAnalysisTaskSE {
28 public:
29    AliAnalysisTaskJetCore();
30    AliAnalysisTaskJetCore(const char *name);
31    virtual ~AliAnalysisTaskJetCore();
32    virtual void     LocalInit() {Init();}
33    virtual void     Init();
34    virtual void     UserCreateOutputObjects();
35    virtual void     UserExec(Option_t *option);
36    virtual void     Terminate(const Option_t*);
37
38    virtual Int_t      GetNInputTracks();
39   
40    Double_t RelativePhi(Double_t angle1,Double_t angle2);     
41
42    virtual AliVEvent::EOfflineTriggerTypes GetOfflineTrgMask() const { return fOfflineTrgMask; }
43    virtual void     GetBranchNames(TString &branch1, TString &branch2) const { branch1 = fJetBranchName[0]; branch2 = fJetBranchName[1]; }
44    virtual Bool_t   GetIsPbPb() const { return fIsPbPb; }
45    virtual Int_t    GetMinContribVtx() const { return fMinContribVtx; };
46    virtual Float_t  GetVtxZMin() const { return fVtxZMin; }
47    virtual Float_t  GetVtxZMax() const { return fVtxZMax; }
48    virtual Int_t    GetEvtClassMin() const { return fEvtClassMin; }
49    virtual Int_t    GetEvtClassMax() const { return fEvtClassMax; }
50    virtual Float_t  GetCentMin() const { return fCentMin; }
51    virtual Float_t  GetCentMax() const { return fCentMax; }
52    virtual Int_t    GetNInputTracksMin() const { return fNInputTracksMin; }
53    virtual Int_t    GetNInputTracksMax() const { return fNInputTracksMax; } 
54    virtual Float_t  GetJetEtaMin() const { return fJetEtaMin; }
55    virtual Float_t  GetJetEtaMax() const { return fJetEtaMax; }
56    virtual Float_t  GetJetPtMin() const { return fJetPtMin; }
57    virtual Float_t  GetJetPtFractionMin() const { return fJetPtFractionMin; }
58    virtual Int_t    GetNMatchJets() const { return fNMatchJets; }
59    virtual void     SetBranchNames(const TString &branch1, const TString &branch2);
60    virtual void     SetBackgroundBranch(TString &branch) { fBackgroundBranch = branch;}
61    virtual void     SetIsPbPb(Bool_t b=kTRUE) { fIsPbPb = b; }
62    virtual void     SetOfflineTrgMask(AliVEvent::EOfflineTriggerTypes mask) { fOfflineTrgMask = mask; }
63    virtual void     SetMinContribVtx(Int_t n) { fMinContribVtx = n; }
64    virtual void     SetVtxZMin(Float_t z) { fVtxZMin = z; }
65    virtual void     SetVtxZMax(Float_t z) { fVtxZMax = z; }
66    virtual void     SetEvtClassMin(Int_t evtClass) { fEvtClassMin = evtClass; }
67    virtual void     SetEvtClassMax(Int_t evtClass) { fEvtClassMax = evtClass; }
68    virtual void     SetFilterMask(UInt_t i){fFilterMask = i;}
69    virtual void     SetRadioFrac(Float_t radiofrac) { fRadioFrac = radiofrac; }
70    virtual void     SetMinDist(Float_t minDist) { fMinDist = minDist; }
71    virtual void     SetCentMin(Float_t cent) { fCentMin = cent; }
72    virtual void     SetCentMax(Float_t cent) { fCentMax = cent; }
73    virtual void     SetNInputTracksMin(Int_t nTr) { fNInputTracksMin = nTr; }
74    virtual void     SetNInputTracksMax(Int_t nTr) { fNInputTracksMax = nTr; }
75    virtual void     SetAngStructCloseTracks(Int_t yesno){fAngStructCloseTracks=yesno;}
76    virtual void     SetJetEtaMin(Float_t eta) { fJetEtaMin = eta; }
77    virtual void     SetJetEtaMax(Float_t eta) { fJetEtaMax = eta; }
78    virtual void     SetJetPtMin(Float_t pt) { fJetPtMin = pt; }
79    virtual void     SetJetTriggerExclude(UChar_t i) { fJetTriggerExcludeMask = i; }
80    virtual void     SetJetPtFractionMin(Float_t frac) { fJetPtFractionMin = frac; }
81    virtual void     SetNMatchJets(Int_t n) { fNMatchJets = n; }
82    virtual void     SetFillEvent(Bool_t b) { fbEvent = b; }
83    virtual void     SetKeepJets(Bool_t b = kTRUE) { fKeepJets = b; }
84    virtual void SetNonStdFile(char* c){fNonStdFile = c;} 
85
86
87 private:
88    // ESD/AOD events
89    AliESDEvent *fESD;    //! ESD object
90    AliAODEvent *fAOD;    //! AOD event
91     AliAODExtension  *fAODExtension; //! where we take the jets from can be input or output AOD
92    Int_t   GetListOfTracks(TList *list);
93    Int_t   GetListOfTracksCloseToJet(TList *list,AliAODJet *jet);
94    // jets to compare
95    TString fJetBranchName[2]; //  name of jet branches to compare
96    TList *fListJets[2];       //! jet lists
97
98    TString fBackgroundBranch;
99    TString       fNonStdFile; // name of delta aod file to catch the extension
100    // event selection
101    Bool_t fIsPbPb;         // is Pb-Pb (fast embedding) or p-p (detector response)
102    AliVEvent::EOfflineTriggerTypes fOfflineTrgMask; // mask of offline triggers to accept
103    Int_t   fMinContribVtx; // minimum number of track contributors for primary vertex
104    Float_t fVtxZMin;      // lower bound on vertex z
105    Float_t fVtxZMax;      // upper bound on vertex z
106    Int_t   fEvtClassMin;          // lower bound on event class
107    Int_t   fEvtClassMax;          // upper bound on event class
108    UInt_t  fFilterMask;            // filter bit for slecected tracks
109    Float_t fRadioFrac;                          //!size of the concentric cone
110    Float_t fMinDist;   
111    Float_t fCentMin;      // lower bound on centrality
112    Float_t fCentMax;      // upper bound on centrality
113    Int_t   fNInputTracksMin;  // lower bound of nb. of input tracks
114    Int_t   fNInputTracksMax;  // upper bound of nb. of input tracks
115    Int_t   fAngStructCloseTracks;//only constituents or all tracks with R<0.8 for the angular structure
116    Float_t fJetEtaMin;     // lower bound on eta for found jets
117    Float_t fJetEtaMax;     // upper bound on eta for found jets
118    Float_t fJetPtMin;      // minimum jet pT
119    UChar_t fJetTriggerExcludeMask; // mask for jet triggeres to exclude
120    Float_t fJetPtFractionMin; // minimum fraction for positiv match of jets
121    Int_t   fNMatchJets;       // maximal nb. of jets taken for matching
122    Double_t fMatchMaxDist;     // maximal distance of matching jets
123    Bool_t  fKeepJets;          // keep jets with negative pt after background subtraction
124   
125
126    // output objects
127    const Int_t fkNbranches;                   //! number of branches to be read
128    const Int_t fkEvtClasses;                  //! number of event classes
129    
130    TList *fOutputList;                        //! output data container
131    Bool_t fbEvent;                            // fill fhnEvent
132    TH1I  *fHistEvtSelection;                  //! event selection statistic
133    TH1I  *fHistJetSelection;                  //! jet selection statistic
134    TH2F  *fh2JetSelection;                    //! jet selection statistic, with 
135      
136
137    TH2F      *fh2JetCoreMethod1C10;          //Energy fraction in the core C10 method 1
138    TH2F      *fh2JetCoreMethod2C10;          //Energy fraction in the core C10 method 2
139    TH2F      *fh2JetCoreMethod3C10;          //Energy fraction in the core C10 method 3
140    TH2F      *fh2JetCoreMethod1C20;          //Energy fraction in the core C20 method 1 
141    TH2F      *fh2JetCoreMethod2C20;          //Energy fraction in the core C20 method 2
142    TH2F      *fh2JetCoreMethod3C20;          //Energy fraction in the core C20 method 3
143    TH2F      *fh2JetCoreMethod1C30;          //Energy fraction in the core C30 method 1
144    TH2F      *fh2JetCoreMethod2C30;          //Energy fraction in the core C30 method 2
145    TH2F      *fh2JetCoreMethod3C30;          //Energy fraction in the core C30 method 3
146    TH2F      *fh2JetCoreMethod1C60;          //Energy fraction in the core C60 method 1
147    TH2F      *fh2JetCoreMethod2C60;          //Energy fraction in the core C60 method 2
148    TH2F      *fh2JetCoreMethod3C60;          //Energy fraction in the core C60 method 3
149    TH2F      *fh2JetCoreMethod3C10lead;          //Energy fraction in the core C30 method 3
150    TH2F      *fh2JetCoreMethod3C20lead;          //Energy fraction in the core C60 method 1
151    TH2F      *fh2JetCoreMethod3C30lead;          //Energy fraction in the core C60 method 2
152    TH2F      *fh2JetCoreMethod3C60lead;          //Energy fraction in the core C60 method 3
153    TH2F      *fh2JetCoreMethod3C10sublead;          //Energy fraction in the core C30 method 3
154    TH2F      *fh2JetCoreMethod3C20sublead;          //Energy fraction in the core C60 method 1
155    TH2F      *fh2JetCoreMethod3C30sublead;          //Energy fraction in the core C60 method 2
156    TH2F      *fh2JetCoreMethod3C60sublead;          //Energy fraction in the core C60 method 3
157
158    TH2F      *fh2SumPtInC10;                  //energy fraction in inner corona C10
159    TH2F      *fh2SumPtInC20;                  //energy fraction in inner corona C20 
160    TH2F      *fh2SumPtInC30;                  //energy fraction in inner corona C30
161    TH2F      *fh2SumPtInC60;                  //energy fraction in inner corona C60
162    TH2F      *fh2SumPtInC10lead;              //energy fraction in inner corona C10 leading
163    TH2F      *fh2SumPtInC20lead;              //energy fraction in inner corona C20 leading
164    TH2F      *fh2SumPtInC30lead;              //energy fraction in inner corona C30 leading
165    TH2F      *fh2SumPtInC60lead;              //energy fraction in inner corona C60 leading
166    TH2F      *fh2SumPtInC10sublead;           //energy fraction in inner corona C10 subleading
167    TH2F      *fh2SumPtInC20sublead;           //energy fraction in inner corona C20 subleading
168    TH2F      *fh2SumPtInC30sublead;           //energy fraction in inner corona C30 subleading
169    TH2F      *fh2SumPtInC60sublead;           //energy fraction in inner corona C60 subleading
170    TH2F      *fh2SumPtOutC10;                 //energy fraction in outer corona C10
171    TH2F      *fh2SumPtOutC20;                 //energy fraction in outer corona C20 
172    TH2F      *fh2SumPtOutC30;                 //energy fraction in outer corona C30
173    TH2F      *fh2SumPtOutC60;                 //energy fraction in outer corona C60
174    TH2F      *fh2SumPtOutC10lead;              //energy fraction in outer corona C10 leading
175    TH2F      *fh2SumPtOutC20lead;              //energy fraction in outer corona C20 leading
176    TH2F      *fh2SumPtOutC30lead;              //energy fraction in outer corona C30 leading
177    TH2F      *fh2SumPtOutC60lead;              //energy fraction in outer corona C60 leading
178    TH2F      *fh2SumPtOutC10sublead;           //energy fraction in outer corona C10 subleading
179    TH2F      *fh2SumPtOutC20sublead;           //energy fraction in outer corona C20 subleading
180    TH2F      *fh2SumPtOutC30sublead;           //energy fraction in outer corona C30 subleading
181    TH2F      *fh2SumPtOutC60sublead;           //energy fraction in outer corona C60 subleading
182    TH2F      *fh2SumPtInC10bkg;        //expected from background inner C10
183    TH2F      *fh2SumPtInC20bkg;        //expected from background inner C20
184    TH2F      *fh2SumPtInC30bkg;        //expected from background inner C30
185    TH2F      *fh2SumPtInC60bkg;        //expected from background inner C60
186    TH2F      *fh2SumPtInC10bkglead;        //expected from background inner C10 lead
187    TH2F      *fh2SumPtInC20bkglead;        //expected from background inner C20 lead
188    TH2F      *fh2SumPtInC30bkglead;        //expected from background inner C30 lead
189    TH2F      *fh2SumPtInC60bkglead;        //expected from background inner C60 lead
190    TH2F      *fh2SumPtInC10bkgsublead;        //expected from background inner C10 sublead
191    TH2F      *fh2SumPtInC20bkgsublead;        //expected from background inner C20 sublead  
192    TH2F      *fh2SumPtInC30bkgsublead;        //expected from background inner C30  sublead
193    TH2F      *fh2SumPtInC60bkgsublead;        //expected from background inner C60 sublead
194
195    TH2F      *fh2SumPtOutC10bkg;       //expected from background outer C10
196    TH2F      *fh2SumPtOutC20bkg;       //expected from background outer C10
197    TH2F      *fh2SumPtOutC30bkg;       //expected from background outer C10
198    TH2F      *fh2SumPtOutC60bkg;       //expected from background outer C10
199    TH2F      *fh2SumPtOutC10bkglead;       //expected from background outer C10 lead
200    TH2F      *fh2SumPtOutC20bkglead;       //expected from background outer C10 lead
201    TH2F      *fh2SumPtOutC30bkglead;       //expected from background outer C10 lead
202    TH2F      *fh2SumPtOutC60bkglead;       //expected from background outer C10 lead
203    TH2F      *fh2SumPtOutC10bkgsublead;       //expected from background outer C10 sublead
204    TH2F      *fh2SumPtOutC20bkgsublead;       //expected from background outer C10 sublead
205    TH2F      *fh2SumPtOutC30bkgsublead;       //expected from background outer C10 sublead
206    TH2F      *fh2SumPtOutC60bkgsublead;       //expected from background outer C10 sublead  
207    
208      TH2F*      fh2DeltaRC10pt1;            //Jet track R distance:C10 pt1
209      TH2F*      fh2DeltaRC20pt1;            //C20 pt1 
210      TH2F*      fh2DeltaRC30pt1;            //C30 pt1
211      TH2F*      fh2DeltaRC60pt1;            //C60 pt1
212      TH2F*      fh2DeltaRC10pt2;            //C10 pt2   
213      TH2F*      fh2DeltaRC20pt2;            //C20 pt2
214      TH2F*      fh2DeltaRC30pt2;            //C30 pt2
215      TH2F*      fh2DeltaRC60pt2;            //C60 pt2 
216      TH2F*      fh2DeltaRC10pt3;            //C10 pt3
217      TH2F*      fh2DeltaRC20pt3;            //C20 pt3
218      TH2F*      fh2DeltaRC30pt3;            //C30 pt3
219      TH2F*      fh2DeltaRC60pt3;            //C60 pt3
220      TH2F*      fh2DeltaRC10pt4;            //C10 pt4
221      TH2F*      fh2DeltaRC20pt4;            //C20 pt4
222      TH2F*      fh2DeltaRC30pt4;            //C30 pt4
223      TH2F*      fh2DeltaRC60pt4;            //C60 pt4 
224      TH2F*      fh2DeltaEtaC10pt1;          //The same but eta distance:C10 pt1
225      TH2F*      fh2DeltaEtaC20pt1;          //C20 pt1
226      TH2F*      fh2DeltaEtaC30pt1;          //C30 pt1
227      TH2F*      fh2DeltaEtaC60pt1;          //C60 pt1
228      TH2F*      fh2DeltaEtaC10pt2;          //C10 pt2  
229      TH2F*      fh2DeltaEtaC20pt2;          //C20 pt2
230      TH2F*      fh2DeltaEtaC30pt2;          //C30 pt2
231      TH2F*      fh2DeltaEtaC60pt2;          //C60 pt2
232      TH2F*      fh2DeltaEtaC10pt3;          //C10 pt3
233      TH2F*      fh2DeltaEtaC20pt3;          //C20 pt3
234      TH2F*      fh2DeltaEtaC30pt3;          //C30 pt3
235      TH2F*      fh2DeltaEtaC60pt3;          //C60 pt3
236      TH2F*      fh2DeltaEtaC10pt4;          //C10 pt4
237      TH2F*      fh2DeltaEtaC20pt4;          //C20 pt4
238      TH2F*      fh2DeltaEtaC30pt4;          //C30 pt4
239      TH2F*      fh2DeltaEtaC60pt4;          //C60 pt4
240      TH2F*      fh2DeltaPhiC10pt1;          //The same but phi distance:C10 pt1
241      TH2F*      fh2DeltaPhiC20pt1;          //C20 pt1
242      TH2F*      fh2DeltaPhiC30pt1;          //C30 pt1
243      TH2F*      fh2DeltaPhiC60pt1;          //C60 pt1
244      TH2F*      fh2DeltaPhiC10pt2;          //C10 pt2
245      TH2F*      fh2DeltaPhiC20pt2;          //C20 pt2 
246      TH2F*      fh2DeltaPhiC30pt2;          //C30 pt2
247      TH2F*      fh2DeltaPhiC60pt2;          //C60 pt2 
248      TH2F*      fh2DeltaPhiC10pt3;          //C10 pt3
249      TH2F*      fh2DeltaPhiC20pt3;          //C20 pt3
250      TH2F*      fh2DeltaPhiC30pt3;          //C30 pt3
251      TH2F*      fh2DeltaPhiC60pt3;          //C60 pt3
252      TH2F*      fh2DeltaPhiC10pt4;          //C10 pt4
253      TH2F*      fh2DeltaPhiC20pt4;          //C20 pt4
254      TH2F*      fh2DeltaPhiC30pt4;          //C30 pt4
255      TH2F*      fh2DeltaPhiC60pt4;          //C60 pt4
256
257      TH2F*      fh2DeltaRC10pt1lead;            //Jet track R distance:C10 pt1
258      TH2F*      fh2DeltaRC20pt1lead;            //C20 pt1 
259      TH2F*      fh2DeltaRC30pt1lead;            //C30 pt1
260      TH2F*      fh2DeltaRC60pt1lead;            //C60 pt1
261      TH2F*      fh2DeltaRC10pt2lead;            //C10 pt2   
262      TH2F*      fh2DeltaRC20pt2lead;            //C20 pt2
263      TH2F*      fh2DeltaRC30pt2lead;            //C30 pt2
264      TH2F*      fh2DeltaRC60pt2lead;            //C60 pt2 
265      TH2F*      fh2DeltaRC10pt3lead;            //C10 pt3
266      TH2F*      fh2DeltaRC20pt3lead;            //C20 pt3
267      TH2F*      fh2DeltaRC30pt3lead;            //C30 pt3
268      TH2F*      fh2DeltaRC60pt3lead;            //C60 pt3
269      TH2F*      fh2DeltaRC10pt4lead;            //C10 pt4
270      TH2F*      fh2DeltaRC20pt4lead;            //C20 pt4
271      TH2F*      fh2DeltaRC30pt4lead;            //C30 pt4
272      TH2F*      fh2DeltaRC60pt4lead;            //C60 pt4 
273      TH2F*      fh2DeltaEtaC10pt1lead;          //The same but eta distance:C10 pt1
274      TH2F*      fh2DeltaEtaC20pt1lead;          //C20 pt1
275      TH2F*      fh2DeltaEtaC30pt1lead;          //C30 pt1
276      TH2F*      fh2DeltaEtaC60pt1lead;          //C60 pt1
277      TH2F*      fh2DeltaEtaC10pt2lead;          //C10 pt2  
278      TH2F*      fh2DeltaEtaC20pt2lead;          //C20 pt2
279      TH2F*      fh2DeltaEtaC30pt2lead;          //C30 pt2
280      TH2F*      fh2DeltaEtaC60pt2lead;          //C60 pt2
281      TH2F*      fh2DeltaEtaC10pt3lead;          //C10 pt3
282      TH2F*      fh2DeltaEtaC20pt3lead;          //C20 pt3
283      TH2F*      fh2DeltaEtaC30pt3lead;          //C30 pt3
284      TH2F*      fh2DeltaEtaC60pt3lead;          //C60 pt3
285      TH2F*      fh2DeltaEtaC10pt4lead;          //C10 pt4
286      TH2F*      fh2DeltaEtaC20pt4lead;          //C20 pt4
287      TH2F*      fh2DeltaEtaC30pt4lead;          //C30 pt4
288      TH2F*      fh2DeltaEtaC60pt4lead;          //C60 pt4
289      TH2F*      fh2DeltaPhiC10pt1lead;          //The same but phi distance:C10 pt1
290      TH2F*      fh2DeltaPhiC20pt1lead;          //C20 pt1
291      TH2F*      fh2DeltaPhiC30pt1lead;          //C30 pt1
292      TH2F*      fh2DeltaPhiC60pt1lead;          //C60 pt1
293      TH2F*      fh2DeltaPhiC10pt2lead;          //C10 pt2
294      TH2F*      fh2DeltaPhiC20pt2lead;          //C20 pt2 
295      TH2F*      fh2DeltaPhiC30pt2lead;          //C30 pt2
296      TH2F*      fh2DeltaPhiC60pt2lead;          //C60 pt2 
297      TH2F*      fh2DeltaPhiC10pt3lead;          //C10 pt3
298      TH2F*      fh2DeltaPhiC20pt3lead;          //C20 pt3
299      TH2F*      fh2DeltaPhiC30pt3lead;          //C30 pt3
300      TH2F*      fh2DeltaPhiC60pt3lead;          //C60 pt3
301      TH2F*      fh2DeltaPhiC10pt4lead;          //C10 pt4
302      TH2F*      fh2DeltaPhiC20pt4lead;          //C20 pt4
303      TH2F*      fh2DeltaPhiC30pt4lead;          //C30 pt4
304      TH2F*      fh2DeltaPhiC60pt4lead;          //C60 pt4
305
306      TH2F*      fh2DeltaRC10pt1sublead;            //Jet track R distance:C10 pt1
307      TH2F*      fh2DeltaRC20pt1sublead;            //C20 pt1 
308      TH2F*      fh2DeltaRC30pt1sublead;            //C30 pt1
309      TH2F*      fh2DeltaRC60pt1sublead;            //C60 pt1
310      TH2F*      fh2DeltaRC10pt2sublead;            //C10 pt2   
311      TH2F*      fh2DeltaRC20pt2sublead;            //C20 pt2
312      TH2F*      fh2DeltaRC30pt2sublead;            //C30 pt2
313      TH2F*      fh2DeltaRC60pt2sublead;            //C60 pt2 
314      TH2F*      fh2DeltaRC10pt3sublead;            //C10 pt3
315      TH2F*      fh2DeltaRC20pt3sublead;            //C20 pt3
316      TH2F*      fh2DeltaRC30pt3sublead;            //C30 pt3
317      TH2F*      fh2DeltaRC60pt3sublead;            //C60 pt3
318      TH2F*      fh2DeltaRC10pt4sublead;            //C10 pt4
319      TH2F*      fh2DeltaRC20pt4sublead;            //C20 pt4
320      TH2F*      fh2DeltaRC30pt4sublead;            //C30 pt4
321      TH2F*      fh2DeltaRC60pt4sublead;            //C60 pt4 
322      TH2F*      fh2DeltaEtaC10pt1sublead;          //The same but eta distance:C10 pt1
323      TH2F*      fh2DeltaEtaC20pt1sublead;          //C20 pt1
324      TH2F*      fh2DeltaEtaC30pt1sublead;          //C30 pt1
325      TH2F*      fh2DeltaEtaC60pt1sublead;          //C60 pt1
326      TH2F*      fh2DeltaEtaC10pt2sublead;          //C10 pt2  
327      TH2F*      fh2DeltaEtaC20pt2sublead;          //C20 pt2
328      TH2F*      fh2DeltaEtaC30pt2sublead;          //C30 pt2
329      TH2F*      fh2DeltaEtaC60pt2sublead;          //C60 pt2
330      TH2F*      fh2DeltaEtaC10pt3sublead;          //C10 pt3
331      TH2F*      fh2DeltaEtaC20pt3sublead;          //C20 pt3
332      TH2F*      fh2DeltaEtaC30pt3sublead;          //C30 pt3
333      TH2F*      fh2DeltaEtaC60pt3sublead;          //C60 pt3
334      TH2F*      fh2DeltaEtaC10pt4sublead;          //C10 pt4
335      TH2F*      fh2DeltaEtaC20pt4sublead;          //C20 pt4
336      TH2F*      fh2DeltaEtaC30pt4sublead;          //C30 pt4
337      TH2F*      fh2DeltaEtaC60pt4sublead;          //C60 pt4
338      TH2F*      fh2DeltaPhiC10pt1sublead;          //The same but phi distance:C10 pt1
339      TH2F*      fh2DeltaPhiC20pt1sublead;          //C20 pt1
340      TH2F*      fh2DeltaPhiC30pt1sublead;          //C30 pt1
341      TH2F*      fh2DeltaPhiC60pt1sublead;          //C60 pt1
342      TH2F*      fh2DeltaPhiC10pt2sublead;          //C10 pt2
343      TH2F*      fh2DeltaPhiC20pt2sublead;          //C20 pt2 
344      TH2F*      fh2DeltaPhiC30pt2sublead;          //C30 pt2
345      TH2F*      fh2DeltaPhiC60pt2sublead;          //C60 pt2 
346      TH2F*      fh2DeltaPhiC10pt3sublead;          //C10 pt3
347      TH2F*      fh2DeltaPhiC20pt3sublead;          //C20 pt3
348      TH2F*      fh2DeltaPhiC30pt3sublead;          //C30 pt3
349      TH2F*      fh2DeltaPhiC60pt3sublead;          //C60 pt3
350      TH2F*      fh2DeltaPhiC10pt4sublead;          //C10 pt4
351      TH2F*      fh2DeltaPhiC20pt4sublead;          //C20 pt4
352      TH2F*      fh2DeltaPhiC30pt4sublead;          //C30 pt4
353      TH2F*      fh2DeltaPhiC60pt4sublead;          //C60 pt4
354
355
356
357
358
359      TH2F*      fh2AngStructpt1C10;         //Average two particle correlation function:C10 pt1
360      TH2F*      fh2AngStructpt2C10;         //C10 pt2
361      TH2F*      fh2AngStructpt3C10;         //C10 pt3
362      TH2F*      fh2AngStructpt4C10;         //C10 pt4
363      TH2F*      fh2AngStructpt1C20;         //C20 pt1
364      TH2F*      fh2AngStructpt2C20;         //C20 pt2
365      TH2F*      fh2AngStructpt3C20;         //C20 pt3 
366      TH2F*      fh2AngStructpt4C20;         //C20 pt4
367      TH2F*      fh2AngStructpt1C30;         //C30 pt1
368      TH2F*      fh2AngStructpt2C30;         //C30 pt2
369      TH2F*      fh2AngStructpt3C30;         //C30 pt3
370      TH2F*      fh2AngStructpt4C30;         //C30 pt4
371      TH2F*      fh2AngStructpt1C60;         //C60 pt1
372      TH2F*      fh2AngStructpt2C60;         //C60 pt2
373      TH2F*      fh2AngStructpt3C60;         //C60 pt3
374      TH2F*      fh2AngStructpt4C60;         //C60 pt4
375
376
377
378
379    AliAnalysisTaskJetCore(const AliAnalysisTaskJetCore&); // not implemented
380    AliAnalysisTaskJetCore& operator=(const AliAnalysisTaskJetCore&); // not implemented
381
382    ClassDef(AliAnalysisTaskJetCore, 4);
383 };
384
385 #endif
386