]> git.uio.no Git - u/mrichter/AliRoot.git/blob - PWGJE/StrangenessInJets/AliAnalysisTaskV0sInJets.h
added jetArea Cut in FF task, moved from TH3F to THnSparse in JetChem task, added...
[u/mrichter/AliRoot.git] / PWGJE / StrangenessInJets / AliAnalysisTaskV0sInJets.h
1 #ifndef AliAnalysisTaskV0sInJets_cxx
2 #define AliAnalysisTaskV0sInJets_cxx
3
4 // task for analysis of V0s (K0S, (anti-)Lambda) in charged jets
5 // Author: Vit Kucera (vit.kucera@cern.ch)
6
7 class TH1D;
8 class TH2D;
9 class THnSparse;
10 class TRandom;
11 class TClonesArray;
12
13 class AliAODv0;
14 class AliAODVertex;
15 class AliAODJet;
16
17 #include "AliAnalysisTaskSE.h"
18 #include "THnSparse.h"
19 //#include "AuxFunctions.h"
20
21 class AliAnalysisTaskV0sInJets : public AliAnalysisTaskSE
22 {
23 public:
24   AliAnalysisTaskV0sInJets(); // Default constructor
25   AliAnalysisTaskV0sInJets(const char* name); // Constructor
26   virtual ~AliAnalysisTaskV0sInJets(); // Destructor
27   virtual void UserCreateOutputObjects();
28   virtual void UserExec(Option_t* option);
29   virtual void Terminate(Option_t*){}
30
31   void SetTypeAOD(Int_t type = 1) {fiAODAnalysis = type;}
32   void SetJetBranchName(char* line){fsJetBranchName = line;}
33   void SetJetBgBranchName(char* line){fsJetBgBranchName = line;}
34   void SetCuts(Double_t z = 10,Double_t r = 1,Double_t cL = 0,Double_t cH = 80){fdCutVertexZ = z; fdCutVertexR2 = r*r;fdCutCentLow = cL;fdCutCentHigh = cH;}
35   void SetPtJetMin(Double_t ptMin = 0){fdCutPtJetMin = ptMin;}
36   void SetPtTrackMin(Double_t ptMin = 0){fdCutPtTrackMin = ptMin;}
37   void SetJetRadius(Double_t r = 0.4){fdRadiusJet = r;}
38   void SetJetSelection(Bool_t select = kTRUE){fbJetSelection = select;}
39   void SetMCAnalysis(Bool_t select = kTRUE){fbMCAnalysis = select;}
40 //  void SetTreeOutput(Bool_t select = kTRUE){fbTreeOutput = select;}
41   void FillQAHistogramV0(AliAODVertex* vtx, const AliAODv0* vZero, Int_t iIndexHisto, Bool_t IsCandK0s, Bool_t IsCandLambda, Bool_t IsInPeakK0s, Bool_t IsInPeakLambda);
42 //  virtual Double_t MassPeakSigma(Double_t pt, Int_t particle);
43 //  virtual Double_t MassPeakSigma(Int_t iCent, Double_t pt, Int_t particle);
44   void FillCandidates(Double_t mK, Double_t mL, Double_t mAL, Bool_t isK, Bool_t isL, Bool_t isAL, Int_t iCut, Int_t iCent);
45   Bool_t IsParticleInCone(const AliVParticle* part1, const AliVParticle* part2, Double_t dRMax) const; // decides whether a particle is inside a jet cone
46   Bool_t OverlapWithJets(const TClonesArray* array, const AliVParticle* cone, Double_t dDistance) const; // decides whether a cone overlaps with other jets
47   AliAODJet* GetRandomCone(const TClonesArray* array, Double_t dEtaConeMax, Double_t dDistance) const; // generate a random cone which does not overlap with selected jets
48   AliAODJet* GetMedianCluster(const TClonesArray* array, Double_t dEtaConeMax) const; // get median kt cluster
49   Double_t AreaCircSegment(Double_t dRadius, Double_t dDistance) const; // area of circular segment
50
51   void SetCutDCAToPrimVtxMin(Double_t val = 0.1){fdCutDCAToPrimVtxMin = val;}
52   void SetCutDCADaughtersMax(Double_t val = 1.){fdCutDCADaughtersMax = val;}
53   void SetCutNSigmadEdxMax(Double_t val = 3.){fdCutNSigmadEdxMax = val;}
54   void SetCutCPAMin(Double_t val = 0.998){fdCutCPAMin = val;}
55   void SetCutNTauMax(Double_t val = 5.){fdCutNTauMax = val;}
56
57   static Bool_t IsSelectedForJets(AliAODEvent* fAOD, Double_t dVtxZCut, Double_t dVtxR2Cut, Double_t dCentCutLo, Double_t dCentCutUp, Bool_t bCutDeltaZ=kFALSE, Double_t dDeltaZMax=100.);
58   static Int_t GetCentralityBinIndex(Double_t centrality);
59   static Int_t GetCentralityBinEdge(Int_t index);
60   static TString GetCentBinLabel(Int_t index);
61   static Double_t MassPeakSigmaOld(Double_t pt, Int_t particle);
62
63   // upper edges of centrality bins
64   static const Int_t fgkiNBinsCent = 1; // number of centrality bins
65   static const Int_t fgkiCentBinRanges[fgkiNBinsCent]; // upper edges of centrality bins
66   // axis: pT of V0
67   static const Double_t fgkdBinsPtV0[2]; // [GeV/c] minimum and maximum or desired binning of the axis (intended for the rebinned axis)
68   static const Int_t fgkiNBinsPtV0; // number of bins (intended for the rebinned axis)
69   static const Int_t fgkiNBinsPtV0Init; // initial number of bins (uniform binning)
70   // axis: pT of jets
71   static const Double_t fgkdBinsPtJet[2]; // [GeV/c] minimum and maximum or desired binning of the axis (intended for the rebinned axis)
72   static const Int_t fgkiNBinsPtJet; // number of bins (intended for the rebinned axis)
73   static const Int_t fgkiNBinsPtJetInit; // initial number of bins (uniform binning)
74   // axis: K0S invariant mass
75   static const Int_t fgkiNBinsMassK0s; // number of bins (uniform binning)
76   static const Double_t fgkdMassK0sMin; // minimum
77   static const Double_t fgkdMassK0sMax; // maximum
78   // axis: Lambda invariant mass
79   static const Int_t fgkiNBinsMassLambda; // number of bins (uniform binning)
80   static const Double_t fgkdMassLambdaMin; // minimum
81   static const Double_t fgkdMassLambdaMax; // maximum
82
83 private:
84   AliAODEvent*  fAODIn; //! Input AOD event
85   AliAODEvent*  fAODOut; //! Output AOD event
86   TList*      fOutputListStd; //! Output list for standard analysis results
87   TList*      fOutputListQA; //! Output list for quality assurance
88   TList*      fOutputListCuts; //! Output list for checking cuts
89   TList*      fOutputListMC; //! Output list for MC related results
90 //  TTree*      ftreeOut; //! output tree
91
92   Int_t       fiAODAnalysis; // switch for input AOD/ESD
93
94   // V0 selection
95   Double_t fdCutDCAToPrimVtxMin; // [cm] min DCA of daughters to the prim vtx
96   Double_t fdCutDCADaughtersMax; // [sigma of TPC tracking] max DCA between daughters
97   Double_t fdCutNSigmadEdxMax; // [sigma dE/dx] max difference between measured and expected signal of dE/dx in the TPC
98   Double_t fdCutCPAMin; // min cosine of the pointing angle
99   Double_t fdCutNTauMax; // [tau] max proper lifetime in multiples of the mean lifetime
100   // jet selection
101   TString     fsJetBranchName; // name of the branch with jets
102   TString     fsJetBgBranchName; // name of the branch with kt clusters used for the rho calculation
103   Double_t     fdCutPtJetMin; // [GeV/c] minimum jet pt
104   Double_t     fdCutPtTrackMin; // [GeV/c] minimum pt of leading jet-track
105   Double_t    fdRadiusJet; // R of jet finder used for finding V0s in the jet cone
106   Bool_t      fbJetSelection; // switch for the analysis of V0s in jets
107
108   Bool_t      fbMCAnalysis; // switch for the analysis of simulated data
109 //  Bool_t      fbTreeOutput; // switch for the output tree
110   TRandom*   fRandom; //! random-number generator
111
112   // event cuts
113   Double_t fdCutVertexZ; // [cm] maximum |z| of primary vertex
114   Double_t fdCutVertexR2; // [cm^2] maximum r^2 of primary vertex
115   Double_t fdCutCentLow; // [%] minimum centrality
116   Double_t fdCutCentHigh; // [%] maximum centrality
117 /*
118   // output branches
119   TClonesArray* fBranchV0Rec; //! output branch for reconstructed V0s
120   TClonesArray* fBranchV0Gen; //! output branch for generated V0s
121   TClonesArray* fBranchJet; //! output branch for selected jets
122   AliEventInfoObject* fEventInfo; //! class to store info about events
123 */
124   Double_t fdCentrality; //!
125
126   // event histograms
127   TH1D*       fh1EventCounterCut; //! number of events for different selection steps
128   TH1D*       fh1EventCounterCutCent[fgkiNBinsCent]; //! number of events for different selection steps and different centralities
129   TH1D*       fh1EventCent; //! number of events for different centralities
130   TH1D*       fh1EventCent2; //! number of events for different centralities
131   TH1D*       fh1EventCent2Jets; //! number of events for different centralities
132   TH1D*       fh1EventCent2NoJets; //! number of events for different centralities
133   TH2D*       fh2EventCentTracks; //! number of tracks vs centrality
134   TH1D*       fh1VtxZ[fgkiNBinsCent]; //! z coordinate of the primary vertex
135   TH2D*       fh2VtxXY[fgkiNBinsCent]; //! xy coordinates of the primary vertex
136   TH1D*       fh1V0CandPerEvent; //! number of V0 cand per event
137
138   // jet histograms
139   TH1D*       fh1PtJet[fgkiNBinsCent]; //! pt spectra of jets for normalisation of in-jet V0 spectra
140   TH1D*       fh1EtaJet[fgkiNBinsCent]; //! jet eta
141   TH2D*       fh2EtaPtJet[fgkiNBinsCent]; //! jet eta-pT
142   TH1D*       fh1PhiJet[fgkiNBinsCent]; //! jet phi
143   TH1D*       fh1NJetPerEvent[fgkiNBinsCent]; //! number of jets per event
144   TH1D*       fh1NRndConeCent; //! number of generated random cones in centrality bins
145   TH2D*       fh2EtaPhiRndCone[fgkiNBinsCent]; //! random cone eta-pT
146   TH1D*       fh1NMedConeCent; //! number of found median-cluster cones in centrality bins
147   TH2D*       fh2EtaPhiMedCone[fgkiNBinsCent]; //! median-cluster cone eta-phi
148   TH1D*       fh1AreaExcluded; //! area of excluded cones for outside-cones V0s
149
150   static const Int_t fgkiNCategV0 = 17; // number of V0 selection steps
151
152   // QA histograms
153   static const Int_t fgkiNQAIndeces = 2; // 0 - before cuts, 1 - after cuts
154   TH1D* fh1QAV0Status[fgkiNQAIndeces]; //! online vs offline reconstructed V0 candidates
155   TH1D* fh1QAV0TPCRefit[fgkiNQAIndeces]; //! TPC refit on vs off
156   TH1D* fh1QAV0TPCRows[fgkiNQAIndeces]; //! crossed TPC pad rows
157   TH1D* fh1QAV0TPCFindable[fgkiNQAIndeces]; //! findable clusters
158   TH1D* fh1QAV0TPCRowsFind[fgkiNQAIndeces]; //! ratio rows/clusters
159   TH1D* fh1QAV0Eta[fgkiNQAIndeces]; //! pseudorapidity
160   TH2D* fh2QAV0EtaRows[fgkiNQAIndeces]; //! pseudorapidity vs TPC rows
161   TH2D* fh2QAV0PtRows[fgkiNQAIndeces]; //! pt vs TPC rows
162   TH2D* fh2QAV0PhiRows[fgkiNQAIndeces]; //! azimuth vs TPC rows
163   TH2D* fh2QAV0NClRows[fgkiNQAIndeces]; //! clusters vs TPC rows
164   TH2D* fh2QAV0EtaNCl[fgkiNQAIndeces]; //! pseudorapidity vs clusters
165
166   // K0s
167   TH1D* fh1V0CounterCentK0s[fgkiNBinsCent]; //! number of K0s candidates after various cuts
168   TH1D* fh1V0InvMassK0sAll[fgkiNCategV0]; //! V0 invariant mass, selection steps
169   TH2D* fh2QAV0EtaPtK0sPeak[fgkiNQAIndeces]; //! daughters pseudorapidity vs V0 pt, in mass peak
170   TH2D* fh2QAV0EtaEtaK0s[fgkiNQAIndeces]; //! daughters pseudorapidity vs pseudorapidity
171   TH2D* fh2QAV0PhiPhiK0s[fgkiNQAIndeces]; //! daughters azimuth vs azimuth
172   TH1D* fh1QAV0RapK0s[fgkiNQAIndeces]; //! V0 rapidity
173   TH2D* fh2QAV0PtPtK0sPeak[fgkiNQAIndeces]; //! daughters pt vs pt, in mass peak
174   TH2D* fh2ArmPodK0s[fgkiNQAIndeces]; //! Armenteros-Podolanski
175   TH1D* fh1V0CandPerEventCentK0s[fgkiNBinsCent]; //! number of K0s candidates per event, in centrality bins
176   TH1D* fh1V0InvMassK0sCent[fgkiNBinsCent]; //! V0 invariant mass, in centrality bins
177   // K0s Inclusive
178   THnSparse* fhnV0InclusiveK0s[fgkiNBinsCent]; //! V0 inv mass vs pt before and after cuts, in centrality bins
179   // K0s Cones
180   THnSparse* fhnV0InJetK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt vs jet pt, in centrality bins
181   THnSparse* fhnV0InPerpK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt vs jet pt, in centrality bins
182   THnSparse* fhnV0InRndK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt vs jet pt, in centrality bins
183   THnSparse* fhnV0InMedK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt vs jet pt, in centrality bins
184   THnSparse* fhnV0OutJetK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt, in centrality bins
185   THnSparse* fhnV0NoJetK0s[fgkiNBinsCent]; //! V0 invariant mass vs V0 pt, in centrality bins
186
187   TH2D* fh2V0PtJetAngleK0s[fgkiNBinsCent]; //! pt jet vs angle V0-jet, in centrality bins
188   TH1D* fh1DCAInK0s[fgkiNBinsCent]; //! DCA between daughters of V0 inside jets, in centrality bins
189   TH1D* fh1DCAOutK0s[fgkiNBinsCent]; //! DCA between daughters of V0 outside jets, in centrality bins
190   TH1D* fh1DeltaZK0s[fgkiNBinsCent]; //! z-distance between V0 vertex and primary vertex, in centrality bins
191   // MC histograms
192   // inclusive
193   TH1D* fh1V0K0sPtMCGen[fgkiNBinsCent]; //! pt spectrum of all generated K0s in event
194   TH2D* fh2V0K0sPtMassMCRec[fgkiNBinsCent]; //! pt-mass spectrum of successfully reconstructed K0s in event
195   TH1D* fh1V0K0sPtMCRecFalse[fgkiNBinsCent]; //! pt spectrum of false reconstructed K0s in event
196   // inclusive eta-pT efficiency
197   TH2D* fh2V0K0sEtaPtMCGen[fgkiNBinsCent]; //! eta-pt spectrum of all generated K0s in event
198   THnSparse* fh3V0K0sEtaPtMassMCRec[fgkiNBinsCent]; //! eta-pt-mass spectrum of successfully reconstructed K0s in event
199   // MC daughter eta inclusive
200 //  THnSparse* fhnV0K0sInclDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
201   THnSparse* fhnV0K0sInclDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
202   // in jets
203   TH2D* fh2V0K0sInJetPtMCGen[fgkiNBinsCent]; //! pt spectrum of generated K0s in jet
204   THnSparse* fh3V0K0sInJetPtMassMCRec[fgkiNBinsCent]; //! mass-pt spectrum of successfully reconstructed K0s in jet
205   // in jets eta-pT efficiency
206   THnSparse* fh3V0K0sInJetEtaPtMCGen[fgkiNBinsCent]; //! eta-pt spectrum of generated K0s in jet
207   THnSparse* fh4V0K0sInJetEtaPtMassMCRec[fgkiNBinsCent]; //! mass-eta-pt spectrum of successfully reconstructed K0s in jet
208   // MC daughter eta in JC
209 //  THnSparse* fhnV0K0sInJetsDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
210   THnSparse* fhnV0K0sInJetsDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
211
212   // resolution
213   TH2D* fh2V0K0sMCResolMPt[fgkiNBinsCent]; //! K0s mass resolution vs pt
214   TH2D* fh2V0K0sMCPtGenPtRec[fgkiNBinsCent]; //! K0s generated pt vs reconstructed pt
215
216   // Lambda
217   TH1D* fh1V0CounterCentLambda[fgkiNBinsCent]; //! number of Lambda candidates after various cuts
218   TH1D* fh1V0InvMassLambdaAll[fgkiNCategV0]; //!
219   TH2D* fh2QAV0EtaPtLambdaPeak[fgkiNQAIndeces]; //!
220   TH2D* fh2QAV0EtaEtaLambda[fgkiNQAIndeces]; //!
221   TH2D* fh2QAV0PhiPhiLambda[fgkiNQAIndeces]; //!
222   TH1D* fh1QAV0RapLambda[fgkiNQAIndeces]; //!
223   TH2D* fh2QAV0PtPtLambdaPeak[fgkiNQAIndeces]; //!
224   TH2D* fh2ArmPodLambda[fgkiNQAIndeces]; //!
225   TH1D* fh1V0CandPerEventCentLambda[fgkiNBinsCent]; //!
226   TH1D* fh1V0InvMassLambdaCent[fgkiNBinsCent]; //!
227   // Lambda Inclusive
228   THnSparse* fhnV0InclusiveLambda[fgkiNBinsCent]; //!
229   // Lambda Cones
230   THnSparse* fhnV0InJetLambda[fgkiNBinsCent]; //!
231   THnSparse* fhnV0InPerpLambda[fgkiNBinsCent]; //!
232   THnSparse* fhnV0InRndLambda[fgkiNBinsCent]; //!
233   THnSparse* fhnV0InMedLambda[fgkiNBinsCent]; //!
234   THnSparse* fhnV0OutJetLambda[fgkiNBinsCent]; //!
235   THnSparse* fhnV0NoJetLambda[fgkiNBinsCent]; //!
236
237   TH2D* fh2V0PtJetAngleLambda[fgkiNBinsCent]; //!
238   TH1D* fh1DCAInLambda[fgkiNBinsCent]; //!
239   TH1D* fh1DCAOutLambda[fgkiNBinsCent]; //!
240   TH1D* fh1DeltaZLambda[fgkiNBinsCent]; //!
241   // MC histograms
242   // inclusive
243   TH1D* fh1V0LambdaPtMCGen[fgkiNBinsCent]; //!
244   TH2D* fh2V0LambdaPtMassMCRec[fgkiNBinsCent]; //!
245   TH1D* fh1V0LambdaPtMCRecFalse[fgkiNBinsCent]; //!
246   // inclusive eta-pT efficiency
247   TH2D* fh2V0LambdaEtaPtMCGen[fgkiNBinsCent]; //!
248   THnSparse* fh3V0LambdaEtaPtMassMCRec[fgkiNBinsCent]; //!
249   // MC daughter eta inclusive
250 //  THnSparse* fhnV0LambdaInclDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
251   THnSparse* fhnV0LambdaInclDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
252   // in jets
253   TH2D* fh2V0LambdaInJetPtMCGen[fgkiNBinsCent]; //!
254   THnSparse* fh3V0LambdaInJetPtMassMCRec[fgkiNBinsCent]; //!
255   // in jets eta-pT efficiency
256   THnSparse* fh3V0LambdaInJetEtaPtMCGen[fgkiNBinsCent]; //!
257   THnSparse* fh4V0LambdaInJetEtaPtMassMCRec[fgkiNBinsCent]; //!
258   // MC daughter eta in JC
259 //  THnSparse* fhnV0LambdaInJetsDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
260   THnSparse* fhnV0LambdaInJetsDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
261
262   // resolution
263   TH2D* fh2V0LambdaMCResolMPt[fgkiNBinsCent]; //!
264   TH2D* fh2V0LambdaMCPtGenPtRec[fgkiNBinsCent]; //!
265   // feed-down
266   THnSparseD* fhnV0LambdaInclMCFD[fgkiNBinsCent]; //!
267   THnSparseD* fhnV0LambdaInJetsMCFD[fgkiNBinsCent]; //!
268   THnSparseD* fhnV0LambdaBulkMCFD[fgkiNBinsCent]; //!
269   TH1D* fh1V0XiPtMCGen[fgkiNBinsCent]; //!
270
271   // ALambda
272   TH1D* fh1V0CounterCentALambda[fgkiNBinsCent]; //! number of ALambda candidates after various cuts
273   TH1D* fh1V0InvMassALambdaAll[fgkiNCategV0]; //!
274   TH2D* fh2QAV0EtaPtALambdaPeak[fgkiNQAIndeces]; //!
275   TH2D* fh2QAV0EtaEtaALambda[fgkiNQAIndeces]; //!
276   TH2D* fh2QAV0PhiPhiALambda[fgkiNQAIndeces]; //!
277   TH1D* fh1QAV0RapALambda[fgkiNQAIndeces]; //!
278   TH2D* fh2QAV0PtPtALambdaPeak[fgkiNQAIndeces]; //!
279   TH2D* fh2ArmPodALambda[fgkiNQAIndeces]; //!
280   TH1D* fh1V0CandPerEventCentALambda[fgkiNBinsCent]; //!
281   TH1D* fh1V0InvMassALambdaCent[fgkiNBinsCent]; //!
282   TH1D* fh1V0ALambdaPt[fgkiNBinsCent]; //!
283   // ALambda Inclusive
284   THnSparse* fhnV0InclusiveALambda[fgkiNBinsCent]; //!
285   // ALambda Cones
286   THnSparse* fhnV0InJetALambda[fgkiNBinsCent]; //!
287   THnSparse* fhnV0InPerpALambda[fgkiNBinsCent]; //!
288   THnSparse* fhnV0InRndALambda[fgkiNBinsCent]; //!
289   THnSparse* fhnV0InMedALambda[fgkiNBinsCent]; //!
290   THnSparse* fhnV0OutJetALambda[fgkiNBinsCent]; //!
291   THnSparse* fhnV0NoJetALambda[fgkiNBinsCent]; //!
292
293   TH2D* fh2V0PtJetAngleALambda[fgkiNBinsCent]; //!
294   TH1D* fh1DCAInALambda[fgkiNBinsCent]; //!
295   TH1D* fh1DCAOutALambda[fgkiNBinsCent]; //!
296   TH1D* fh1DeltaZALambda[fgkiNBinsCent]; //!
297   // MC histograms
298   // inclusive
299   TH1D* fh1V0ALambdaPtMCGen[fgkiNBinsCent]; //!
300   TH1D* fh1V0ALambdaPtMCRec[fgkiNBinsCent]; //!
301   TH2D* fh2V0ALambdaPtMassMCRec[fgkiNBinsCent]; //!
302   TH1D* fh1V0ALambdaPtMCRecFalse[fgkiNBinsCent]; //!
303   // inclusive eta-pT efficiency
304   TH2D* fh2V0ALambdaEtaPtMCGen[fgkiNBinsCent]; //!
305   THnSparse* fh3V0ALambdaEtaPtMassMCRec[fgkiNBinsCent]; //!
306   // MC daughter eta inclusive
307 //  THnSparse* fhnV0ALambdaInclDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
308   THnSparse* fhnV0ALambdaInclDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
309   // in jets
310   TH2D* fh2V0ALambdaInJetPtMCGen[fgkiNBinsCent]; //!
311   TH2D* fh2V0ALambdaInJetPtMCRec[fgkiNBinsCent]; //!
312   THnSparse* fh3V0ALambdaInJetPtMassMCRec[fgkiNBinsCent]; //!
313   // in jets eta-pT efficiency
314   THnSparse* fh3V0ALambdaInJetEtaPtMCGen[fgkiNBinsCent]; //!
315   THnSparse* fh4V0ALambdaInJetEtaPtMassMCRec[fgkiNBinsCent]; //!
316   // MC daughter eta in JC
317 //  THnSparse* fhnV0ALambdaInJetsDaughterEtaPtPtMCGen[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 generated
318   THnSparse* fhnV0ALambdaInJetsDaughterEtaPtPtMCRec[fgkiNBinsCent]; //! eta_daughter-pt_daughter-pt_V0 reconstructed
319
320   // resolution
321   TH2D* fh2V0ALambdaMCResolMPt[fgkiNBinsCent]; //!
322   TH2D* fh2V0ALambdaMCPtGenPtRec[fgkiNBinsCent]; //!
323   // feed-down
324   THnSparseD* fhnV0ALambdaInclMCFD[fgkiNBinsCent]; //!
325   THnSparseD* fhnV0ALambdaInJetsMCFD[fgkiNBinsCent]; //!
326   THnSparseD* fhnV0ALambdaBulkMCFD[fgkiNBinsCent]; //!
327   TH1D* fh1V0AXiPtMCGen[fgkiNBinsCent]; //!
328
329   TH1D* fh1QAV0Pt[fgkiNQAIndeces]; //! pt
330   TH1D* fh1QAV0Charge[fgkiNQAIndeces]; //! charge
331   TH1D* fh1QAV0DCAVtx[fgkiNQAIndeces]; //! DCA of daughters to prim vtx
332   TH1D* fh1QAV0DCAV0[fgkiNQAIndeces]; //! DCA between daughters
333   TH1D* fh1QAV0Cos[fgkiNQAIndeces]; //! cosine of pointing angle (CPA)
334   TH1D* fh1QAV0R[fgkiNQAIndeces]; //! radial distance between prim vtx and decay vertex
335   TH1D* fh1QACTau2D[fgkiNQAIndeces]; //! lifetime calculated in xy
336   TH1D* fh1QACTau3D[fgkiNQAIndeces]; //! lifetime calculated in xyz
337   TH2D* fh2ArmPod[fgkiNQAIndeces]; //! Armenteros-Podolanski
338   TH2D* fh2CCK0s; //! K0s candidates in Lambda peak
339   TH2D* fh2CCLambda; //! Lambda candidates in K0s peak
340   THnSparse* fh3CCMassCorrelBoth; //! mass correlation of candidates
341   THnSparse* fh3CCMassCorrelKNotL; //! mass correlation of candidates
342   THnSparse* fh3CCMassCorrelLNotK; //! mass correlation of candidates
343
344   // Cut tuning
345   // crossed/findable, daughter pt, dca, cpa, r, pseudorapidity, y, decay length, PID sigma
346   TH2D* fh2CutTPCRowsK0s[fgkiNQAIndeces]; //! inv mass vs TPC rows
347   TH2D* fh2CutTPCRowsLambda[fgkiNQAIndeces]; //!
348   TH2D* fh2CutPtPosK0s[fgkiNQAIndeces]; //! inv mass vs pt of positive daughter
349   TH2D* fh2CutPtNegK0s[fgkiNQAIndeces]; //! inv mass vs pt of negative daughter
350   TH2D* fh2CutPtPosLambda[fgkiNQAIndeces]; //!
351   TH2D* fh2CutPtNegLambda[fgkiNQAIndeces]; //!
352   TH2D* fh2CutDCAVtx[fgkiNQAIndeces]; //! inv mass vs DCA of daughters to prim vtx
353   TH2D* fh2CutDCAV0[fgkiNQAIndeces]; //! inv mass vs DCA between daughters
354   TH2D* fh2CutCos[fgkiNQAIndeces]; //! inv mass vs CPA
355   TH2D* fh2CutR[fgkiNQAIndeces]; //! inv mass vs R
356   TH2D* fh2CutEtaK0s[fgkiNQAIndeces]; //! inv mass vs pseudorapidity
357   TH2D* fh2CutEtaLambda[fgkiNQAIndeces]; //!
358   TH2D* fh2CutRapK0s[fgkiNQAIndeces]; //! inv mass vs rapidity
359   TH2D* fh2CutRapLambda[fgkiNQAIndeces]; //!
360   TH2D* fh2CutCTauK0s[fgkiNQAIndeces]; //! inv mass vs lifetime
361   TH2D* fh2CutCTauLambda[fgkiNQAIndeces]; //!
362   TH2D* fh2CutPIDPosK0s[fgkiNQAIndeces]; //! inv mass vs number of dE/dx sigmas for positive daughter
363   TH2D* fh2CutPIDNegK0s[fgkiNQAIndeces]; //! inv mass vs number of dE/dx sigmas for negative daughter
364   TH2D* fh2CutPIDPosLambda[fgkiNQAIndeces]; //!
365   TH2D* fh2CutPIDNegLambda[fgkiNQAIndeces]; //!
366
367   TH2D* fh2Tau3DVs2D[fgkiNQAIndeces]; //! pt vs ratio 3D lifetime / 2D lifetime
368
369   AliAnalysisTaskV0sInJets(const AliAnalysisTaskV0sInJets&); // not implemented
370   AliAnalysisTaskV0sInJets& operator=(const AliAnalysisTaskV0sInJets&); // not implemented
371
372   ClassDef(AliAnalysisTaskV0sInJets, 3) // example of analysis
373 };
374
375 #endif