]> git.uio.no Git - u/mrichter/AliRoot.git/blob - RICH/AliRICH.cxx
Code causing warning messages corrected.
[u/mrichter/AliRoot.git] / RICH / AliRICH.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 ////////////////////////////////////////////////
19 //  Manager and hits classes for set:RICH     //
20 ////////////////////////////////////////////////
21
22 #include <Riostream.h>
23 #include <strings.h>
24
25 #include <TArrayF.h>
26 #include <TBRIK.h>
27 #include <TCanvas.h>
28 #include <TF1.h>
29 #include <TFile.h>
30 #include <TGeometry.h>
31 #include <TH1.h>
32 #include <TH2.h>
33 #include <TNode.h> 
34 #include <TObjArray.h>
35 #include <TObject.h>
36 #include <TParticle.h>
37 #include <TPDGCode.h>
38 #include <TRandom.h> 
39 #include <TStyle.h>
40 #include <TTUBE.h>
41 #include <TTree.h>
42 #include <TVector.h>
43 #include "AliConst.h"
44 #include "AliMagF.h"
45 #include "AliPoints.h"
46 #include "AliRICH.h"
47 #include "AliRICHClusterFinder.h"
48 #include "AliRICHDigit.h"
49 #include "AliRICHDigitizer.h"
50 #include "AliRICHHitMapA1.h"
51 #include "AliRICHMerger.h"
52 #include "AliRICHRawCluster.h"
53 #include "AliRICHRecHit1D.h"
54 #include "AliRICHRecHit3D.h"
55 #include "AliRICHSDigit.h"
56 #include "AliRICHSegmentationV0.h"
57 #include "AliRICHTransientDigit.h"
58 #include "AliRun.h"
59 #include "AliRunDigitizer.h"
60 #include "AliSegmentation.h"
61
62
63 static Int_t sMaxIterPad=0;    // Static variables for the pad-hit iterator routines
64 static Int_t sCurIterPad=0;
65  
66 ClassImp(AliRICHhit)
67 ClassImp(AliRICHdigit)
68 ClassImp(AliRICH)
69     
70 //___________________________________________
71 // RICH manager class   
72 //Begin_Html
73 /*
74   <img src="gif/alirich.gif">
75 */
76 //End_Html
77
78 AliRICH::AliRICH()
79 {//Default ctor should not contain any new operators
80   fIshunt     = 0;
81   fHits       = 0;
82   fSDigits    = 0;
83   fNsdigits   = 0;
84   fNcerenkovs = 0;
85   fDchambers  = 0;
86   fRecHits1D = 0;
87   fRecHits3D = 0;
88   fRawClusters = 0;
89   fChambers = 0;
90   fCerenkovs  = 0;
91   for (Int_t i=0; i<kNCH; i++){
92       fNdch[i]       = 0;
93       fNrawch[i]     = 0;
94       fNrechits1D[i] = 0;
95       fNrechits3D[i] = 0;
96   }
97 //kir  fFileName = 0;
98 //kir  fMerger = 0;
99 }//AliRICH::AliRICH()
100 //______________________________________________________________________________
101 AliRICH::AliRICH(const char *name, const char *title)
102         :AliDetector(name,title)
103 {//Named ctor
104   if(GetDebug())Info("named ctor","Start.");
105   fHits       = new TClonesArray("AliRICHhit",1000  );
106   fCerenkovs  = new TClonesArray("AliRICHCerenkov",1000);
107   fSDigits    = new TClonesArray("AliRICHdigit",100000);
108   gAlice->AddHitList(fHits);
109   gAlice->AddHitList(fCerenkovs);
110   fNsdigits   = 0;
111   fNcerenkovs = 0;
112   fIshunt     = 0;
113   fDchambers  =new TObjArray(kNCH);
114   fRawClusters=new TObjArray(kNCH);
115   fRecHits1D  =new TObjArray(kNCH);
116   fRecHits3D  =new TObjArray(kNCH);
117   for (int i=0; i<kNCH ;i++) {
118     fDchambers->AddAt(new TClonesArray("AliRICHDigit",10000), i); 
119     fRawClusters->AddAt(new TClonesArray("AliRICHRawCluster",10000), i); 
120     fRecHits1D->AddAt(new TClonesArray("AliRICHRecHit1D",1000), i);
121     fRecHits3D->AddAt(new TClonesArray("AliRICHRecHit3D",1000), i);
122     fNdch[i]=0;
123     fNrawch[i]=0;
124   }
125   SetMarkerColor(kRed);
126   
127   /*fChambers = new TObjArray(kNCH);
128   for (i=0; i<kNCH; i++) 
129     (*fChambers)[i] = new AliRICHChamber();*/  
130   
131 //kir  fFileName = 0;
132 //kir  fMerger = 0;
133   if(GetDebug())Info("named ctor","Stop.");
134 }//AliRICH::AliRICH(const char *name, const char *title)
135 //______________________________________________________________________________
136 AliRICH::~AliRICH()
137 {//dtor
138   if(GetDebug()) Info("dtor","Start.");
139
140     fIshunt  = 0;
141     delete fHits;
142     delete fSDigits;
143     delete fCerenkovs;
144     
145     //PH Delete TObjArrays
146     if (fChambers) {
147       fChambers->Delete();
148       delete fChambers;
149     }
150     if (fDchambers) {
151       fDchambers->Delete();
152       delete fDchambers;
153     }
154     if (fRawClusters) {
155       fRawClusters->Delete();
156       delete fRawClusters;
157     }
158     if (fRecHits1D) {
159       fRecHits1D->Delete();
160       delete fRecHits1D;
161     }
162     if (fRecHits3D) {
163       fRecHits3D->Delete();
164       delete fRecHits3D;
165     }                     
166   if(GetDebug()) Info("dtor","Stop.");    
167 }//AliRICH::~AliRICH()
168 //______________________________________________________________________________
169 void AliRICH::Hits2SDigits(Float_t xhit,Float_t yhit,Float_t eloss, Int_t idvol, ResponseType res)
170 {//calls the charge disintegration method of the current chamber and adds all generated sdigits to the list of digits
171
172   if(GetDebug()) Info("Hits2SDigits","Start.");
173    
174    Int_t iChamber,iPadX,iPadY,iAdc,iTrack;
175    Float_t list[4][500];
176    Int_t iNdigits;
177         
178
179   ((AliRICHChamber*)fChambers->At(idvol))->DisIntegration(eloss, xhit, yhit, iNdigits, list, res);
180     Int_t ic=0;
181     
182   for(Int_t i=0; i<iNdigits; i++) {
183     if(Int_t(list[0][i]) > 0) {
184             ic++;
185             iAdc = Int_t(list[0][i]);
186             iPadX = Int_t(list[1][i]);
187             iPadY = Int_t(list[2][i]);
188             iChamber = Int_t(list[3][i]);
189
190             
191             AddSDigit(iChamber,iPadX,iPadY,iAdc,iTrack);
192         }
193     }
194     
195    if(gAlice->TreeS()){
196         gAlice->TreeS()->Fill();
197         gAlice->TreeS()->Write(0,TObject::kOverwrite);
198    }
199   if(GetDebug()) Info("Hits2SDigits","Stop.");    
200 }//Int_t AliRICH::Hits2SDigits(Float_t xhit,Float_t yhit,Float_t eloss, Int_t idvol, ResponseType res)
201
202 void AliRICH::Hits2SDigits(Int_t iEventN)
203 {//Create a list of sdigits corresponding to list of hits. Every hit generates sdigit.
204   if(GetDebug()) Info("Hit2SDigits(iEventN)","Start.");
205   
206   gAlice->GetEvent(iEventN);
207   
208   if(!fLoader->TreeS()) fLoader->MakeTree("S");
209   MakeBranch("S");
210   
211   for(int i=0;i<iEventN+40;i++) AddSDigit(i,13,24,55,2010);
212   
213   fLoader->WriteSDigits("OVERWRITE");
214   
215   if(GetDebug()) Info("Hit2SDigits(iEventN)","Stop.");
216 }
217 //______________________________________________________________________________
218 void AliRICH::Hits2SDigits()
219 {//Calls Hits2SDigits(EventNumber) for all events in the current run
220   if(GetDebug()) Info("Hit2SDigits","Start.");
221   
222   for(Int_t iEventN=0;iEventN<gAlice->GetEventsPerRun();iEventN++)
223     Hits2SDigits(iEventN);
224         
225   if(GetDebug()) Info("Hit2SDigits","Stop.");
226 }
227 //______________________________________________________________________________
228 void AliRICH::SDigits2Digits()
229 {//Generate digits from sdigits.
230   if(GetDebug()) Info("SDigits2Digits","Start.");
231    //AliRICHChamber*       iChamber;
232   
233    //printf("Generating tresholds...\n");
234   
235    //for(Int_t i=0;i<7;i++) {
236    //iChamber = &(Chamber(i));
237    //iChamber->GenerateTresholds();
238    //}
239   
240    //int nparticles = gAlice->GetNtrack();
241    //cout << "Particles (RICH):" <<nparticles<<endl;
242    //if (nparticles <= 0) return;
243    //if (!fMerger) {
244    //fMerger = new AliRICHMerger();
245    //}
246
247
248    //fMerger->Init();
249    //fMerger->Digitise(nev,flag);
250
251    AliRunDigitizer * manager = new AliRunDigitizer(1,1);
252    manager->SetInputStream(0,"galice.root");
253    //AliRICHDigitizer *dRICH  = new AliRICHDigitizer(manager);
254    manager->Exec("deb");
255   if(GetDebug()) Info("SDigits2Digits","Stop.");
256 }//void AliRICH::SDigits2Digits()
257 //______________________________________________________________________________
258 void AliRICH::Digits2Reco()
259 {
260 // Generate clusters
261 // Called from alirun, single event only.     
262   if(GetDebug()) Info("Digits2Reco","Start.");
263
264   int nparticles = gAlice->GetNtrack();
265   cout << "Particles (RICH):" <<nparticles<<endl;
266   if (nparticles > 0) FindClusters(0);
267
268 }//void AliRICH::Digits2Reco()  
269
270
271 void AliRICH::AddDigits(Int_t id, Int_t *tracks, Int_t *charges, Int_t *digits)
272 {// Add a RICH digit to the list   
273
274    TClonesArray &ldigits = *((TClonesArray*)fDchambers->At(id));
275    new(ldigits[fNdch[id]++]) AliRICHDigit(tracks,charges,digits);
276 }
277
278 void AliRICH::AddRawCluster(Int_t id, const AliRICHRawCluster& c)
279 {// Add a RICH digit to the list
280    
281     TClonesArray &lrawcl = *((TClonesArray*)fRawClusters->At(id));
282     new(lrawcl[fNrawch[id]++]) AliRICHRawCluster(c);
283 }
284 //_____________________________________________________________________________
285 void AliRICH::AddRecHit1D(Int_t id, Float_t *rechit, Float_t *photons, Int_t *padsx, Int_t* padsy)
286 {// Add a RICH reconstructed hit to the list
287
288     TClonesArray &lrec1D = *((TClonesArray*)fRecHits1D->At(id));
289     new(lrec1D[fNrechits1D[id]++]) AliRICHRecHit1D(id,rechit,photons,padsx,padsy);
290 }
291 //_____________________________________________________________________________
292 void AliRICH::AddRecHit3D(Int_t id, Float_t *rechit, Float_t omega, Float_t theta, Float_t phi)
293 {// Add a RICH reconstructed hit to the list
294
295     TClonesArray &lrec3D = *((TClonesArray*)fRecHits3D->At(id));
296     new(lrec3D[fNrechits3D[id]++]) AliRICHRecHit3D(id,rechit,omega,theta,phi);
297 }
298 //______________________________________________________________________________
299 void AliRICH::BuildGeometry() 
300 {// Builds a TNode geometry for event display
301   if(GetDebug())Info("BuildGeometry","Start.");
302   
303     TNode *node, *subnode, *top;
304     
305     const int kColorRICH = kRed;
306     //
307     top=gAlice->GetGeometry()->GetNode("alice");
308
309     AliRICH *pRICH = (AliRICH *) gAlice->GetDetector("RICH"); 
310     AliRICHSegmentationV0*  segmentation;
311     AliRICHChamber*       iChamber;
312     AliRICHGeometry*  geometry;
313  
314     iChamber = &(pRICH->Chamber(0));
315     segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel();
316     geometry=iChamber->GetGeometryModel();
317     
318     new TBRIK("S_RICH","S_RICH","void",71.09999,11.5,73.15);
319
320     Float_t padplane_width = segmentation->GetPadPlaneWidth();
321     Float_t padplane_length = segmentation->GetPadPlaneLength();
322
323     //printf("\n\n\n\n\n In BuildGeometry() npx: %d, npy: %d, dpx: %f, dpy:%f\n\n\n\n\n\n",segmentation->Npx(),segmentation->Npy(),segmentation->Dpx(),segmentation->Dpy());
324
325     new TBRIK("PHOTO","PHOTO","void", padplane_width/2,.1,padplane_length/2);
326
327     //printf("\n\n\n\n\n Padplane   w: %f l: %f \n\n\n\n\n", padplane_width/2,padplane_length/2);
328     //printf("\n\n\n\n\n Padplane   w: %f l: %f \n\n\n\n\n", segmentation->GetPadPlaneWidth(), segmentation->GetPadPlaneLength());
329   
330     Float_t offset       = 490 + 1.276 - geometry->GetGapThickness()/2;        //distance from center of mother volume to methane
331     Float_t deltaphi     = 19.5;                                               //phi angle between center of chambers - z direction
332     Float_t deltatheta   = 20;                                                 //theta angle between center of chambers - x direction
333     Float_t cosphi       = TMath::Cos(deltaphi*TMath::Pi()/180);
334     Float_t sinphi       = TMath::Sin(deltaphi*TMath::Pi()/180);
335     Float_t costheta     = TMath::Cos(deltatheta*TMath::Pi()/180);
336     Float_t sintheta     = TMath::Sin(deltatheta*TMath::Pi()/180);
337
338     //printf("\n\n%f %f %f %f %f %f %f\n\n",offset,deltatheta,deltaphi,cosphi,costheta,sinphi,sintheta);
339     
340     new TRotMatrix("rot993","rot993",90., 0.               , 90. - deltaphi, 90.             , deltaphi, -90.           );
341     new TRotMatrix("rot994","rot994",90., -deltatheta      , 90.           , 90.- deltatheta , 0.      , 0.             );
342     new TRotMatrix("rot995","rot995",90., 0.               , 90.           , 90.             , 0.      , 0.             );
343     new TRotMatrix("rot996","rot996",90.,  deltatheta      , 90.           , 90 + deltatheta , 0.      , 0.             );
344     new TRotMatrix("rot997","rot997",90., 360. - deltatheta, 108.2         , 90.- deltatheta ,18.2     , 90 - deltatheta);
345     new TRotMatrix("rot998","rot998",90., 0.               , 90 + deltaphi , 90.             , deltaphi, 90.            );
346     new TRotMatrix("rot999","rot999",90., deltatheta       , 108.2         , 90.+ deltatheta ,18.2     , 90 + deltatheta);
347     
348     Float_t pos1[3]={0.                , offset*cosphi         , offset*sinphi};
349     Float_t pos2[3]={offset*sintheta   , offset*costheta       , 0. };
350     Float_t pos3[3]={0.                , offset                , 0.};
351     Float_t pos4[3]={-offset*sintheta  , offset*costheta       , 0.};
352     Float_t pos5[3]={offset*sinphi     , offset*costheta*cosphi, -offset*sinphi};
353     Float_t pos6[3]={0.                , offset*cosphi         , -offset*sinphi};
354     Float_t pos7[3]={ -offset*sinphi   , offset*costheta*cosphi, -offset*sinphi};
355
356
357     top->cd();
358     //Float_t pos1[3]={0,471.8999,165.2599};
359     //Chamber(0).SetChamberTransform(pos1[0],pos1[1],pos1[2],
360     //new TRotMatrix("rot993","rot993",90,0,70.69,90,19.30999,-90);
361     node = new TNode("RICH1","RICH1","S_RICH",pos1[0],pos1[1],pos1[2],"rot993");
362     node->SetLineColor(kColorRICH);
363     node->cd();
364     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
365     subnode->SetLineColor(kGreen);
366     fNodes->Add(subnode);
367     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,"");
368     subnode->SetLineColor(kGreen);
369     fNodes->Add(subnode);
370     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
371     subnode->SetLineColor(kGreen);
372     fNodes->Add(subnode);
373     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
374     subnode->SetLineColor(kGreen);
375     fNodes->Add(subnode);
376     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,"");
377     subnode->SetLineColor(kGreen);
378     fNodes->Add(subnode);
379     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
380     subnode->SetLineColor(kGreen);
381     fNodes->Add(subnode);
382     fNodes->Add(node);
383
384
385     top->cd(); 
386     //Float_t pos2[3]={171,470,0};
387     //Chamber(1).SetChamberTransform(pos2[0],pos2[1],pos2[2],
388     //new TRotMatrix("rot994","rot994",90,-20,90,70,0,0);
389     node = new TNode("RICH2","RICH2","S_RICH",pos2[0],pos2[1],pos2[2],"rot994");
390     node->SetLineColor(kColorRICH);
391     node->cd();
392     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
393     subnode->SetLineColor(kGreen);
394     fNodes->Add(subnode);
395     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,"");
396     subnode->SetLineColor(kGreen);
397     fNodes->Add(subnode);
398     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
399     subnode->SetLineColor(kGreen);
400     fNodes->Add(subnode);
401     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
402     subnode->SetLineColor(kGreen);
403     fNodes->Add(subnode);
404     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,"");
405     subnode->SetLineColor(kGreen);
406     fNodes->Add(subnode);
407     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
408     subnode->SetLineColor(kGreen);
409     fNodes->Add(subnode);
410     fNodes->Add(node);
411
412
413     top->cd();
414     //Float_t pos3[3]={0,500,0};
415     //Chamber(2).SetChamberTransform(pos3[0],pos3[1],pos3[2],
416     //new TRotMatrix("rot995","rot995",90,0,90,90,0,0);
417     node = new TNode("RICH3","RICH3","S_RICH",pos3[0],pos3[1],pos3[2],"rot995");
418     node->SetLineColor(kColorRICH);
419     node->cd();
420     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
421     subnode->SetLineColor(kGreen);
422     fNodes->Add(subnode);
423     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,"");
424     subnode->SetLineColor(kGreen);
425     fNodes->Add(subnode);
426     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
427     subnode->SetLineColor(kGreen);
428     fNodes->Add(subnode);
429     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
430     subnode->SetLineColor(kGreen);
431     fNodes->Add(subnode);
432     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,"");
433     subnode->SetLineColor(kGreen);
434     fNodes->Add(subnode);
435     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
436     subnode->SetLineColor(kGreen);
437     fNodes->Add(subnode);
438     fNodes->Add(node);
439
440     top->cd();
441     //Float_t pos4[3]={-171,470,0};
442     //Chamber(3).SetChamberTransform(pos4[0],pos4[1],pos4[2], 
443     //new TRotMatrix("rot996","rot996",90,20,90,110,0,0);  
444     node = new TNode("RICH4","RICH4","S_RICH",pos4[0],pos4[1],pos4[2],"rot996");
445     node->SetLineColor(kColorRICH);
446     node->cd();
447     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
448     subnode->SetLineColor(kGreen);
449     fNodes->Add(subnode);
450     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,"");
451     subnode->SetLineColor(kGreen);
452     fNodes->Add(subnode);
453     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
454     subnode->SetLineColor(kGreen);
455     fNodes->Add(subnode);
456     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
457     subnode->SetLineColor(kGreen);
458     fNodes->Add(subnode);
459     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,"");
460     subnode->SetLineColor(kGreen);
461     fNodes->Add(subnode);
462     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
463     subnode->SetLineColor(kGreen);
464     fNodes->Add(subnode);
465     fNodes->Add(node);
466
467
468     top->cd();
469     //Float_t pos5[3]={161.3999,443.3999,-165.3};
470     //Chamber(4).SetChamberTransform(pos5[0],pos5[1],pos5[2],
471     //new TRotMatrix("rot997","rot997",90,340,108.1999,70,18.2,70);
472     node = new TNode("RICH5","RICH5","S_RICH",pos5[0],pos5[1],pos5[2],"rot997");
473     node->SetLineColor(kColorRICH);
474     node->cd();
475     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
476     subnode->SetLineColor(kGreen);
477     fNodes->Add(subnode);
478     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,"");
479     subnode->SetLineColor(kGreen);
480     fNodes->Add(subnode);
481     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
482     subnode->SetLineColor(kGreen);
483     fNodes->Add(subnode);
484     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
485     subnode->SetLineColor(kGreen);
486     fNodes->Add(subnode);
487     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,"");
488     subnode->SetLineColor(kGreen);
489     fNodes->Add(subnode);
490     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
491     subnode->SetLineColor(kGreen);
492     fNodes->Add(subnode);
493     fNodes->Add(node);
494
495
496     top->cd();
497     //Float_t pos6[3]={0., 471.9, -165.3,};
498     //Chamber(5).SetChamberTransform(pos6[0],pos6[1],pos6[2],
499     //new TRotMatrix("rot998","rot998",90,0,109.3099,90,19.30999,90);
500     node = new TNode("RICH6","RICH6","S_RICH",pos6[0],pos6[1],pos6[2],"rot998");
501     node->SetLineColor(kColorRICH);
502     fNodes->Add(node);node->cd();
503     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
504     subnode->SetLineColor(kGreen);
505     fNodes->Add(subnode);
506     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,"");
507     subnode->SetLineColor(kGreen);
508     fNodes->Add(subnode);
509     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
510     subnode->SetLineColor(kGreen);
511     fNodes->Add(subnode);
512     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
513     subnode->SetLineColor(kGreen);
514     fNodes->Add(subnode);
515     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,"");
516     subnode->SetLineColor(kGreen);
517     fNodes->Add(subnode);
518     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
519     subnode->SetLineColor(kGreen);
520     fNodes->Add(subnode);
521
522
523     top->cd();
524     //Float_t pos7[3]={-161.399,443.3999,-165.3};
525     //Chamber(6).SetChamberTransform(pos7[0],pos7[1],pos7[2],
526     //new TRotMatrix("rot999","rot999",90,20,108.1999,110,18.2,110);
527     node = new TNode("RICH7","RICH7","S_RICH",pos7[0],pos7[1],pos7[2],"rot999");
528     node->SetLineColor(kColorRICH);
529     node->cd();
530     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
531     subnode->SetLineColor(kGreen);
532     fNodes->Add(subnode);
533     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,padplane_length/2 + segmentation->DeadZone()/2,"");
534     subnode->SetLineColor(kGreen);
535     fNodes->Add(subnode);
536     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,padplane_length/2 + segmentation->DeadZone()/2,"");
537     subnode->SetLineColor(kGreen);
538     fNodes->Add(subnode);
539     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",padplane_width + segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
540     subnode->SetLineColor(kGreen);
541     fNodes->Add(subnode);
542     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",0,5,-padplane_length/2 - segmentation->DeadZone()/2,"");
543     subnode->SetLineColor(kGreen);
544     fNodes->Add(subnode);
545     subnode = new TNode("PHOTO1","PHOTO1","PHOTO",-padplane_width - segmentation->DeadZone(),5,-padplane_length/2 - segmentation->DeadZone()/2,"");
546     subnode->SetLineColor(kGreen);
547     fNodes->Add(subnode);
548     fNodes->Add(node); 
549   if(GetDebug())Info("BuildGeometry","Stop.");    
550 }//void AliRICH::BuildGeometry()
551 //______________________________________________________________________________
552 void AliRICH::CreateGeometry()
553 {
554     // Create the geometry for RICH version 1
555     //
556     // Modified by:  N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) 
557     //               R.A. Fini  (INFN - BARI, Rosanna.Fini@ba.infn.it) 
558     //               R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) 
559     //
560     //Begin_Html
561     /*
562       <img src="picts/AliRICHv1.gif">
563     */
564     //End_Html
565     //Begin_Html
566     /*
567       <img src="picts/AliRICHv1Tree.gif">
568     */
569     //End_Html
570
571   AliRICH *pRICH = (AliRICH *) gAlice->GetDetector("RICH"); 
572   AliRICHSegmentationV0*  segmentation;
573   AliRICHGeometry*  geometry;
574   AliRICHChamber*       iChamber;
575
576   iChamber = &(pRICH->Chamber(0));
577   segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel();
578   geometry=iChamber->GetGeometryModel();
579
580   Float_t distance;
581   distance = geometry->GetFreonThickness()/2 + geometry->GetQuartzThickness() + geometry->GetGapThickness();
582   geometry->SetRadiatorToPads(distance);
583     
584   //Opaque quartz thickness
585   Float_t oqua_thickness = .5;
586   //CsI dimensions
587
588   //Float_t csi_length = 160*.8 + 2.6;
589   //Float_t csi_width = 144*.84 + 2*2.6;
590
591   Float_t csi_width = segmentation->Npx()*segmentation->Dpx() + segmentation->DeadZone();
592   Float_t csi_length = segmentation->Npy()*segmentation->Dpy() + 2*segmentation->DeadZone();
593   
594   //printf("\n\n\n\n\n In CreateGeometry() npx: %d, npy: %d, dpx: %f, dpy:%f  deadzone: %f \n\n\n\n\n\n",segmentation->Npx(),segmentation->Npy(),segmentation->Dpx(),segmentation->Dpy(),segmentation->DeadZone());
595   
596   Int_t *idtmed = fIdtmed->GetArray()-999;
597     
598     Int_t i;
599     Float_t zs;
600     Int_t idrotm[1099];
601     Float_t par[3];
602     
603     // --- Define the RICH detector 
604     //     External aluminium box 
605     par[0] = 68.8;
606     par[1] = 13;                 //Original Settings
607     par[2] = 70.86;
608     /*par[0] = 73.15;
609     par[1] = 11.5;
610     par[2] = 71.1;*/
611     gMC->Gsvolu("RICH", "BOX ", idtmed[1009], par, 3);
612     
613     //     Air 
614     par[0] = 66.3;
615     par[1] = 13;                 //Original Settings
616     par[2] = 68.35;
617     /*par[0] = 66.55;
618     par[1] = 11.5;
619     par[2] = 64.8;*/
620     gMC->Gsvolu("SRIC", "BOX ", idtmed[1000], par, 3);
621     
622     //    Air 2 (cutting the lower part of the box)
623     
624     par[0] = 1.25;
625     par[1] = 3;                 //Original Settings
626     par[2] = 70.86;
627     gMC->Gsvolu("AIR2", "BOX ", idtmed[1000], par, 3);
628
629     //    Air 3 (cutting the lower part of the box)
630     
631     par[0] = 66.3;
632     par[1] = 3;                 //Original Settings
633     par[2] = 1.2505;
634     gMC->Gsvolu("AIR3", "BOX ", idtmed[1000], par, 3);
635     
636     //     Honeycomb 
637     par[0] = 66.3;
638     par[1] = .188;                 //Original Settings
639     par[2] = 68.35;
640     /*par[0] = 66.55;
641     par[1] = .188;
642     par[2] = 63.1;*/
643     gMC->Gsvolu("HONE", "BOX ", idtmed[1001], par, 3);
644     
645     //     Aluminium sheet 
646     par[0] = 66.3;
647     par[1] = .025;                 //Original Settings
648     par[2] = 68.35;
649     /*par[0] = 66.5;
650     par[1] = .025;
651     par[2] = 63.1;*/
652     gMC->Gsvolu("ALUM", "BOX ", idtmed[1009], par, 3);
653     
654     //     Quartz 
655     par[0] = geometry->GetQuartzWidth()/2;
656     par[1] = geometry->GetQuartzThickness()/2;
657     par[2] = geometry->GetQuartzLength()/2;
658     /*par[0] = 63.1;
659     par[1] = .25;                  //Original Settings
660     par[2] = 65.5;*/
661     /*par[0] = geometry->GetQuartzWidth()/2;
662     par[1] = geometry->GetQuartzThickness()/2;
663     par[2] = geometry->GetQuartzLength()/2;*/
664     //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f %f %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[0],par[1],par[2]);
665     gMC->Gsvolu("QUAR", "BOX ", idtmed[1002], par, 3);
666     
667     //     Spacers (cylinders) 
668     par[0] = 0.;
669     par[1] = .5;
670     par[2] = geometry->GetFreonThickness()/2;
671     gMC->Gsvolu("SPAC", "TUBE", idtmed[1002], par, 3);
672     
673     //     Feet (freon slabs supports)
674
675     par[0] = .7;
676     par[1] = .3;
677     par[2] = 1.9;
678     gMC->Gsvolu("FOOT", "BOX", idtmed[1009], par, 3);
679
680     //     Opaque quartz 
681     par[0] = geometry->GetQuartzWidth()/2;
682     par[1] = .2;
683     par[2] = geometry->GetQuartzLength()/2;
684     /*par[0] = 61.95;
685     par[1] = .2;                   //Original Settings
686     par[2] = 66.5;*/
687     /*par[0] = 66.5;
688     par[1] = .2;
689     par[2] = 61.95;*/
690     gMC->Gsvolu("OQUA", "BOX ", idtmed[1007], par, 3);
691   
692     //     Frame of opaque quartz
693     par[0] = geometry->GetOuterFreonWidth()/2;
694     //+ oqua_thickness;
695     par[1] = geometry->GetFreonThickness()/2;
696     par[2] = geometry->GetOuterFreonLength()/2; 
697     //+ oqua_thickness; 
698     /*par[0] = 20.65;
699     par[1] = .5;                   //Original Settings
700     par[2] = 66.5;*/
701     /*par[0] = 66.5;
702     par[1] = .5;
703     par[2] = 20.65;*/
704     gMC->Gsvolu("OQF1", "BOX ", idtmed[1007], par, 3);
705
706     par[0] = geometry->GetInnerFreonWidth()/2;
707     par[1] = geometry->GetFreonThickness()/2;
708     par[2] = geometry->GetInnerFreonLength()/2; 
709     gMC->Gsvolu("OQF2", "BOX ", idtmed[1007], par, 3);
710     
711     //     Little bar of opaque quartz 
712     //par[0] = .275;
713     //par[1] = geometry->GetQuartzThickness()/2;
714     //par[2] = geometry->GetInnerFreonLength()/2 - 2.4; 
715     //par[2] = geometry->GetInnerFreonLength()/2;
716     //+ oqua_thickness;
717     /*par[0] = .275;
718     par[1] = .25;                   //Original Settings
719     par[2] = 63.1;*/
720     /*par[0] = 63.1;
721     par[1] = .25;
722     par[2] = .275;*/
723     //gMC->Gsvolu("BARR", "BOX ", idtmed[1007], par, 3);
724     
725     //     Freon 
726     par[0] = geometry->GetOuterFreonWidth()/2 - oqua_thickness;
727     par[1] = geometry->GetFreonThickness()/2;
728     par[2] = geometry->GetOuterFreonLength()/2 - 2*oqua_thickness; 
729     /*par[0] = 20.15;
730     par[1] = .5;                   //Original Settings
731     par[2] = 65.5;*/
732     /*par[0] = 65.5;
733     par[1] = .5;
734     par[2] = 20.15;*/
735     gMC->Gsvolu("FRE1", "BOX ", idtmed[1003], par, 3);
736
737     par[0] = geometry->GetInnerFreonWidth()/2 - oqua_thickness;
738     par[1] = geometry->GetFreonThickness()/2;
739     par[2] = geometry->GetInnerFreonLength()/2 - 2*oqua_thickness; 
740     gMC->Gsvolu("FRE2", "BOX ", idtmed[1003], par, 3);
741     
742     //     Methane 
743     //par[0] = 64.8;
744     par[0] = csi_width/2;
745     par[1] = geometry->GetGapThickness()/2;
746     //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]);
747     //par[2] = 64.8;
748     par[2] = csi_length/2;
749     gMC->Gsvolu("META", "BOX ", idtmed[1004], par, 3);
750     
751     //     Methane gap 
752     //par[0] = 64.8;
753     par[0] = csi_width/2;
754     par[1] = geometry->GetProximityGapThickness()/2;
755     //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]);
756     //par[2] = 64.8;
757     par[2] = csi_length/2;
758     gMC->Gsvolu("GAP ", "BOX ", idtmed[1008], par, 3);
759     
760     //     CsI photocathode 
761     //par[0] = 64.8;
762     par[0] = csi_width/2;
763     par[1] = .25;
764     //par[2] = 64.8;
765     par[2] = csi_length/2;
766     gMC->Gsvolu("CSI ", "BOX ", idtmed[1005], par, 3);
767     
768     //     Anode grid 
769     par[0] = 0.;
770     par[1] = .001;
771     par[2] = 20.;
772     gMC->Gsvolu("GRID", "TUBE", idtmed[1006], par, 3);
773
774     // Wire supports
775     // Bar of metal
776     
777     par[0] = csi_width/2;
778     par[1] = 1.05;
779     par[2] = 1.05;
780     gMC->Gsvolu("WSMe", "BOX ", idtmed[1009], par, 3);
781
782     // Ceramic pick up (base)
783     
784     par[0] =  csi_width/2;
785     par[1] = .25;
786     par[2] = 1.05;
787     gMC->Gsvolu("WSG1", "BOX ", idtmed[1010], par, 3);
788
789     // Ceramic pick up (head)
790
791     par[0] = csi_width/2;
792     par[1] = .1;
793     par[2] = .1;
794     gMC->Gsvolu("WSG2", "BOX ", idtmed[1010], par, 3);
795
796     // Aluminium supports for methane and CsI
797     // Short bar
798
799     par[0] = csi_width/2;
800     par[1] = geometry->GetGapThickness()/2 + .25;
801     par[2] = (68.35 - csi_length/2)/2;
802     gMC->Gsvolu("SMSH", "BOX", idtmed[1009], par, 3);
803     
804     // Long bar
805
806     par[0] = (66.3 - csi_width/2)/2;
807     par[1] = geometry->GetGapThickness()/2 + .25;
808     par[2] = csi_length/2 + 68.35 - csi_length/2;
809     gMC->Gsvolu("SMLG", "BOX", idtmed[1009], par, 3);
810     
811     // Aluminium supports for freon
812     // Short bar
813
814     par[0] = geometry->GetQuartzWidth()/2;
815     par[1] = .3;
816     par[2] = (68.35 - geometry->GetQuartzLength()/2)/2;
817     gMC->Gsvolu("SFSH", "BOX", idtmed[1009], par, 3);
818     
819     // Long bar
820
821     par[0] = (66.3 - geometry->GetQuartzWidth()/2)/2;
822     par[1] = .3;
823     par[2] = geometry->GetQuartzLength()/2 + 68.35 - geometry->GetQuartzLength()/2;
824     gMC->Gsvolu("SFLG", "BOX", idtmed[1009], par, 3);
825     
826     // PCB backplane
827     
828     par[0] = csi_width/2;
829     par[1] = .25;
830     par[2] = csi_length/4 -.5025;
831     gMC->Gsvolu("PCB ", "BOX", idtmed[1011], par, 3);
832
833     
834     // Backplane supports
835
836     // Aluminium slab
837     
838     par[0] = 33.15;
839     par[1] = 2;
840     par[2] = 21.65;
841     gMC->Gsvolu("BACK", "BOX", idtmed[1009], par, 3);
842     
843     // Big hole
844     
845     par[0] = 9.05;
846     par[1] = 2;
847     par[2] = 4.4625;
848     gMC->Gsvolu("BKHL", "BOX", idtmed[1000], par, 3);
849
850     // Small hole
851     
852     par[0] = 5.7;
853     par[1] = 2;
854     par[2] = 4.4625;
855     gMC->Gsvolu("BKHS", "BOX", idtmed[1000], par, 3);
856
857     // Place holes inside backplane support
858
859     gMC->Gspos("BKHS", 1, "BACK", .8 + 5.7,0., .6 + 4.4625, 0, "ONLY");
860     gMC->Gspos("BKHS", 2, "BACK", -.8 - 5.7,0., .6 + 4.4625, 0, "ONLY");
861     gMC->Gspos("BKHS", 3, "BACK", .8 + 5.7,0., -.6 - 4.4625, 0, "ONLY");
862     gMC->Gspos("BKHS", 4, "BACK", -.8 - 5.7,0., -.6 - 4.4625, 0, "ONLY");
863     gMC->Gspos("BKHS", 5, "BACK", .8 + 5.7,0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY");
864     gMC->Gspos("BKHS", 6, "BACK", -.8 - 5.7,0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY");
865     gMC->Gspos("BKHS", 7, "BACK", .8 + 5.7,0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY");
866     gMC->Gspos("BKHS", 8, "BACK", -.8 - 5.7,0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY");
867     gMC->Gspos("BKHL", 1, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., .6 + 4.4625, 0, "ONLY");
868     gMC->Gspos("BKHL", 2, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., .6 + 4.4625, 0, "ONLY");
869     gMC->Gspos("BKHL", 3, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., -.6 - 4.4625, 0, "ONLY");
870     gMC->Gspos("BKHL", 4, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., -.6 - 4.4625, 0, "ONLY");
871     gMC->Gspos("BKHL", 5, "BACK", .8 + 11.4+ 1.6 + 9.05, 0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY");
872     gMC->Gspos("BKHL", 6, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., .6 + 8.925 + 1.2 + 4.4625, 0, "ONLY");
873     gMC->Gspos("BKHL", 7, "BACK", .8 + 11.4 + 1.6 + 9.05, 0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY");
874     gMC->Gspos("BKHL", 8, "BACK", -.8 - 11.4 - 1.6 - 9.05, 0., -.6 - 8.925 - 1.2 - 4.4625, 0, "ONLY");
875
876     
877   
878     // --- Places the detectors defined with GSVOLU 
879     //     Place material inside RICH 
880     gMC->Gspos("SRIC", 1, "RICH", 0.,0., 0., 0, "ONLY");
881     gMC->Gspos("AIR2", 1, "RICH", 66.3 + 1.2505, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, 0., 0, "ONLY");
882     gMC->Gspos("AIR2", 2, "RICH", -66.3 - 1.2505, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, 0., 0, "ONLY");
883     gMC->Gspos("AIR3", 1, "RICH", 0.,  1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35, -68.35 - 1.25, 0, "ONLY");
884     gMC->Gspos("AIR3", 2, "RICH", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .376 -.5 - 3.35,  68.35 + 1.25, 0, "ONLY");
885     
886       
887     gMC->Gspos("ALUM", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .376 -.025, 0., 0, "ONLY");
888     gMC->Gspos("HONE", 1, "SRIC", 0., 1.276- geometry->GetGapThickness()/2  - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .05 - .188, 0., 0, "ONLY");
889     gMC->Gspos("ALUM", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .6 - .025, 0., 0, "ONLY");
890     gMC->Gspos("FOOT", 1, "SRIC", 64.95, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, 36.9, 0, "ONLY");
891     gMC->Gspos("FOOT", 2, "SRIC", 21.65, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3 , 36.9, 0, "ONLY");
892     gMC->Gspos("FOOT", 3, "SRIC", -21.65, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, 36.9, 0, "ONLY");
893     gMC->Gspos("FOOT", 4, "SRIC", -64.95, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, 36.9, 0, "ONLY");
894     gMC->Gspos("FOOT", 5, "SRIC", 64.95, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, -36.9, 0, "ONLY");
895     gMC->Gspos("FOOT", 6, "SRIC", 21.65, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, -36.9, 0, "ONLY");
896     gMC->Gspos("FOOT", 7, "SRIC", -21.65, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, -36.9, 0, "ONLY");
897     gMC->Gspos("FOOT", 8, "SRIC", -64.95, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .3, -36.9, 0, "ONLY");
898     gMC->Gspos("OQUA", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .2, 0., 0, "ONLY");
899     
900     // Supports placing
901
902     // Methane supports
903     gMC->Gspos("SMLG", 1, "SRIC", csi_width/2 + (66.3 - csi_width/2)/2, 1.276 + .25, 0., 0, "ONLY");
904     gMC->Gspos("SMLG", 2, "SRIC", - csi_width/2 - (66.3 - csi_width/2)/2, 1.276 + .25, 0., 0, "ONLY");
905     gMC->Gspos("SMSH", 1, "SRIC", 0., 1.276 + .25, csi_length/2 + (68.35 - csi_length/2)/2, 0, "ONLY");
906     gMC->Gspos("SMSH", 2, "SRIC", 0., 1.276 + .25, - csi_length/2 - (68.35 - csi_length/2)/2, 0, "ONLY");
907
908     //Freon supports
909
910     Float_t supp_y = 1.276 - geometry->GetGapThickness()/2- geometry->GetQuartzThickness() -geometry->GetFreonThickness() - .2 + .3; //y position of freon supports
911
912     gMC->Gspos("SFLG", 1, "SRIC", geometry->GetQuartzWidth()/2 + (66.3 - geometry->GetQuartzWidth()/2)/2, supp_y, 0., 0, "ONLY");
913     gMC->Gspos("SFLG", 2, "SRIC", - geometry->GetQuartzWidth()/2 - (66.3 - geometry->GetQuartzWidth()/2)/2, supp_y, 0., 0, "ONLY");
914     gMC->Gspos("SFSH", 1, "SRIC", 0., supp_y, geometry->GetQuartzLength()/2 + (68.35 - geometry->GetQuartzLength()/2)/2, 0, "ONLY");
915     gMC->Gspos("SFSH", 2, "SRIC", 0., supp_y, - geometry->GetQuartzLength()/2 - (68.35 - geometry->GetQuartzLength()/2)/2, 0, "ONLY");
916     
917     AliMatrix(idrotm[1019], 0., 0., 90., 0., 90., 90.);
918     
919      //Placing of the spacers inside the freon slabs
920
921     Int_t nspacers = 30;
922     //printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Spacers:%d\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",nspacers); 
923
924     //printf("Nspacers: %d", nspacers);
925     
926     for (i = 0; i < nspacers/3; i++) {
927         zs = -11.6/2 + (TMath::Abs(nspacers/6) - i) * 12.2;
928         gMC->Gspos("SPAC", i, "FRE1", 10.5, 0., zs, idrotm[1019], "ONLY");  //Original settings 
929     }
930     
931     for (i = nspacers/3; i < (nspacers*2)/3; i++) {
932         zs = -11.6/2 + (nspacers/3 + TMath::Abs(nspacers/6) - i) * 12.2;
933         gMC->Gspos("SPAC", i, "FRE1", 0, 0., zs, idrotm[1019], "ONLY");  //Original settings 
934     }
935     
936     for (i = (nspacers*2)/3; i < nspacers; ++i) {
937         zs = -11.6/2 + ((nspacers*2)/3 + TMath::Abs(nspacers/6) - i) * 12.2;
938         gMC->Gspos("SPAC", i, "FRE1", -10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings  
939     }
940
941     for (i = 0; i < nspacers/3; i++) {
942         zs = -11.6/2 + (TMath::Abs(nspacers/6) - i) * 12.2;
943         gMC->Gspos("SPAC", i, "FRE2", 10.5, 0., zs, idrotm[1019], "ONLY");  //Original settings 
944     }
945     
946     for (i = nspacers/3; i < (nspacers*2)/3; i++) {
947         zs = -11.6/2 + (nspacers/3 + TMath::Abs(nspacers/6) - i) * 12.2;
948         gMC->Gspos("SPAC", i, "FRE2", 0, 0., zs, idrotm[1019], "ONLY");  //Original settings 
949     }
950     
951     for (i = (nspacers*2)/3; i < nspacers; ++i) {
952         zs = -11.6/2 + ((nspacers*2)/3 + TMath::Abs(nspacers/6) - i) * 12.2;
953         gMC->Gspos("SPAC", i, "FRE2", -10.5, 0., zs, idrotm[1019], "ONLY"); //Original settings  
954     }
955
956     
957     gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY");
958     gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY");
959     gMC->Gspos("OQF1", 1, "SRIC", geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2 + 2, 1.276 - geometry->GetGapThickness()/2- geometry->GetQuartzThickness() -geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings (31.3)
960 //    printf("Opaque quartz in SRIC %f\n", 1.276 - geometry->GetGapThickness()/2- geometry->GetQuartzThickness() -geometry->GetFreonThickness()/2);
961     gMC->Gspos("OQF2", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY");          //Original settings 
962     gMC->Gspos("OQF1", 3, "SRIC", - (geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2) - 2, 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY");       //Original settings (-31.3)
963     //gMC->Gspos("BARR", 1, "QUAR", - geometry->GetInnerFreonWidth()/2 - oqua_thickness, 0., 0., 0, "ONLY");           //Original settings (-21.65) 
964     //gMC->Gspos("BARR", 2, "QUAR",  geometry->GetInnerFreonWidth()/2 + oqua_thickness, 0., 0., 0, "ONLY");            //Original settings (21.65)
965     gMC->Gspos("QUAR", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness()/2, 0., 0, "ONLY");
966     gMC->Gspos("GAP ", 1, "META", 0., geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 - 0.0001, 0., 0, "ONLY");
967     gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY");
968     gMC->Gspos("CSI ", 1, "SRIC", 0., 1.276 + geometry->GetGapThickness()/2 + .25, 0., 0, "ONLY");
969     printf("CSI pos: %f\n",1.276 + geometry->GetGapThickness()/2 + .25);
970    
971     // Wire support placing
972
973     gMC->Gspos("WSG2", 1, "GAP ", 0., geometry->GetProximityGapThickness()/2 - .1, 0., 0, "ONLY");
974     gMC->Gspos("WSG1", 1, "CSI ", 0., 0., 0., 0, "ONLY");
975     gMC->Gspos("WSMe", 1, "SRIC ", 0., 1.276 + geometry->GetGapThickness()/2 + .5 + 1.05, 0., 0, "ONLY");
976
977     // Backplane placing
978     
979     gMC->Gspos("BACK", 1, "SRIC ", -33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2, 43.3, 0, "ONLY");
980     gMC->Gspos("BACK", 2, "SRIC ", 33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2 , 43.3, 0, "ONLY");
981     gMC->Gspos("BACK", 3, "SRIC ", -33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2, 0., 0, "ONLY");
982     gMC->Gspos("BACK", 4, "SRIC ", 33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2, 0., 0, "ONLY");
983     gMC->Gspos("BACK", 5, "SRIC ", 33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2, -43.3, 0, "ONLY");
984     gMC->Gspos("BACK", 6, "SRIC ", -33.15, 1.276 + geometry->GetGapThickness()/2 + .5 + 2.1 + 2, -43.3, 0, "ONLY");
985
986     // PCB placing
987     
988     gMC->Gspos("PCB ", 1, "SRIC ", 0.,  1.276 + geometry->GetGapThickness()/2 + .5 + 1.05, csi_width/4 + .5025 + 2.5, 0, "ONLY");
989     gMC->Gspos("PCB ", 2, "SRIC ", 0.,  1.276 + geometry->GetGapThickness()/2 + .5 + 1.05, -csi_width/4 - .5025 - 2.5, 0, "ONLY");
990    
991     
992
993     //printf("Position of the gap: %f to %f\n", 1.276 + geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 - .2, 1.276 + geometry->GetGapThickness()/2 - geometry->GetProximityGapThickness()/2 + .2);
994     
995     //     Place RICH inside ALICE apparatus 
996
997     /* old values
998
999       AliMatrix(idrotm[1000], 90., 0., 70.69, 90., 19.31, -90.);
1000       AliMatrix(idrotm[1001], 90., -20., 90., 70., 0., 0.);
1001       AliMatrix(idrotm[1002], 90., 0., 90., 90., 0., 0.);
1002       AliMatrix(idrotm[1003], 90., 20., 90., 110., 0., 0.);
1003       AliMatrix(idrotm[1004], 90., 340., 108.2, 70., 18.2, 70.);
1004       AliMatrix(idrotm[1005], 90., 0., 109.31, 90., 19.31, 90.);
1005       AliMatrix(idrotm[1006], 90., 20., 108.2, 110., 18.2, 110.);
1006     
1007       gMC->Gspos("RICH", 1, "ALIC", 0., 471.9, 165.26,     idrotm[1000], "ONLY");
1008       gMC->Gspos("RICH", 2, "ALIC", 171., 470., 0.,        idrotm[1001], "ONLY");
1009       gMC->Gspos("RICH", 3, "ALIC", 0., 500., 0.,          idrotm[1002], "ONLY");
1010       gMC->Gspos("RICH", 4, "ALIC", -171., 470., 0.,       idrotm[1003], "ONLY");
1011       gMC->Gspos("RICH", 5, "ALIC", 161.4, 443.4, -165.3,  idrotm[1004], "ONLY");
1012       gMC->Gspos("RICH", 6, "ALIC", 0., 471.9, -165.3,     idrotm[1005], "ONLY");
1013       gMC->Gspos("RICH", 7, "ALIC", -161.4, 443.4, -165.3, idrotm[1006], "ONLY");*/
1014
1015      // The placing of the chambers is measured from the vertex to the base of the methane vessel (490 cm)
1016
1017     Float_t offset       = 490 + 1.276 - geometry->GetGapThickness()/2;        //distance from center of mother volume to methane
1018     Float_t deltaphi     = 19.5;                                               //phi angle between center of chambers - z direction
1019     Float_t deltatheta   = 20;                                                 //theta angle between center of chambers - x direction
1020     Float_t cosphi       = TMath::Cos(deltaphi*TMath::Pi()/180);
1021     Float_t sinphi       = TMath::Sin(deltaphi*TMath::Pi()/180);
1022     Float_t costheta     = TMath::Cos(deltatheta*TMath::Pi()/180);
1023     Float_t sintheta     = TMath::Sin(deltatheta*TMath::Pi()/180);
1024
1025     //printf("\n\n%f %f %f %f %f %f %f\n\n",offset,deltatheta,deltaphi,cosphi,costheta,sinphi,sintheta);
1026     
1027     AliMatrix(idrotm[1000], 90., 0.               , 90. - deltaphi, 90.             , deltaphi, -90.           );
1028     AliMatrix(idrotm[1001], 90., -deltatheta      , 90.           , 90.- deltatheta , 0.      , 0.             );
1029     AliMatrix(idrotm[1002], 90., 0.               , 90.           , 90.             , 0.      , 0.             );
1030     AliMatrix(idrotm[1003], 90.,  deltatheta      , 90.           , 90 + deltatheta , 0.      , 0.             );
1031     AliMatrix(idrotm[1004], 90., 360. - deltatheta, 108.2         , 90.- deltatheta ,18.2     , 90 - deltatheta);
1032     AliMatrix(idrotm[1005], 90., 0.               , 90 + deltaphi , 90.             , deltaphi, 90.            );
1033     AliMatrix(idrotm[1006], 90., deltatheta       , 108.2         , 90.+ deltatheta ,18.2     , 90 + deltatheta);
1034     
1035     gMC->Gspos("RICH", 1, "ALIC", 0.                , offset*cosphi         , offset*sinphi ,idrotm[1000], "ONLY");
1036     gMC->Gspos("RICH", 2, "ALIC", (offset)*sintheta , offset*costheta       , 0.            ,idrotm[1001], "ONLY");
1037     gMC->Gspos("RICH", 3, "ALIC", 0.                , offset                , 0.            ,idrotm[1002], "ONLY");
1038     gMC->Gspos("RICH", 4, "ALIC", -(offset)*sintheta, offset*costheta       , 0.            ,idrotm[1003], "ONLY");
1039     gMC->Gspos("RICH", 5, "ALIC", (offset)*sinphi   , offset*costheta*cosphi, -offset*sinphi,idrotm[1004], "ONLY");
1040     gMC->Gspos("RICH", 6, "ALIC", 0.                , offset*cosphi         , -offset*sinphi,idrotm[1005], "ONLY");
1041     gMC->Gspos("RICH", 7, "ALIC", -(offset)*sinphi  , offset*costheta*cosphi, -offset*sinphi,idrotm[1006], "ONLY");
1042     
1043 }
1044 //______________________________________________________________________________
1045 void AliRICH::CreateMaterials()
1046 {
1047     //
1048     // *** DEFINITION OF AVAILABLE RICH MATERIALS *** 
1049     // ORIGIN    : NICK VAN EIJNDHOVEN 
1050     // Modified by:  N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) 
1051     //               R.A. Fini  (INFN - BARI, Rosanna.Fini@ba.infn.it) 
1052     //               R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) 
1053     //
1054     Int_t   isxfld = gAlice->Field()->Integ();
1055     Float_t sxmgmx = gAlice->Field()->Max();
1056     Int_t i;
1057
1058     /************************************Antonnelo's Values (14-vectors)*****************************************/
1059     /*
1060     Float_t ppckov[14] = { 5.63e-9,5.77e-9,5.9e-9,6.05e-9,6.2e-9,6.36e-9,6.52e-9,
1061                            6.7e-9,6.88e-9,7.08e-9,7.3e-9,7.51e-9,7.74e-9,8e-9 };
1062     Float_t rIndexQuarz[14] = { 1.528309,1.533333,
1063                                  1.538243,1.544223,1.550568,1.55777,
1064                                  1.565463,1.574765,1.584831,1.597027,
1065                                1.611858,1.6277,1.6472,1.6724 };
1066     Float_t rIndexOpaqueQuarz[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
1067     Float_t rIndexMethane[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
1068     Float_t rIndexGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
1069     Float_t abscoFreon[14] = { 179.0987,179.0987,
1070                                 179.0987,179.0987,179.0987,142.92,56.65,13.95,10.43,7.07,2.03,.5773,.33496,0. };
1071     //Float_t abscoFreon[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,
1072         //                       1e-5,1e-5,1e-5,1e-5,1e-5 };
1073     Float_t abscoQuarz[14] = { 64.035,39.98,35.665,31.262,27.527,22.815,21.04,17.52,
1074                                 14.177,9.282,4.0925,1.149,.3627,.10857 };
1075     Float_t abscoOpaqueQuarz[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,
1076                                  1e-5,1e-5,1e-5,1e-5,1e-5 };
1077     Float_t abscoCsI[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,
1078                               1e-4,1e-4,1e-4,1e-4 };
1079     Float_t abscoMethane[14] = { 1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,
1080                                   1e6,1e6,1e6 };
1081     Float_t abscoGrid[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,
1082                               1e-4,1e-4,1e-4,1e-4 };
1083     Float_t efficAll[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
1084     Float_t efficCsI[14] = { 6e-4,.005,.0075,.01125,.045,.117,.135,.16575,
1085                               .17425,.1785,.1836,.1904,.1938,.221 };
1086     Float_t efficGrid[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
1087     */
1088    
1089     
1090     /**********************************End of Antonnelo's Values**********************************/
1091     
1092     /**********************************Values from rich_media.f (31-vectors)**********************************/
1093     
1094
1095     //Photons energy intervals
1096     Float_t ppckov[26];
1097     for (i=0;i<26;i++) 
1098     {
1099         ppckov[i] = (Float_t(i)*0.1+5.5)*1e-9;
1100         //printf ("Energy intervals: %e\n",ppckov[i]);
1101     }
1102     
1103     
1104     //Refraction index for quarz
1105     Float_t rIndexQuarz[26];
1106     Float_t  e1= 10.666;
1107     Float_t  e2= 18.125;
1108     Float_t  f1= 46.411;
1109     Float_t  f2= 228.71;
1110     for (i=0;i<26;i++)
1111     {
1112         Float_t ene=ppckov[i]*1e9;
1113         Float_t a=f1/(e1*e1 - ene*ene);
1114         Float_t b=f2/(e2*e2 - ene*ene);
1115         rIndexQuarz[i] = TMath::Sqrt(1. + a + b );
1116         //printf ("rIndexQuarz: %e\n",rIndexQuarz[i]);
1117     } 
1118     
1119     //Refraction index for opaque quarz, methane and grid
1120     Float_t rIndexOpaqueQuarz[26];
1121     Float_t rIndexMethane[26];
1122     Float_t rIndexGrid[26];
1123     for (i=0;i<26;i++)
1124     {
1125         rIndexOpaqueQuarz[i]=1;
1126         rIndexMethane[i]=1.000444;
1127         rIndexGrid[i]=1;
1128         //printf ("rIndexOpaqueQuarz , etc: %e, %e, %e\n",rIndexOpaqueQuarz[i], rIndexMethane[i], rIndexGrid[i]=1);
1129     } 
1130     
1131     //Absorption index for freon
1132     Float_t abscoFreon[26] = {179.0987, 179.0987, 179.0987, 179.0987, 179.0987,  179.0987, 179.0987, 179.0987, 
1133                                179.0987, 142.9206, 56.64957, 25.58622, 13.95293, 12.03905, 10.42953, 8.804196, 
1134                                7.069031, 4.461292, 2.028366, 1.293013, .577267,   .40746,  .334964, 0., 0., 0.};
1135     
1136     //Absorption index for quarz
1137     /*Float_t Qzt [21] = {.0,.0,.005,.04,.35,.647,.769,.808,.829,.844,.853,.858,.869,.887,.903,.902,.902,
1138                         .906,.907,.907,.907};
1139     Float_t Wavl2[] = {150.,155.,160.0,165.0,170.0,175.0,180.0,185.0,190.0,195.0,200.0,205.0,210.0,
1140                        215.0,220.0,225.0,230.0,235.0,240.0,245.0,250.0};                                 
1141     Float_t abscoQuarz[31];          
1142     for (Int_t i=0;i<31;i++)
1143     {
1144         Float_t Xlam = 1237.79 / (ppckov[i]*1e9);
1145         if (Xlam <= 160) abscoQuarz[i] = 0;
1146         if (Xlam > 250) abscoQuarz[i] = 1;
1147         else 
1148         {
1149             for (Int_t j=0;j<21;j++)
1150             {
1151                 //printf ("Passed\n");
1152                 if (Xlam > Wavl2[j] && Xlam < Wavl2[j+1])
1153                 {
1154                     Float_t Dabs = (Qzt[j+1] - Qzt[j])/(Wavl2[j+1] - Wavl2[j]);
1155                     Float_t Abso = Qzt[j] + Dabs*(Xlam - Wavl2[j]);
1156                     abscoQuarz[i] = -5.0/(TMath::Log(Abso));
1157                 } 
1158             }
1159         }
1160         printf ("abscoQuarz: %e abscoFreon: %e for energy: %e\n",abscoQuarz[i],abscoFreon[i],ppckov[i]);
1161     }*/
1162
1163     /*Float_t abscoQuarz[31] = {49.64211, 48.41296, 47.46989, 46.50492, 45.13682, 44.47883, 43.1929 , 41.30922, 40.5943 ,
1164                                39.82956, 38.98623, 38.6247 , 38.43448, 37.41084, 36.22575, 33.74852, 30.73901, 24.25086, 
1165                                17.94531, 11.88753, 5.99128,  3.83503,  2.36661,  1.53155, 1.30582, 1.08574, .8779708, 
1166                                .675275, 0., 0., 0.};
1167     
1168     for (Int_t i=0;i<31;i++)
1169     {
1170         abscoQuarz[i] = abscoQuarz[i]/10;
1171     }*/
1172
1173     Float_t abscoQuarz [26] = {105.8, 65.52, 48.58, 42.85, 35.79, 31.262, 28.598, 27.527, 25.007, 22.815, 21.004,
1174                                 19.266, 17.525, 15.878, 14.177, 11.719, 9.282, 6.62, 4.0925, 2.601, 1.149, .667, .3627,
1175                                 .192, .1497, .10857};
1176     
1177     //Absorption index for methane
1178     Float_t abscoMethane[26];
1179     for (i=0;i<26;i++) 
1180     {
1181         abscoMethane[i]=AbsoCH4(ppckov[i]*1e9); 
1182         //printf("abscoMethane: %e for energy: %e\n", abscoMethane[i],ppckov[i]*1e9);
1183     }
1184     
1185     //Absorption index for opaque quarz, csi and grid, efficiency for all and grid
1186     Float_t abscoOpaqueQuarz[26];
1187     Float_t abscoCsI[26];
1188     Float_t abscoGrid[26];
1189     Float_t efficAll[26];
1190     Float_t efficGrid[26];
1191     for (i=0;i<26;i++)
1192     { 
1193         abscoOpaqueQuarz[i]=1e-5; 
1194         abscoCsI[i]=1e-4; 
1195         abscoGrid[i]=1e-4; 
1196         efficAll[i]=1; 
1197         efficGrid[i]=1;
1198         //printf ("All must be 1: %e,  %e,  %e,  %e,  %e\n",abscoOpaqueQuarz[i],abscoCsI[i],abscoGrid[i],efficAll[i],efficGrid[i]);
1199     } 
1200     
1201     //Efficiency for csi 
1202     
1203     Float_t efficCsI[26] = {0.000199999995, 0.000600000028, 0.000699999975, 0.00499999989, 0.00749999983, 0.010125,
1204                              0.0242999997, 0.0405000001, 0.0688500032, 0.105299994, 0.121500008, 0.141749993, 0.157949999,
1205                              0.162, 0.166050002, 0.167669997, 0.174299985, 0.176789999, 0.179279998, 0.182599992, 0.18592,
1206                              0.187579989, 0.189239994, 0.190899998, 0.207499996, 0.215799987};
1207         
1208     
1209
1210     //FRESNEL LOSS CORRECTION FOR PERPENDICULAR INCIDENCE AND
1211     //UNPOLARIZED PHOTONS
1212
1213     for (i=0;i<26;i++)
1214     {
1215         efficCsI[i] = efficCsI[i]/(1.-Fresnel(ppckov[i]*1e9,1.,0)); 
1216         //printf ("Fresnel result: %e for energy: %e\n",Fresnel(ppckov[i]*1e9,1.,0),ppckov[i]*1e9);
1217     }
1218         
1219     /*******************************************End of rich_media.f***************************************/
1220
1221   
1222
1223     
1224     
1225     
1226     Float_t afre[2], agri, amet[2], aqua[2], ahon, zfre[2], zgri, zhon, 
1227     zmet[2], zqua[2];
1228     Int_t nlmatfre;
1229     Float_t densquao;
1230     Int_t nlmatmet, nlmatqua;
1231     Float_t wmatquao[2], rIndexFreon[26];
1232     Float_t aquao[2], epsil, stmin, zquao[2];
1233     Int_t nlmatquao;
1234     Float_t radlal, densal, tmaxfd, deemax, stemax;
1235     Float_t aal, zal, radlgri, densfre, radlhon, densgri, denshon,densqua, densmet, wmatfre[2], wmatmet[2], wmatqua[2];
1236     
1237     Int_t *idtmed = fIdtmed->GetArray()-999;
1238     
1239     // --- Photon energy (GeV) 
1240     // --- Refraction indexes 
1241     for (i = 0; i < 26; ++i) {
1242       rIndexFreon[i] = ppckov[i] * .0172 * 1e9 + 1.177;
1243       //rIndexFreon[i] = 1;
1244         //printf ("rIndexFreon: %e \n efficCsI: %e for energy: %e\n",rIndexFreon[i], efficCsI[i], ppckov[i]);
1245     }
1246             
1247     // --- Detection efficiencies (quantum efficiency for CsI) 
1248     // --- Define parameters for honeycomb. 
1249     //     Used carbon of equivalent rad. lenght 
1250     
1251     ahon    = 12.01;
1252     zhon    = 6.;
1253     denshon = 0.1;
1254     radlhon = 18.8;
1255     
1256     // --- Parameters to include in GSMIXT, relative to Quarz (SiO2) 
1257     
1258     aqua[0]    = 28.09;
1259     aqua[1]    = 16.;
1260     zqua[0]    = 14.;
1261     zqua[1]    = 8.;
1262     densqua    = 2.64;
1263     nlmatqua   = -2;
1264     wmatqua[0] = 1.;
1265     wmatqua[1] = 2.;
1266     
1267     // --- Parameters to include in GSMIXT, relative to opaque Quarz (SiO2) 
1268     
1269     aquao[0]    = 28.09;
1270     aquao[1]    = 16.;
1271     zquao[0]    = 14.;
1272     zquao[1]    = 8.;
1273     densquao    = 2.64;
1274     nlmatquao   = -2;
1275     wmatquao[0] = 1.;
1276     wmatquao[1] = 2.;
1277     
1278     // --- Parameters to include in GSMIXT, relative to Freon (C6F14) 
1279     
1280     afre[0]    = 12.;
1281     afre[1]    = 19.;
1282     zfre[0]    = 6.;
1283     zfre[1]    = 9.;
1284     densfre    = 1.7;
1285     nlmatfre   = -2;
1286     wmatfre[0] = 6.;
1287     wmatfre[1] = 14.;
1288     
1289     // --- Parameters to include in GSMIXT, relative to methane (CH4) 
1290     
1291     amet[0]    = 12.01;
1292     amet[1]    = 1.;
1293     zmet[0]    = 6.;
1294     zmet[1]    = 1.;
1295     densmet    = 7.17e-4;
1296     nlmatmet   = -2;
1297     wmatmet[0] = 1.;
1298     wmatmet[1] = 4.;
1299     
1300     // --- Parameters to include in GSMIXT, relative to anode grid (Cu) 
1301   
1302     agri    = 63.54;
1303     zgri    = 29.;
1304     densgri = 8.96;
1305     radlgri = 1.43;
1306     
1307     // --- Parameters to include in GSMATE related to aluminium sheet 
1308     
1309     aal    = 26.98;
1310     zal    = 13.;
1311     densal = 2.7;
1312     radlal = 8.9;
1313
1314     // --- Glass parameters
1315
1316     Float_t aglass[5]={12.01, 28.09, 16.,   10.8,  23.};
1317     Float_t zglass[5]={ 6.,   14.,    8.,    5.,   11.};
1318     Float_t wglass[5]={ 0.5,  0.105, 0.355, 0.03,  0.01};
1319     Float_t dglass=1.74;
1320
1321     
1322     AliMaterial(1, "Air     $", 14.61, 7.3, .001205, 30420., 67500);
1323     AliMaterial(6, "HON", ahon, zhon, denshon, radlhon, 0);
1324     AliMaterial(16, "CSI", ahon, zhon, denshon, radlhon, 0);
1325     AliMixture(20, "QUA", aqua, zqua, densqua, nlmatqua, wmatqua);
1326     AliMixture(21, "QUAO", aquao, zquao, densquao, nlmatquao, wmatquao);
1327     AliMixture(30, "FRE", afre, zfre, densfre, nlmatfre, wmatfre);
1328     AliMixture(40, "MET", amet, zmet, densmet, nlmatmet, wmatmet);
1329     AliMixture(41, "METG", amet, zmet, densmet, nlmatmet, wmatmet);
1330     AliMaterial(11, "GRI", agri, zgri, densgri, radlgri, 0);
1331     AliMaterial(50, "ALUM", aal, zal, densal, radlal, 0);
1332     AliMixture(32, "GLASS",aglass, zglass, dglass, 5, wglass);
1333     AliMaterial(31, "COPPER$",   63.54,    29.,   8.96,  1.4, 0.);
1334     
1335     tmaxfd = -10.;
1336     stemax = -.1;
1337     deemax = -.2;
1338     epsil  = .001;
1339     stmin  = -.001;
1340     
1341     AliMedium(1, "DEFAULT MEDIUM AIR$", 1, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
1342     AliMedium(2, "HONEYCOMB$", 6, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
1343     AliMedium(3, "QUARZO$", 20, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
1344     AliMedium(4, "FREON$", 30, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
1345     AliMedium(5, "METANO$", 40, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
1346     AliMedium(6, "CSI$", 16, 1, isxfld, sxmgmx,tmaxfd, stemax, deemax, epsil, stmin);
1347     AliMedium(7, "GRIGLIA$", 11, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
1348     AliMedium(8, "QUARZOO$", 21, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
1349     AliMedium(9, "GAP$", 41, 1, isxfld, sxmgmx,tmaxfd, .1, -deemax, epsil, -stmin);
1350     AliMedium(10, "ALUMINUM$", 50, 1, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
1351     AliMedium(11, "GLASS", 32, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
1352     AliMedium(12, "PCB_COPPER", 31, 0, isxfld, sxmgmx, tmaxfd, stemax, deemax, epsil, stmin);
1353     
1354
1355     gMC->SetCerenkov(idtmed[1000], 26, ppckov, abscoMethane, efficAll, rIndexMethane);
1356     gMC->SetCerenkov(idtmed[1001], 26, ppckov, abscoMethane, efficAll, rIndexMethane);
1357     gMC->SetCerenkov(idtmed[1002], 26, ppckov, abscoQuarz, efficAll,rIndexQuarz);
1358     gMC->SetCerenkov(idtmed[1003], 26, ppckov, abscoFreon, efficAll,rIndexFreon);
1359     gMC->SetCerenkov(idtmed[1004], 26, ppckov, abscoMethane, efficAll, rIndexMethane);
1360     gMC->SetCerenkov(idtmed[1005], 26, ppckov, abscoCsI, efficCsI, rIndexMethane);
1361     gMC->SetCerenkov(idtmed[1006], 26, ppckov, abscoGrid, efficGrid, rIndexGrid);
1362     gMC->SetCerenkov(idtmed[1007], 26, ppckov, abscoOpaqueQuarz, efficAll, rIndexOpaqueQuarz);
1363     gMC->SetCerenkov(idtmed[1008], 26, ppckov, abscoMethane, efficAll, rIndexMethane);
1364     gMC->SetCerenkov(idtmed[1009], 26, ppckov, abscoGrid, efficGrid, rIndexGrid);
1365     gMC->SetCerenkov(idtmed[1010], 26, ppckov, abscoOpaqueQuarz, efficAll, rIndexOpaqueQuarz);
1366 }
1367 //______________________________________________________________________________
1368 Float_t AliRICH::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola)
1369 {
1370
1371     //ENE(EV), PDOTI=COS(INC.ANG.), PDOTR=COS(POL.PLANE ROT.ANG.)
1372     
1373     Float_t en[36] = {5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,
1374                       6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,
1375                       7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5};
1376      
1377
1378     Float_t csin[36] = {2.14,2.21,2.33,2.48,2.76,2.97,2.99,2.59,2.81,3.05,
1379                         2.86,2.53,2.55,2.66,2.79,2.96,3.18,3.05,2.84,2.81,2.38,2.11,
1380                         2.01,2.13,2.39,2.73,3.08,3.15,2.95,2.73,2.56,2.41,2.12,1.95,
1381                         1.72,1.53};
1382       
1383     Float_t csik[36] = {0.,0.,0.,0.,0.,0.196,0.408,0.208,0.118,0.49,0.784,0.543,
1384                         0.424,0.404,0.371,0.514,0.922,1.102,1.139,1.376,1.461,1.253,0.878,
1385                         0.69,0.612,0.649,0.824,1.347,1.571,1.678,1.763,1.857,1.824,1.824,
1386                         1.714,1.498};
1387     Float_t xe=ene;
1388     Int_t  j=Int_t(xe*10)-49;
1389     Float_t cn=csin[j]+((csin[j+1]-csin[j])/0.1)*(xe-en[j]);
1390     Float_t ck=csik[j]+((csik[j+1]-csik[j])/0.1)*(xe-en[j]);
1391
1392     //FORMULAE FROM HANDBOOK OF OPTICS, 33.23 OR
1393     //W.R. HUNTER, J.O.S.A. 54 (1964),15 , J.O.S.A. 55(1965),1197
1394
1395     Float_t sinin=TMath::Sqrt(1-pdoti*pdoti);
1396     Float_t tanin=sinin/pdoti;
1397
1398     Float_t c1=cn*cn-ck*ck-sinin*sinin;
1399     Float_t c2=4*cn*cn*ck*ck;
1400     Float_t aO=TMath::Sqrt(0.5*(TMath::Sqrt(c1*c1+c2)+c1));
1401     Float_t b2=0.5*(TMath::Sqrt(c1*c1+c2)-c1);
1402     
1403     Float_t rs=((aO-pdoti)*(aO-pdoti)+b2)/((aO+pdoti)*(aO+pdoti)+b2);
1404     Float_t rp=rs*((aO-sinin*tanin)*(aO-sinin*tanin)+b2)/((aO+sinin*tanin)*(aO+sinin*tanin)+b2);
1405     
1406
1407     //CORRECTION FACTOR FOR SURFACE ROUGHNESS
1408     //B.J. STAGG  APPLIED OPTICS, 30(1991),4113
1409
1410     Float_t sigraf=18.;
1411     Float_t lamb=1240/ene;
1412     Float_t fresn;
1413  
1414     Float_t  rO=TMath::Exp(-(4*TMath::Pi()*pdoti*sigraf/lamb)*(4*TMath::Pi()*pdoti*sigraf/lamb));
1415
1416     if(pola)
1417     {
1418         Float_t pdotr=0.8;                                 //DEGREE OF POLARIZATION : 1->P , -1->S
1419         fresn=0.5*(rp*(1+pdotr)+rs*(1-pdotr));
1420     }
1421     else
1422         fresn=0.5*(rp+rs);
1423       
1424     fresn = fresn*rO;
1425     return(fresn);
1426 }
1427
1428 //__________________________________________
1429 Float_t AliRICH::AbsoCH4(Float_t x)
1430 {
1431
1432     //KLOSCH,SCH4(9),WL(9),EM(9),ALENGTH(31)
1433     Float_t sch4[9] = {.12,.16,.23,.38,.86,2.8,7.9,28.,80.};              //MB X 10^22
1434     //Float_t wl[9] = {153.,152.,151.,150.,149.,148.,147.,146.,145};
1435     Float_t em[9] = {8.1,8.158,8.212,8.267,8.322,8.378,8.435,8.493,8.55};
1436     const Float_t kLosch=2.686763E19;                                      // LOSCHMIDT NUMBER IN CM-3
1437     const Float_t kIgas1=100, kIgas2=0, kOxy=10., kWater=5., kPressure=750.,kTemperature=283.;                                      
1438     Float_t pn=kPressure/760.;
1439     Float_t tn=kTemperature/273.16;
1440     
1441         
1442 // ------- METHANE CROSS SECTION -----------------
1443 // ASTROPH. J. 214, L47 (1978)
1444         
1445     Float_t sm=0;
1446     if (x<7.75) 
1447         sm=.06e-22;
1448     
1449     if(x>=7.75 && x<=8.1)
1450     {
1451         Float_t c0=-1.655279e-1;
1452         Float_t c1=6.307392e-2;
1453         Float_t c2=-8.011441e-3;
1454         Float_t c3=3.392126e-4;
1455         sm=(c0+c1*x+c2*x*x+c3*x*x*x)*1.e-18;
1456     }
1457     
1458     if (x> 8.1)
1459     {
1460         Int_t j=0;
1461         while (x<=em[j] && x>=em[j+1])
1462         {
1463             j++;
1464             Float_t a=(sch4[j+1]-sch4[j])/(em[j+1]-em[j]);
1465             sm=(sch4[j]+a*(x-em[j]))*1e-22;
1466         }
1467     }
1468     
1469     Float_t dm=(kIgas1/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn;
1470     Float_t abslm=1./sm/dm;
1471     
1472 //    ------- ISOBUTHANE CROSS SECTION --------------
1473 //     i-C4H10 (ai) abs. length from curves in
1474 //     Lu-McDonald paper for BARI RICH workshop .
1475 //     -----------------------------------------------------------
1476     
1477     Float_t ai;
1478     Float_t absli;
1479     if (kIgas2 != 0) 
1480     {
1481         if (x<7.25)
1482             ai=100000000.;
1483         
1484         if(x>=7.25 && x<7.375)
1485             ai=24.3;
1486         
1487         if(x>=7.375)
1488             ai=.0000000001;
1489         
1490         Float_t si = 1./(ai*kLosch*273.16/293.);                    // ISOB. CRO.SEC.IN CM2
1491         Float_t di=(kIgas2/100.)*(1.-((kOxy+kWater)/1.e6))*kLosch*pn/tn;
1492         absli =1./si/di;
1493     }
1494     else
1495         absli=1.e18;
1496 //    ---------------------------------------------------------
1497 //
1498 //       transmission of O2
1499 //
1500 //       y= path in cm, x=energy in eV
1501 //       so= cross section for UV absorption in cm2
1502 //       do= O2 molecular density in cm-3
1503 //    ---------------------------------------------------------
1504     
1505     Float_t abslo;
1506     Float_t so=0;
1507     if(x>=6.0)
1508     {
1509         if(x>=6.0 && x<6.5)
1510         {
1511             so=3.392709e-13 * TMath::Exp(2.864104 *x);
1512             so=so*1e-18;
1513         }
1514         
1515         if(x>=6.5 && x<7.0) 
1516         {
1517             so=2.910039e-34 * TMath::Exp(10.3337*x);
1518             so=so*1e-18;
1519         }
1520             
1521
1522         if (x>=7.0) 
1523         {
1524             Float_t a0=-73770.76;
1525             Float_t a1=46190.69;
1526             Float_t a2=-11475.44;
1527             Float_t a3=1412.611;
1528             Float_t a4=-86.07027;
1529             Float_t a5=2.074234;
1530             so= a0+(a1*x)+(a2*x*x)+(a3*x*x*x)+(a4*x*x*x*x)+(a5*x*x*x*x*x);
1531             so=so*1e-18;
1532         }
1533         
1534         Float_t dox=(kOxy/1e6)*kLosch*pn/tn;
1535         abslo=1./so/dox;
1536     }
1537     else
1538         abslo=1.e18;
1539 //     ---------------------------------------------------------
1540 //
1541 //       transmission of H2O
1542 //
1543 //       y= path in cm, x=energy in eV
1544 //       sw= cross section for UV absorption in cm2
1545 //       dw= H2O molecular density in cm-3
1546 //     ---------------------------------------------------------
1547     
1548     Float_t abslw;
1549     
1550     Float_t b0=29231.65;
1551     Float_t b1=-15807.74;
1552     Float_t b2=3192.926;
1553     Float_t b3=-285.4809;
1554     Float_t b4=9.533944;
1555     
1556     if(x>6.75)
1557     {    
1558         Float_t sw= b0+(b1*x)+(b2*x*x)+(b3*x*x*x)+(b4*x*x*x*x);
1559         sw=sw*1e-18;
1560         Float_t dw=(kWater/1e6)*kLosch*pn/tn;
1561         abslw=1./sw/dw;
1562     }
1563     else
1564         abslw=1.e18;
1565             
1566 //    ---------------------------------------------------------
1567     
1568     Float_t alength=1./(1./abslm+1./absli+1./abslo+1./abslw);
1569     return (alength);
1570 }
1571
1572
1573
1574 //___________________________________________
1575 //____________________________________________
1576 void AliRICH::ResetDigits()
1577 {//Reset number of digits and the digits array for this detector
1578   for ( int i=0;i<kNCH;i++ ) {
1579     if (fDchambers && fDchambers->At(i))   fDchambers->At(i)->Clear();
1580     if (fNdch)  fNdch[i]=0;
1581   }
1582 }
1583 //____________________________________________
1584 void AliRICH::ResetRawClusters()
1585 {//Reset number of raw clusters and the raw clust array for this detector
1586   for ( int i=0;i<kNCH;i++ ) {
1587     if (fRawClusters->At(i))    ((TClonesArray*)fRawClusters->At(i))->Clear();
1588     if (fNrawch)  fNrawch[i]=0;
1589   }
1590 }
1591 //____________________________________________
1592 void AliRICH::ResetRecHits1D()
1593 {//Reset number of raw clusters and the raw clust array for this detector
1594   for ( int i=0;i<kNCH;i++ ) {
1595     if (fRecHits1D->At(i))    ((TClonesArray*)fRecHits1D->At(i))->Clear();
1596     if (fNrechits1D)  fNrechits1D[i]=0;
1597   }
1598 }
1599
1600 //____________________________________________
1601 void AliRICH::ResetRecHits3D()
1602 {// Reset number of raw clusters and the raw clust array for this detector
1603   for ( int i=0;i<kNCH;i++ ) {
1604     if (fRecHits3D->At(i))    ((TClonesArray*)fRecHits3D->At(i))->Clear();
1605     if (fNrechits3D)  fNrechits3D[i]=0;
1606   }
1607 }
1608 //______________________________________________________________________________
1609 void AliRICH::FindClusters(Int_t nev /*kir,Int_t lastEntry*/)
1610 {
1611
1612 //
1613 // Loop on chambers and on cathode planes
1614 //
1615     for (Int_t icat=1;icat<2;icat++) {
1616         gAlice->ResetDigits();
1617         gAlice->TreeD()->GetEvent(0);
1618         for (Int_t ich=0;ich<kNCH;ich++) {
1619       //PH        AliRICHChamber* iChamber=(AliRICHChamber*) (*fChambers)[ich];
1620           AliRICHChamber* iChamber=(AliRICHChamber*)fChambers->At(ich);
1621           TClonesArray *pRICHdigits  = this->DigitsAddress(ich);
1622           if (pRICHdigits == 0)       
1623               continue;
1624           //
1625           // Get ready the current chamber stuff
1626           //
1627           AliRICHResponse* response = iChamber->GetResponseModel();
1628           AliSegmentation*  seg = iChamber->GetSegmentationModel();
1629           AliRICHClusterFinder* rec = iChamber->GetReconstructionModel();
1630           if (seg) {      
1631               rec->SetSegmentation(seg);
1632               rec->SetResponse(response);
1633               rec->SetDigits(pRICHdigits);
1634               rec->SetChamber(ich);
1635               if (nev==0) rec->CalibrateCOG(); 
1636               rec->FindRawClusters();
1637           }  
1638           TClonesArray *fRch;
1639           fRch=RawClustAddress(ich);
1640           fRch->Sort();
1641         } // for ich
1642
1643         gAlice->TreeR()->Fill();
1644         TClonesArray *fRch;
1645         for (int i=0;i<kNCH;i++) {
1646             fRch=RawClustAddress(i);
1647             int nraw=fRch->GetEntriesFast();
1648             printf ("Chamber %d, raw clusters %d\n",i,nraw);
1649         }
1650         
1651         ResetRawClusters();
1652         
1653     } // for icat
1654     
1655     char hname[30];
1656     sprintf(hname,"TreeR%d",nev);
1657     gAlice->TreeR()->Write(hname,kOverwrite,0);
1658     gAlice->TreeR()->Reset();    
1659     //gObjectTable->Print();
1660 }//void AliRICH::FindClusters(Int_t nev)
1661 //______________________________________________________________________________
1662 AliRICHSDigit* AliRICH::FirstPad(AliRICHhit*  hit,TClonesArray *clusters ) 
1663 {// Initialise the pad iterator Return the address of the first sdigit for hit
1664     TClonesArray *theClusters = clusters;
1665     Int_t nclust = theClusters->GetEntriesFast();
1666     if (nclust && hit->PHlast() > 0) {
1667         sMaxIterPad=Int_t(hit->PHlast());
1668         sCurIterPad=Int_t(hit->PHfirst());
1669         return (AliRICHSDigit*) clusters->UncheckedAt(sCurIterPad-1);
1670     } else {
1671         return 0;
1672     }
1673     
1674 }
1675 //______________________________________________________________________________
1676 AliRICHSDigit* AliRICH::NextPad(TClonesArray *clusters) 
1677 {// Iterates over pads
1678   
1679     sCurIterPad++;
1680     if (sCurIterPad <= sMaxIterPad) {
1681         return (AliRICHSDigit*) clusters->UncheckedAt(sCurIterPad-1);
1682     } else {
1683         return 0;
1684     }
1685 }
1686
1687
1688 void AliRICH::DiagnosticsFE(Int_t evNumber1,Int_t evNumber2)
1689 {
1690   
1691   Int_t NpadX = 162;                 // number of pads on X
1692   Int_t NpadY = 162;                 // number of pads on Y
1693   
1694   Int_t Pad[162][162];
1695   for (Int_t i=0;i<NpadX;i++) {
1696     for (Int_t j=0;j<NpadY;j++) {
1697       Pad[i][j]=0;
1698     }
1699   }
1700   
1701   //  Create some histograms
1702
1703   TH1F *pionspectra1 = new TH1F("pionspectra1","Pion Spectra",200,-4,2);
1704   TH1F *pionspectra2 = new TH1F("pionspectra2","Pion Spectra",200,-4,2);
1705   TH1F *pionspectra3 = new TH1F("pionspectra3","Pion Spectra",200,-4,2);
1706   TH1F *protonspectra1 = new TH1F("protonspectra1","Proton Spectra",200,-4,2);
1707   TH1F *protonspectra2 = new TH1F("protonspectra2","Proton Spectra",200,-4,2);
1708   TH1F *protonspectra3 = new TH1F("protonspectra3","Proton Spectra",200,-4,2);
1709   TH1F *kaonspectra1 = new TH1F("kaonspectra1","Kaon Spectra",100,-4,2);
1710   TH1F *kaonspectra2 = new TH1F("kaonspectra2","Kaon Spectra",100,-4,2);
1711   TH1F *kaonspectra3 = new TH1F("kaonspectra3","Kaon Spectra",100,-4,2);
1712   TH1F *electronspectra1 = new TH1F("electronspectra1","Electron Spectra",100,-4,2);
1713   TH1F *electronspectra2 = new TH1F("electronspectra2","Electron Spectra",100,-4,2);
1714   TH1F *electronspectra3 = new TH1F("electronspectra3","Electron Spectra",100,-4,2);
1715   TH1F *muonspectra1 = new TH1F("muonspectra1","Muon Spectra",100,-4,2);
1716   TH1F *muonspectra2 = new TH1F("muonspectra2","Muon Spectra",100,-4,2);
1717   TH1F *muonspectra3 = new TH1F("muonspectra3","Muon Spectra",100,-4,2);
1718   TH1F *neutronspectra1 = new TH1F("neutronspectra1","Neutron Spectra",100,-4,2);
1719   TH1F *neutronspectra2 = new TH1F("neutronspectra2","Neutron Spectra",100,-4,2);
1720   TH1F *neutronspectra3 = new TH1F("neutronspectra2","Neutron Spectra",100,-4,2);
1721   TH1F *chargedspectra1 = new TH1F("chargedspectra1","Charged particles above 1 GeV Spectra",100,-1,3);
1722   TH1F *chargedspectra2 = new TH1F("chargedspectra2","Charged particles above 1 GeV Spectra",100,-1,3);
1723   TH1F *chargedspectra3 = new TH1F("chargedspectra2","Charged particles above 1 GeV Spectra",100,-1,3);
1724   TH1F *pionptspectrafinal = new TH1F("pionptspectrafinal","Primary Pions Transverse Momenta at HMPID",20,0,5);
1725   TH1F *pionptspectravertex = new TH1F("pionptspectravertex","Primary Pions Transverse Momenta at vertex",20,0,5);
1726   TH1F *kaonptspectrafinal = new TH1F("kaonptspectrafinal","Primary Kaons Transverse Momenta at HMPID",20,0,5);
1727   TH1F *kaonptspectravertex = new TH1F("kaonptspectravertex","Primary Kaons Transverse Momenta at vertex",20,0,5);
1728   //TH1F *hitsPhi = new TH1F("hitsPhi","Distribution of phi angle of incidence",100,-180,180);
1729   TH1F *hitsTheta = new TH1F("hitsTheta","Distribution of Theta angle of incidence, all tracks",100,0,50);
1730   TH1F *hitsTheta500MeV = new TH1F("hitsTheta500MeV","Distribution of Theta angle of incidence, 0.5-1 GeV primary tracks",100,0,50);
1731   TH1F *hitsTheta1GeV = new TH1F("hitsTheta1GeV","Distribution of Theta angle of incidence, 1-2 GeV primary tracks",100,0,50);
1732   TH1F *hitsTheta2GeV = new TH1F("hitsTheta2GeV","Distribution of Theta angle of incidence, 2-3 GeV primary tracks",100,0,50);
1733   TH1F *hitsTheta3GeV = new TH1F("hitsTheta3GeV","Distribution of Theta angle of incidence, >3 GeV primary tracks",100,0,50);
1734   TH2F *production = new TH2F("production","Mother production vertices",100,-300,300,100,0,600);
1735    
1736    
1737    
1738
1739 //   Start loop over events 
1740
1741   Int_t pion=0, kaon=0, proton=0, electron=0, positron=0, neutron=0, highneutrons=0, muon=0;
1742   Int_t chargedpions=0,primarypions=0,highprimarypions=0,chargedkaons=0,primarykaons=0,highprimarykaons=0;
1743   Int_t photons=0, primaryphotons=0, highprimaryphotons=0;
1744   TRandom* random=0;
1745
1746    for (int nev=0; nev<= evNumber2; nev++) {
1747        Int_t nparticles = gAlice->GetEvent(nev);
1748        
1749
1750        printf ("Event number       : %d\n",nev);
1751        printf ("Number of particles: %d\n",nparticles);
1752        if (nev < evNumber1) continue;
1753        if (nparticles <= 0) return;
1754        
1755 // Get pointers to RICH detector and Hits containers
1756        
1757        AliRICH *pRICH = (AliRICH *) gAlice->GetDetector("RICH");
1758      
1759        TTree *treeH = TreeH();
1760        Int_t ntracks =(Int_t) treeH->GetEntries();
1761             
1762 // Start loop on tracks in the hits containers
1763        
1764        for (Int_t track=0; track<ntracks;track++) {
1765            printf ("Processing Track: %d\n",track);
1766            gAlice->ResetHits();
1767            treeH->GetEvent(track);
1768                            
1769            for(AliRICHhit* mHit=(AliRICHhit*)pRICH->FirstHit(-1); 
1770                mHit;
1771                mHit=(AliRICHhit*)pRICH->NextHit()) 
1772              {
1773                //Int_t nch  = mHit->fChamber;              // chamber number
1774                //Float_t x  = mHit->X();                    // x-pos of hit
1775                //Float_t y  = mHit->Z();                    // y-pos
1776                //Float_t z  = mHit->Y();
1777                //Float_t phi = mHit->Phi();                 //Phi angle of incidence
1778                Float_t theta = mHit->Theta();             //Theta angle of incidence
1779                Float_t px = mHit->MomX();
1780                Float_t py = mHit->MomY();
1781                Int_t index = mHit->Track();
1782                Int_t particle = (Int_t)(mHit->Particle());    
1783                Float_t R;
1784                Float_t PTfinal;
1785                Float_t PTvertex;
1786
1787               TParticle *current = gAlice->Particle(index);
1788               
1789               //Float_t energy=current->Energy(); 
1790
1791               R=TMath::Sqrt(current->Vx()*current->Vx() + current->Vy()*current->Vy());
1792               PTfinal=TMath::Sqrt(px*px + py*py);
1793               PTvertex=TMath::Sqrt(current->Px()*current->Px() + current->Py()*current->Py());
1794               
1795               
1796
1797               if (TMath::Abs(particle) < 10000000)
1798                 {
1799                   hitsTheta->Fill(theta,(float) 1);
1800                   if (R<5)
1801                     {
1802                       if (PTvertex>.5 && PTvertex<=1)
1803                         {
1804                           hitsTheta500MeV->Fill(theta,(float) 1);
1805                         }
1806                       if (PTvertex>1 && PTvertex<=2)
1807                         {
1808                           hitsTheta1GeV->Fill(theta,(float) 1);
1809                         }
1810                       if (PTvertex>2 && PTvertex<=3)
1811                         {
1812                           hitsTheta2GeV->Fill(theta,(float) 1);
1813                         }
1814                       if (PTvertex>3)
1815                         {
1816                           hitsTheta3GeV->Fill(theta,(float) 1);
1817                         }
1818                     }
1819                   
1820                 }
1821
1822               //if (nch == 3)
1823                 //{
1824               
1825               //printf("Particle type: %d\n",current->GetPdgCode());
1826               if (TMath::Abs(particle) < 50000051)
1827                 {
1828                   //if (TMath::Abs(particle) == 50000050 || TMath::Abs(particle) == 2112)
1829                   if (TMath::Abs(particle) == 2112 || TMath::Abs(particle) == 50000050)
1830                     {
1831                       //gMC->Rndm(&random, 1);
1832                       if (random->Rndm() < .1)
1833                         production->Fill(current->Vz(),R,(float) 1);
1834                       if (TMath::Abs(particle) == 50000050)
1835                         //if (TMath::Abs(particle) > 50000000)
1836                         {
1837                           photons +=1;
1838                           if (R<5)
1839                             {
1840                               primaryphotons +=1;
1841                               if (current->Energy()>0.001)
1842                                 highprimaryphotons +=1;
1843                             }
1844                         }       
1845                       if (TMath::Abs(particle) == 2112)
1846                         {
1847                           neutron +=1;
1848                           if (current->Energy()>0.0001)
1849                             highneutrons +=1;
1850                         }
1851                     }
1852                   if (TMath::Abs(particle) < 50000000)
1853                     {
1854                       production->Fill(current->Vz(),R,(float) 1);
1855                       //printf("Adding %d at %f\n",particle,R);
1856                     }
1857                   //mip->Fill(x,y,(float) 1);
1858                 }
1859               
1860               if (TMath::Abs(particle)==211 || TMath::Abs(particle)==111)
1861                 {
1862                   if (R<5)
1863                     {
1864                       pionptspectravertex->Fill(PTvertex,(float) 1);
1865                       pionptspectrafinal->Fill(PTfinal,(float) 1);
1866                     }
1867                 }
1868               
1869               if (TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310 
1870                   || TMath::Abs(particle)==311)
1871                 {
1872                   if (R<5)
1873                     {
1874                       kaonptspectravertex->Fill(PTvertex,(float) 1);
1875                       kaonptspectrafinal->Fill(PTfinal,(float) 1);
1876                     }
1877                 }
1878               
1879               
1880               if (TMath::Abs(particle)==211 || TMath::Abs(particle)==111)
1881                 {
1882                   pionspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1883                   //printf ("fParticle: %d, PDG code:%d\n",particle,current->GetPdgCode());
1884                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1885                     pionspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1886                   if (R>250 && R<450)
1887                     {
1888                       pionspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1889                       //printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\R:%f\n\n\n\n\n\n\n\n\n",R);
1890                     }
1891                   //printf("Pion mass: %e\n",current->GetCalcMass());
1892                   pion +=1;
1893                   if (TMath::Abs(particle)==211)
1894                     {
1895                       chargedpions +=1;
1896                       if (R<5)
1897                         {
1898                           primarypions +=1;
1899                           if (current->Energy()>1)
1900                             highprimarypions +=1;
1901                         }
1902                     }   
1903                 }
1904               if (TMath::Abs(particle)==2212)
1905                 {
1906                   protonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1907                   //ptspectra->Fill(Pt,(float) 1);
1908                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1909                     protonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1910                   if (R>250 && R<450)
1911                     protonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1912                   //printf("\n\n\n\n\n\n\nProton mass: %e\n\n\n\n\n\n\n\n\n",current->GetCalcMass());
1913                   proton +=1;
1914                 }
1915               if (TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310 
1916                   || TMath::Abs(particle)==311)
1917                 {
1918                   kaonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1919                   //ptspectra->Fill(Pt,(float) 1);
1920                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1921                     kaonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1922                   if (R>250 && R<450)
1923                     kaonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1924                   //printf("Kaon mass: %e\n",current->GetCalcMass());
1925                   kaon +=1;
1926                   if (TMath::Abs(particle)==321)
1927                     {
1928                       chargedkaons +=1;
1929                       if (R<5)
1930                         {
1931                           primarykaons +=1;
1932                           if (current->Energy()>1)
1933                             highprimarykaons +=1;
1934                         }
1935                     }
1936                 }
1937               if (TMath::Abs(particle)==11)
1938                 {
1939                   electronspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1940                   //ptspectra->Fill(Pt,(float) 1);
1941                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1942                     electronspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1943                   if (R>250 && R<450)
1944                     electronspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1945                   //printf("Electron mass: %e\n",current->GetCalcMass());
1946                   if (particle == 11)
1947                     electron +=1;
1948                   if (particle == -11)
1949                     positron +=1;
1950                 }
1951               if (TMath::Abs(particle)==13)
1952                 {
1953                   muonspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1954                   //ptspectra->Fill(Pt,(float) 1);
1955                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1956                     muonspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1957                   if (R>250 && R<450)
1958                     muonspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1959                   //printf("Muon mass: %e\n",current->GetCalcMass());
1960                   muon +=1;
1961                 }
1962               if (TMath::Abs(particle)==2112)
1963                 {
1964                   neutronspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1965                   //ptspectra->Fill(Pt,(float) 1);
1966                   if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1967                     neutronspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1968                   if (R>250 && R<450)
1969                     {
1970                       neutronspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1971                       //printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\R:%f\n\n\n\n\n\n\n\n\n",R);
1972                     }
1973                   //printf("Neutron mass: %e\n",current->GetCalcMass());
1974                   neutron +=1;
1975                 }
1976               if(TMath::Abs(particle)==211 || TMath::Abs(particle)==2212 || TMath::Abs(particle)==321)
1977                 {
1978                   if (current->Energy()-current->GetCalcMass()>1)
1979                     {
1980                       chargedspectra1->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1981                       if (current->Vx()>5 && current->Vy()>5 && current->Vz()>5)
1982                         chargedspectra2->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1983                       if (R>250 && R<450)
1984                         chargedspectra3->Fill(TMath::Log10(current->Energy() - current->GetCalcMass()),(float) 1);
1985                     }
1986                 }
1987               //printf("Hits:%d\n",hit);
1988               //printf ("Chamber number:%d x:%f y:%f\n",nch,x,y);
1989               // Fill the histograms
1990               //Nh1+=nhits;
1991               //h->Fill(x,y,(float) 1);
1992               //}
1993               //}
1994            }          
1995            
1996        }
1997        
1998    }
1999    //   }
2000
2001    TStyle *mystyle=new TStyle("Plain","mystyle");
2002    mystyle->SetPalette(1,0);
2003    mystyle->cd();
2004    
2005    //Create canvases, set the view range, show histograms
2006
2007     TCanvas *c2 = new TCanvas("c2","Angles of incidence",150,150,100,150);
2008     c2->Divide(2,2);
2009     //c2->SetFillColor(42);
2010     
2011     c2->cd(1);
2012     hitsTheta500MeV->SetFillColor(5);
2013     hitsTheta500MeV->Draw();
2014     c2->cd(2);
2015     hitsTheta1GeV->SetFillColor(5);
2016     hitsTheta1GeV->Draw();
2017     c2->cd(3);
2018     hitsTheta2GeV->SetFillColor(5);
2019     hitsTheta2GeV->Draw();
2020     c2->cd(4);
2021     hitsTheta3GeV->SetFillColor(5);
2022     hitsTheta3GeV->Draw();
2023     
2024             
2025    
2026     TCanvas *c15 = new TCanvas("c15","Mothers Production Vertices",50,50,600,600);
2027     c15->cd();
2028     production->SetFillColor(42);
2029     production->SetXTitle("z (m)");
2030     production->SetYTitle("R (m)");
2031     production->Draw();
2032
2033     TCanvas *c10 = new TCanvas("c10","Pt Spectra",50,50,600,700);
2034     c10->Divide(2,2);
2035     c10->cd(1);
2036     pionptspectravertex->SetFillColor(5);
2037     pionptspectravertex->SetXTitle("Pt (GeV)");
2038     pionptspectravertex->Draw();
2039     c10->cd(2);
2040     pionptspectrafinal->SetFillColor(5);
2041     pionptspectrafinal->SetXTitle("Pt (GeV)");
2042     pionptspectrafinal->Draw();
2043     c10->cd(3);
2044     kaonptspectravertex->SetFillColor(5);
2045     kaonptspectravertex->SetXTitle("Pt (GeV)");
2046     kaonptspectravertex->Draw();
2047     c10->cd(4);
2048     kaonptspectrafinal->SetFillColor(5);
2049     kaonptspectrafinal->SetXTitle("Pt (GeV)");
2050     kaonptspectrafinal->Draw();
2051    
2052   
2053    TCanvas *c16 = new TCanvas("c16","Particles Spectra II",150,150,600,350);
2054    c16->Divide(2,1);
2055    
2056    c16->cd(1);
2057    //TCanvas *c13 = new TCanvas("c13","Electron Spectra",400,10,600,700);
2058    electronspectra1->SetFillColor(5);
2059    electronspectra1->SetXTitle("log(GeV)");
2060    electronspectra2->SetFillColor(46);
2061    electronspectra2->SetXTitle("log(GeV)");
2062    electronspectra3->SetFillColor(10);
2063    electronspectra3->SetXTitle("log(GeV)");
2064    //c13->SetLogx();
2065    electronspectra1->Draw();
2066    electronspectra2->Draw("same");
2067    electronspectra3->Draw("same");
2068    
2069    c16->cd(2);
2070    //TCanvas *c14 = new TCanvas("c14","Muon Spectra",400,10,600,700);
2071    muonspectra1->SetFillColor(5);
2072    muonspectra1->SetXTitle("log(GeV)");
2073    muonspectra2->SetFillColor(46);
2074    muonspectra2->SetXTitle("log(GeV)");
2075    muonspectra3->SetFillColor(10);
2076    muonspectra3->SetXTitle("log(GeV)");
2077    //c14->SetLogx();
2078    muonspectra1->Draw();
2079    muonspectra2->Draw("same");
2080    muonspectra3->Draw("same");
2081    
2082    //c16->cd(3);
2083    //TCanvas *c16 = new TCanvas("c16","Neutron Spectra",400,10,600,700);
2084    //neutronspectra1->SetFillColor(42);
2085    //neutronspectra1->SetXTitle("log(GeV)");
2086    //neutronspectra2->SetFillColor(46);
2087    //neutronspectra2->SetXTitle("log(GeV)");
2088    //neutronspectra3->SetFillColor(10);
2089    //neutronspectra3->SetXTitle("log(GeV)");
2090    //c16->SetLogx();
2091    //neutronspectra1->Draw();
2092    //neutronspectra2->Draw("same");
2093    //neutronspectra3->Draw("same");
2094
2095    TCanvas *c9 = new TCanvas("c9","Particles Spectra",150,150,600,700);
2096    //TCanvas *c9 = new TCanvas("c9","Pion Spectra",400,10,600,700);
2097    c9->Divide(2,2);
2098    
2099    c9->cd(1);
2100    pionspectra1->SetFillColor(5);
2101    pionspectra1->SetXTitle("log(GeV)");
2102    pionspectra2->SetFillColor(46);
2103    pionspectra2->SetXTitle("log(GeV)");
2104    pionspectra3->SetFillColor(10);
2105    pionspectra3->SetXTitle("log(GeV)");
2106    //c9->SetLogx();
2107    pionspectra1->Draw();
2108    pionspectra2->Draw("same");
2109    pionspectra3->Draw("same");
2110    
2111    c9->cd(2);
2112    //TCanvas *c10 = new TCanvas("c10","Proton Spectra",400,10,600,700);
2113    protonspectra1->SetFillColor(5);
2114    protonspectra1->SetXTitle("log(GeV)");
2115    protonspectra2->SetFillColor(46);
2116    protonspectra2->SetXTitle("log(GeV)");
2117    protonspectra3->SetFillColor(10);
2118    protonspectra3->SetXTitle("log(GeV)");
2119    //c10->SetLogx();
2120    protonspectra1->Draw();
2121    protonspectra2->Draw("same");
2122    protonspectra3->Draw("same");
2123    
2124    c9->cd(3);
2125    //TCanvas *c11 = new TCanvas("c11","Kaon Spectra",400,10,600,700); 
2126    kaonspectra1->SetFillColor(5);
2127    kaonspectra1->SetXTitle("log(GeV)");
2128    kaonspectra2->SetFillColor(46);
2129    kaonspectra2->SetXTitle("log(GeV)");
2130    kaonspectra3->SetFillColor(10);
2131    kaonspectra3->SetXTitle("log(GeV)");
2132    //c11->SetLogx();
2133    kaonspectra1->Draw();
2134    kaonspectra2->Draw("same");
2135    kaonspectra3->Draw("same");
2136    
2137    c9->cd(4);
2138    //TCanvas *c12 = new TCanvas("c12","Charged Particles Spectra",400,10,600,700);
2139    chargedspectra1->SetFillColor(5);
2140    chargedspectra1->SetXTitle("log(GeV)");
2141    chargedspectra2->SetFillColor(46);
2142    chargedspectra2->SetXTitle("log(GeV)");
2143    chargedspectra3->SetFillColor(10);
2144    chargedspectra3->SetXTitle("log(GeV)");
2145    //c12->SetLogx();
2146    chargedspectra1->Draw();
2147    chargedspectra2->Draw("same");
2148    chargedspectra3->Draw("same");
2149    
2150
2151
2152    printf("*****************************************\n");
2153    printf("* Particle                   *  Counts  *\n");
2154    printf("*****************************************\n");
2155
2156    printf("* Pions:                     *   %4d   *\n",pion);
2157    printf("* Charged Pions:             *   %4d   *\n",chargedpions);
2158    printf("* Primary Pions:             *   %4d   *\n",primarypions);
2159    printf("* Primary Pions (p>1GeV/c):  *   %4d   *\n",highprimarypions);
2160    printf("* Kaons:                     *   %4d   *\n",kaon);
2161    printf("* Charged Kaons:             *   %4d   *\n",chargedkaons);
2162    printf("* Primary Kaons:             *   %4d   *\n",primarykaons);
2163    printf("* Primary Kaons (p>1GeV/c):  *   %4d   *\n",highprimarykaons);
2164    printf("* Muons:                     *   %4d   *\n",muon);
2165    printf("* Electrons:                 *   %4d   *\n",electron);
2166    printf("* Positrons:                 *   %4d   *\n",positron);
2167    printf("* Protons:                   *   %4d   *\n",proton);
2168    printf("* All Charged:               *   %4d   *\n",(chargedpions+chargedkaons+muon+electron+positron+proton));
2169    printf("*****************************************\n");
2170    //printf("* Photons:                   *   %3.1f   *\n",photons); 
2171    //printf("* Primary Photons:           *   %3.1f   *\n",primaryphotons);
2172    //printf("* Primary Photons (p>1MeV/c):*   %3.1f   *\n",highprimaryphotons);
2173    //printf("*****************************************\n");
2174    //printf("* Neutrons:                  *   %3.1f   *\n",neutron);
2175    //printf("* Neutrons (p>100keV/c):     *   %3.1f   *\n",highneutrons);
2176    //printf("*****************************************\n");
2177
2178    if (gAlice->TreeD())
2179      {
2180        gAlice->TreeD()->GetEvent(0);
2181    
2182        Float_t occ[7]; 
2183        Float_t sum=0;
2184        Float_t mean=0; 
2185        printf("\n*****************************************\n");
2186        printf("* Chamber   * Digits      * Occupancy   *\n");
2187        printf("*****************************************\n");
2188        
2189        for (Int_t ich=0;ich<7;ich++)
2190          {
2191            TClonesArray *Digits = DigitsAddress(ich);    //  Raw clusters branch
2192            Int_t ndigits = Digits->GetEntriesFast();
2193            occ[ich] = Float_t(ndigits)/(160*144);
2194            sum += Float_t(ndigits)/(160*144);
2195            printf("*   %d      *    %d      *   %3.1f%%     *\n",ich,ndigits,occ[ich]*100);
2196          }
2197        mean = sum/7;
2198        printf("*****************************************\n");
2199        printf("* Mean occupancy          *   %3.1f%%     *\n",mean*100);
2200        printf("*****************************************\n");
2201      }
2202  
2203   printf("\nEnd of analysis\n");
2204    
2205 }//void AliRICH::DiagnosticsFE(Int_t evNumber1,Int_t evNumber2)
2206 //______________________________________________________________________________
2207 void AliRICH::DiagnosticsSE(Int_t diaglevel,Int_t evNumber1,Int_t evNumber2)
2208 {
2209
2210 AliRICH *pRICH  = (AliRICH*)gAlice->GetDetector("RICH");
2211    AliRICHSegmentationV0*  segmentation;
2212    AliRICHChamber*       chamber;
2213    
2214    chamber = &(pRICH->Chamber(0));
2215    segmentation=(AliRICHSegmentationV0*) chamber->GetSegmentationModel();
2216
2217    Int_t NpadX = segmentation->Npx();                 // number of pads on X
2218    Int_t NpadY = segmentation->Npy();                 // number of pads on Y
2219     
2220    //Int_t Pad[144][160];
2221    /*for (Int_t i=0;i<NpadX;i++) {
2222      for (Int_t j=0;j<NpadY;j++) {
2223        Pad[i][j]=0;
2224      }
2225    } */
2226
2227
2228    Int_t xmin= -NpadX/2;  
2229    Int_t xmax=  NpadX/2;
2230    Int_t ymin= -NpadY/2;
2231    Int_t ymax=  NpadY/2;
2232
2233    Float_t PTfinal = 0;
2234    Int_t pionCount = 0;
2235    Int_t kaonCount = 0;
2236    Int_t protonCount = 0;
2237    
2238    TH2F *feedback = 0;
2239    TH2F *mip = 0;
2240    TH2F *cerenkov = 0;
2241    TH2F *h = 0;
2242    TH1F *hitsX = 0;
2243    TH1F *hitsY = 0;
2244
2245    TH2F *hc0 = new TH2F("hc0","Zoom on center of central chamber",150,-25,25,150,-45,5);
2246
2247    if (diaglevel == 1)
2248      {
2249        printf("Single Ring Hits\n");
2250        feedback = new TH2F("feedback","Feedback hit distribution",150,-20,20,150,-35,5);
2251        mip = new TH2F("mip","Mip hit distribution",150,-20,20,150,-35,5);
2252        cerenkov = new TH2F("cerenkov","Cerenkov hit distribution",150,-20,20,150,-35,5);
2253        h = new TH2F("h","Detector hit distribution",150,-20,20,150,-35,5);
2254        hitsX = new TH1F("hitsX","Distribution of hits along x-axis",150,-50,50);
2255        hitsY = new TH1F("hitsY","Distribution of hits along z-axis",150,-50,50);
2256      }       
2257    else
2258      {
2259        printf("Full Event Hits\n");
2260        
2261        feedback = new TH2F("feedback","Feedback hit distribution",150,-300,300,150,-300,300);
2262        mip = new TH2F("mip","Mip hit distribution",150,-300,300,150,-300,300);
2263        cerenkov = new TH2F("cerenkov","Cerenkov hit distribution",150,-300,300,150,-300,300);
2264        h = new TH2F("h","Detector hit distribution",150,-300,300,150,-300,300); 
2265        hitsX = new TH1F("digitsX","Distribution of hits along x-axis",200,-300,300);
2266        hitsY = new TH1F("digitsY","Distribution of hits along z-axis",200,-300,300);
2267      }
2268    
2269
2270
2271    TH2F *hc1 = new TH2F("hc1","Chamber 1 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
2272    TH2F *hc2 = new TH2F("hc2","Chamber 2 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
2273    TH2F *hc3 = new TH2F("hc3","Chamber 3 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
2274    TH2F *hc4 = new TH2F("hc4","Chamber 4 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
2275    TH2F *hc5 = new TH2F("hc5","Chamber 5 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
2276    TH2F *hc6 = new TH2F("hc6","Chamber 6 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
2277    TH2F *hc7 = new TH2F("hc7","Chamber 7 signal distribution",NpadX,xmin,xmax,NpadY,ymin,ymax);
2278       
2279    TH1F *Clcharge = new TH1F("Clcharge","Cluster Charge Distribution",500,0.,500.);
2280    TH1F *ckovangle = new TH1F("ckovangle","Cerenkov angle per photon",100,.35,.8);
2281    TH1F *hckphi = new TH1F("hckphi","Cerenkov phi angle per photon",620,-3.1,3.1);
2282    TH1F *mother = new TH1F("mother","Cerenkovs per Mip",75,0.,75.);
2283    TH1F *radius = new TH1F("radius","Mean distance to Mip",100,0.,20.);
2284    TH1F *phspectra1 = new TH1F("phspectra1","Detected Photon Spectra",200,5.,10.);
2285    TH1F *phspectra2 = new TH1F("phspectra2","Produced Photon Spectra",200,5.,10.);
2286    TH1F *totalphotonstrack = new TH1F("totalphotonstrack","Produced Photons per Mip",100,200,700.);
2287    TH1F *totalphotonsevent = new TH1F("totalphotonsevent","Produced Photons per Mip",100,200,700.);
2288    //TH1F *feedbacks = new TH1F("feedbacks","Produced Feedbacks per Mip",50,0.5,50.);
2289    TH1F *padnumber = new TH1F("padnumber","Number of pads per cluster",50,-0.5,50.);
2290    TH1F *padsev = new TH1F("padsev","Number of pads hit per MIP",50,0.5,100.);
2291    TH1F *clusev = new TH1F("clusev","Number of clusters per MIP",50,0.5,50.);
2292    TH1F *photev = new TH1F("photev","Number of detected photons per MIP",50,0.5,50.);
2293    TH1F *feedev = new TH1F("feedev","Number of feedbacks per MIP",50,0.5,50.);
2294    TH1F *padsmip = new TH1F("padsmip","Number of pads per event inside MIP region",50,0.5,50.);
2295    TH1F *padscl = new TH1F("padscl","Number of pads per event from cluster count",50,0.5,100.);
2296    TH1F *pionspectra = new TH1F("pionspectra","Pion Spectra",200,.5,10.);
2297    TH1F *protonspectra = new TH1F("protonspectra","Proton Spectra",200,.5,10.);
2298    TH1F *kaonspectra = new TH1F("kaonspectra","Kaon Spectra",100,.5,10.);
2299    TH1F *chargedspectra = new TH1F("chargedspectra","Charged particles above 1 GeV Spectra",100,.5,10.);
2300    TH1F *hitsPhi = new TH1F("hitsPhi","Distribution of phi angle of incidence",50,0,360);
2301    TH1F *hitsTheta = new TH1F("hitsTheta","Distribution of theta angle of incidence",50,0,15);
2302    TH1F *Omega1D = new TH1F("omega","Reconstructed Cerenkov angle per track",50,.5,1);
2303    TH1F *Theta = new TH1F("theta","Reconstructed theta incidence angle per track",100,0,15);
2304    TH1F *Phi = new TH1F("phi","Reconstructed phi incidence per track",100,0,360);
2305    TH1F *Omega3D = new TH1F("omega","Reconstructed Cerenkov angle per track",100,.35,.8);
2306    TH1F *PhotonCer = new TH1F("photoncer","Reconstructed Cerenkov angle per photon",100,.35,.8);
2307    TH2F *PadsUsed = new TH2F("padsused","Pads Used for Reconstruction",100,-30,30,100,-30,30);
2308    TH1F *MeanRadius = new TH1F("radius","Mean Radius for reconstructed track",100,0.,20.);
2309    TH2F *identification = new TH2F("identification","Particle Identification",100,1,5,100,0,.8);
2310    TH1F *OriginalOmega = new TH1F("Original Omega","Cerenkov angle per track",100,.35,.8);
2311    TH1F *OriginalPhi = new TH1F("Original Phi","Distribution of phi angle of incidence per track",100,0,360);
2312    TH1F *OriginalTheta = new TH1F("Original Theta","Distribution of theta angle per track",100,0,15);
2313    TH1F *OmegaError = new TH1F("Omega Error","Difference between original an reconstructed cerenkov angle",100,0,.2);
2314    TH1F *PhiError = new TH1F("Phi Error","Difference between original an reconstructed phi angle",100,0,360);
2315    TH1F *ThetaError = new TH1F("Theta Error","Difference between original an reconstructed phi angle",100,0,15);
2316
2317
2318 //   Start loop over events 
2319
2320    Int_t Nh=0;
2321    Int_t pads=0;
2322    Int_t Nh1=0;
2323    Int_t mothers[80000];
2324    Int_t mothers2[80000];
2325    Float_t mom[3];
2326    Int_t nraw=0;
2327    Int_t phot=0;
2328    Int_t feed=0;
2329    Int_t padmip=0;
2330    Float_t x=0,y=0;
2331
2332    Float_t chiSquareOmega = 0;
2333    Float_t chiSquareTheta = 0;
2334    Float_t chiSquarePhi = 0;
2335
2336    Float_t recEffEvent = 0;
2337    Float_t recEffTotal = 0;
2338
2339    Float_t trackglob[3];
2340    Float_t trackloc[3];
2341
2342    
2343    for (Int_t i=0;i<100;i++) mothers[i]=0;
2344
2345    for (int nev=0; nev<= evNumber2; nev++) {
2346        Int_t nparticles = gAlice->GetEvent(nev);
2347        
2348
2349        //cout<<"nev  "<<nev<<endl;
2350        printf ("\n**********************************\nProcessing Event: %d\n",nev);
2351        //cout<<"nparticles  "<<nparticles<<endl;
2352        printf ("Particles       : %d\n\n",nparticles);
2353        if (nev < evNumber1) continue;
2354        if (nparticles <= 0) return;
2355        
2356 // Get pointers to RICH detector and Hits containers
2357        
2358
2359        TTree *TH = TreeH(); 
2360        Stat_t ntracks = TH->GetEntries();
2361
2362        // Start loop on tracks in the hits containers
2363        //Int_t Nc=0;
2364        for (Int_t track=0; track<ntracks;track++) {
2365            
2366          printf ("\nProcessing Track: %d\n",track);
2367          gAlice->ResetHits();
2368          TH->GetEvent(track);
2369          Int_t nhits = pRICH->Hits()->GetEntriesFast();
2370          if (nhits) Nh+=nhits;
2371          printf("Hits            : %d\n",nhits);
2372          for(AliRICHhit* mHit=(AliRICHhit*)pRICH->FirstHit(-1); 
2373              mHit;
2374              mHit=(AliRICHhit*)pRICH->NextHit()) 
2375            {
2376              Int_t nch  = mHit->Chamber();              // chamber number
2377              trackglob[0] = mHit->X();                 // x-pos of hit
2378              trackglob[1] = mHit->Y();
2379              trackglob[2] = mHit->Z();                 // y-pos of hit
2380              //x  = mHit->X();                           // x-pos of hit
2381              //y  = mHit->Z();                           // y-pos
2382              Float_t phi = mHit->Phi();                 //Phi angle of incidence
2383              Float_t theta = mHit->Theta();             //Theta angle of incidence
2384              Int_t index = mHit->Track();
2385              Int_t particle = (Int_t)(mHit->Particle());        
2386              //Int_t freon = (Int_t)(mHit->fLoss);    
2387              Float_t px = mHit->MomX();
2388              Float_t py = mHit->MomY();
2389              
2390              if (TMath::Abs(particle) < 10000000)
2391                {
2392                  PTfinal=TMath::Sqrt(px*px + py*py);
2393                  //printf("PTfinal 0: %f\n",PTfinal);
2394                }
2395         
2396              chamber = &(pRICH->Chamber(nch-1));
2397              
2398              //printf("Nch:%d\n",nch);
2399              
2400              chamber->GlobaltoLocal(trackglob,trackloc);
2401              
2402              chamber->LocaltoGlobal(trackloc,trackglob);
2403              
2404        
2405              x=trackloc[0];
2406              y=trackloc[2];
2407              
2408              hitsX->Fill(x,(float) 1);
2409              hitsY->Fill(y,(float) 1);
2410                
2411               //printf("Particle:%9d\n",particle);
2412               
2413               TParticle *current = (TParticle*)gAlice->Particle(index);
2414               //printf("Particle type: %d\n",sizeoff(Particles));
2415
2416               hitsTheta->Fill(theta,(float) 1);
2417               //hitsPhi->Fill(phi,(float) 1);
2418               //if (pRICH->GetDebugLevel() == -1)
2419               //printf("Theta:%f, Phi:%f\n",theta,phi);
2420               
2421               //printf("Debug Level:%d\n",pRICH->GetDebugLevel());
2422              
2423               if (current->GetPdgCode() < 10000000)
2424                 {
2425                   mip->Fill(x,y,(float) 1);
2426                   //printf("adding mip\n");
2427                   //if (current->Energy() - current->GetCalcMass()>1 && freon==1)
2428                   //{
2429                   hitsPhi->Fill(TMath::Abs(phi),(float) 1);
2430                   //hitsTheta->Fill(theta,(float) 1);
2431                   //printf("Theta:%f, Phi:%f\n",theta,phi);
2432                   //}
2433                 }
2434               
2435               if (TMath::Abs(particle)==211 || TMath::Abs(particle)==111)
2436                 {
2437                   pionspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
2438                 }
2439               if (TMath::Abs(particle)==2212)
2440                 {
2441                   protonspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
2442                 }
2443               if (TMath::Abs(particle)==321 || TMath::Abs(particle)==130 || TMath::Abs(particle)==310 
2444                   || TMath::Abs(particle)==311)
2445                 {
2446                   kaonspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
2447                 }
2448               if(TMath::Abs(particle)==211 || TMath::Abs(particle)==2212 || TMath::Abs(particle)==321)
2449                 {
2450                   if (current->Energy() - current->GetCalcMass()>1)
2451                     chargedspectra->Fill(current->Energy() - current->GetCalcMass(),(float) 1);
2452                 }
2453               //printf("Hits:%d\n",hit);
2454               //printf ("Chamber number:%d x:%f y:%f\n",nch,x,y);
2455               // Fill the histograms
2456               Nh1+=nhits;
2457               h->Fill(x,y,(float) 1);
2458                   //}
2459               //}
2460            }
2461            
2462            Int_t ncerenkovs = pRICH->Cerenkovs()->GetEntriesFast();
2463            //if (current->GetPdgCode() < 50000051 && current->GetPdgCode() > 50000040)
2464            //totalphotonsevent->Fill(ncerenkovs,(float) 1);
2465
2466            if (ncerenkovs) {
2467              printf("Cerenkovs       : %d\n",ncerenkovs);
2468              totalphotonsevent->Fill(ncerenkovs,(float) 1);
2469              for (Int_t hit=0;hit<ncerenkovs;hit++) {
2470                AliRICHCerenkov* cHit = (AliRICHCerenkov*) pRICH->Cerenkovs()->UncheckedAt(hit);
2471                Int_t nchamber = cHit->fChamber;     // chamber number
2472                Int_t index =    cHit->Track();
2473                //Int_t pindex =   (Int_t)(cHit->fIndex);
2474                trackglob[0] = cHit->X();                 // x-pos of hit
2475                trackglob[1] = cHit->Y();
2476                trackglob[2] = cHit->Z();                 // y-pos of hit
2477                //Float_t cx  =      cHit->X();                // x-position
2478                //Float_t cy  =      cHit->Z();                // y-position
2479                Int_t cmother =  cHit->fCMother;      // Index of mother particle
2480                Int_t closs =    (Int_t)(cHit->fLoss);           // How did the particle get lost? 
2481                Float_t cherenkov = cHit->fCerenkovAngle;   //production cerenkov angle
2482                
2483                chamber = &(pRICH->Chamber(nchamber-1));
2484              
2485                //printf("Nch:%d\n",nch);
2486                
2487                chamber->GlobaltoLocal(trackglob,trackloc);
2488              
2489                chamber->LocaltoGlobal(trackloc,trackglob);
2490              
2491        
2492                Float_t cx=trackloc[0];
2493                Float_t cy=trackloc[2];
2494                
2495                //printf ("Cerenkov hit number %d/%d, X:%f, Y:%f\n",hit,ncerenkovs,cx,cy); 
2496
2497
2498                //printf("Particle:%9d\n",index);
2499                                  
2500                TParticle *current = (TParticle*)gAlice->Particle(index);
2501                Float_t energyckov = current->Energy();
2502                
2503                if (current->GetPdgCode() == 50000051)
2504                  {
2505                    if (closs==4)
2506                      {
2507                        feedback->Fill(cx,cy,(float) 1);
2508                        feed++;
2509                      }
2510                  }
2511                if (current->GetPdgCode() == 50000050)
2512                  {
2513                    
2514                    if (closs !=4)
2515                      {
2516                        phspectra2->Fill(energyckov*1e9,(float) 1);
2517                      }
2518                        
2519                    if (closs==4)
2520                      {
2521                        cerenkov->Fill(cx,cy,(float) 1); 
2522                        
2523                        //printf ("Cerenkov hit number %d/%d, X:%d, Y:%d\n",hit,ncerenkovs,cx,cy); 
2524                        
2525                        //TParticle *MIP = (TParticle*)gAlice->Particle(cmother);
2526                        AliRICHhit* mipHit = (AliRICHhit*) pRICH->Hits()->UncheckedAt(0);
2527                        mom[0] = current->Px();
2528                        mom[1] = current->Py();
2529                        mom[2] = current->Pz();
2530                        //mom[0] = cHit->fMomX;
2531                        // mom[1] = cHit->fMomZ;
2532                        //mom[2] = cHit->fMomY;
2533                        //Float_t energymip = MIP->Energy();
2534                        //Float_t Mip_px = mipHit->fMomFreoX;
2535                        //Float_t Mip_py = mipHit->fMomFreoY;
2536                        //Float_t Mip_pz = mipHit->fMomFreoZ;
2537                        //Float_t Mip_px = MIP->Px();
2538                        //Float_t Mip_py = MIP->Py();
2539                        //Float_t Mip_pz = MIP->Pz();
2540                        
2541                        
2542                        
2543                        //Float_t r = mom[0]*mom[0] + mom[1]*mom[1] + mom[2]*mom[2];
2544                        //Float_t rt = TMath::Sqrt(r);
2545                        //Float_t Mip_r = Mip_px*Mip_px + Mip_py*Mip_py + Mip_pz*Mip_pz; 
2546                        //Float_t Mip_rt = TMath::Sqrt(Mip_r);
2547                        //Float_t coscerenkov = (mom[0]*Mip_px + mom[1]*Mip_py + mom[2]*Mip_pz)/(rt*Mip_rt+0.0000001);
2548                        //Float_t cherenkov = TMath::ACos(coscerenkov);
2549                        ckovangle->Fill(cherenkov,(float) 1);                           //Cerenkov angle calculus
2550                        //printf("Cherenkov: %f\n",cherenkov);
2551                        Float_t ckphi=TMath::ATan2(mom[0], mom[2]);
2552                        hckphi->Fill(ckphi,(float) 1);
2553                        
2554                        
2555                        //Float_t mix = MIP->Vx();
2556                        //Float_t miy = MIP->Vy();
2557                        Float_t mx = mipHit->X();
2558                        Float_t my = mipHit->Z();
2559                        //printf("FX %e, FY %e, VX %e, VY %e\n",cx,cy,mx,my);
2560                        Float_t dx = trackglob[0] - mx;
2561                        Float_t dy = trackglob[2] - my;
2562                        //printf("Dx:%f, Dy:%f\n",dx,dy);
2563                        Float_t final_radius = TMath::Sqrt(dx*dx+dy*dy);
2564                        //printf("Final radius:%f\n",final_radius);
2565                        radius->Fill(final_radius,(float) 1);
2566                        
2567                        phspectra1->Fill(energyckov*1e9,(float) 1);
2568                        phot++;
2569                      }
2570                    for (Int_t nmothers=0;nmothers<=ntracks;nmothers++){
2571                      if (cmother == nmothers){
2572                        if (closs == 4)
2573                          mothers2[cmother]++;
2574                        mothers[cmother]++;
2575                      }
2576                    } 
2577                  }
2578              }
2579            }
2580            
2581
2582            if(gAlice->TreeR())
2583              {
2584                Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
2585                gAlice->TreeR()->GetEvent(nent-1);
2586                TClonesArray *Rawclusters = pRICH->RawClustAddress(2);    //  Raw clusters branch
2587                //printf ("Rawclusters:%p",Rawclusters);
2588                Int_t nrawclusters = Rawclusters->GetEntriesFast();
2589                        
2590                if (nrawclusters) {
2591                  printf("Raw Clusters    : %d\n",nrawclusters);
2592                  for (Int_t hit=0;hit<nrawclusters;hit++) {
2593                    AliRICHRawCluster* rcHit = (AliRICHRawCluster*) pRICH->RawClustAddress(2)->UncheckedAt(hit);
2594                    //Int_t nchamber = rcHit->fChamber;     // chamber number
2595                    //Int_t nhit = cHit->fHitNumber;        // hit number
2596                    Int_t qtot = rcHit->fQ;                 // charge
2597                    Float_t fx  =  rcHit->fX;                 // x-position
2598                    Float_t fy  =  rcHit->fY;                 // y-position
2599                    //Int_t type = rcHit->fCtype;             // cluster type ?   
2600                    Int_t mult = rcHit->fMultiplicity;      // How many pads form the cluster
2601                    pads += mult;
2602                    if (qtot > 0) {
2603                      //printf ("fx: %d, fy: %d\n",fx,fy);
2604                      if (fx>(x-4) && fx<(x+4)  && fy>(y-4) && fy<(y+4)) {
2605                        //printf("There %d \n",mult);
2606                        padmip+=mult;
2607                      } else {
2608                        padnumber->Fill(mult,(float) 1);
2609                        nraw++;
2610                        if (mult<4) Clcharge->Fill(qtot,(float) 1);
2611                      }
2612                      
2613                    }
2614                  }
2615                }
2616                
2617                
2618                TClonesArray *RecHits1D = pRICH->RecHitsAddress1D(2);
2619                Int_t nrechits1D = RecHits1D->GetEntriesFast();
2620                //printf (" nrechits:%d\n",nrechits);
2621                
2622                if(nrechits1D)
2623                  {
2624                    for (Int_t hit=0;hit<nrechits1D;hit++) {
2625                      AliRICHRecHit1D* recHit1D = (AliRICHRecHit1D*) pRICH->RecHitsAddress1D(2)->UncheckedAt(hit);
2626                      Float_t r_omega = recHit1D->fOmega;                  // Cerenkov angle
2627                      Float_t *cer_pho = recHit1D->fCerPerPhoton;        // Cerenkov angle per photon
2628                      Int_t *padsx = recHit1D->fPadsUsedX;           // Pads Used fo reconstruction (x)
2629                      Int_t *padsy = recHit1D->fPadsUsedY;           // Pads Used fo reconstruction (y)
2630                      Int_t goodPhotons = recHit1D->fGoodPhotons;    // Number of pads used for reconstruction
2631                      
2632                      Omega1D->Fill(r_omega,(float) 1);
2633                      
2634                      for (Int_t i=0; i<goodPhotons; i++)
2635                        {
2636                          PhotonCer->Fill(cer_pho[i],(float) 1);
2637                          PadsUsed->Fill(padsx[i],padsy[i],1);
2638                          //printf("Angle:%f, pad: %d %d\n",cer_pho[i],padsx[i],padsy[i]);
2639                        }
2640                      
2641                      //printf("Omega: %f, Theta: %f, Phi: %f\n",r_omega,r_theta,r_phi);
2642                    }
2643                  }
2644
2645                
2646                TClonesArray *RecHits3D = pRICH->RecHitsAddress3D(2);
2647                Int_t nrechits3D = RecHits3D->GetEntriesFast();
2648                //printf (" nrechits:%d\n",nrechits);
2649                
2650                if(nrechits3D)
2651                  {
2652                    recEffEvent = 0;
2653                    
2654                    //for (Int_t hit=0;hit<nrechits3D;hit++) {
2655                    AliRICHRecHit3D* recHit3D = (AliRICHRecHit3D*) pRICH->RecHitsAddress3D(2)->UncheckedAt(track);
2656                    Float_t r_omega    = recHit3D->fOmega;                  // Cerenkov angle
2657                    Float_t r_theta    = recHit3D->fTheta;                  // Theta angle of incidence
2658                    Float_t r_phi      = recHit3D->fPhi;                    // Phi angle if incidence
2659                    Float_t meanradius = recHit3D->fMeanRadius;              // Mean radius for reconstructed point
2660                    Float_t originalOmega = recHit3D->fOriginalOmega;       // Real Cerenkov angle
2661                    Float_t originalTheta = recHit3D->fOriginalTheta;       // Real incidence angle
2662                    Float_t originalPhi = recHit3D->fOriginalPhi;           // Real azimuthal angle
2663                    
2664                    
2665                    //correction to track cerenkov angle
2666                    originalOmega = (Float_t) ckovangle->GetMean();
2667                    
2668                    if(diaglevel == 4)
2669                      {
2670                        printf("\nMean cerenkov angle: %f\n", originalOmega);
2671                        printf("Reconstructed cerenkov angle: %f\n",r_omega);
2672                      }
2673                    
2674                    Float_t omegaError = TMath::Abs(originalOmega - r_omega);
2675                    Float_t thetaError = TMath::Abs(originalTheta - r_theta);
2676                    Float_t phiError   = TMath::Abs(originalPhi - r_phi);
2677                    
2678                    //chiSquareOmega += (omegaError/originalOmega)*(omegaError/originalOmega); 
2679                    //chiSquareTheta += (thetaError/originalTheta)*(thetaError/originalTheta); 
2680                    //chiSquarePhi += (phiError/originalPhi)*(phiError/originalPhi); 
2681                    
2682                    if(TMath::Abs(omegaError) < 0.015)
2683                      recEffEvent += 1;
2684                    
2685                    
2686                    
2687                    //printf("rechit %f %f %f %f %f\n",recHit3D->fOmega,recHit3D->fTheta,recHit3D->fPhi, recHit3D->fX,recHit3D->fY);  
2688                    
2689                    Omega3D->Fill(r_omega,(float) 1);
2690                    Theta->Fill(r_theta*180/TMath::Pi(),(float) 1);
2691                    Phi->Fill(r_phi*180/TMath::Pi()-180,(float) 1);
2692                    MeanRadius->Fill(meanradius,(float) 1);
2693                    identification->Fill(PTfinal, r_omega,1);
2694                    OriginalOmega->Fill(originalOmega, (float) 1);
2695                    OriginalTheta->Fill(originalTheta, (float) 1);
2696                    OriginalPhi->Fill(TMath::Abs(originalPhi), (float) 1);
2697                    OmegaError->Fill(omegaError, (float) 1);
2698                    ThetaError->Fill(thetaError, (float) 1);
2699                    PhiError->Fill(phiError, (float) 1);
2700                    
2701                    recEffEvent = recEffEvent;
2702                    recEffTotal += recEffEvent;
2703                    
2704                    Float_t pioncer = acos(sqrt((.139*.139+PTfinal*PTfinal)/(PTfinal*PTfinal*1.285*1.285)));
2705                    Float_t kaoncer = acos(sqrt((.439*.439+PTfinal*PTfinal)/(PTfinal*PTfinal*1.285*1.285)));
2706                    Float_t protoncer = acos(sqrt((.938*.938+PTfinal*PTfinal)/(PTfinal*PTfinal*1.285*1.285)));
2707
2708                    Float_t piondist = TMath::Abs(r_omega - pioncer);
2709                    Float_t kaondist = TMath::Abs(r_omega - kaoncer);
2710                    Float_t protondist = TMath::Abs(r_omega - protoncer);
2711
2712                    if(diaglevel == 4)
2713                      {
2714                        if(pioncer<r_omega)
2715                          {
2716                            printf("Identified as a PION!\n");
2717                            pionCount += 1;
2718                          }
2719                        if(kaoncer<r_omega && pioncer>r_omega)
2720                          {
2721                            if(kaondist>piondist)
2722                              {
2723                                printf("Identified as a PION!\n");
2724                                pionCount += 1;
2725                              }
2726                            else
2727                              {
2728                                printf("Identified as a KAON!\n");
2729                                kaonCount += 1;
2730                              }
2731                          }                       }
2732                        if(protoncer<r_omega && kaoncer>r_omega)
2733                          {
2734                            if(kaondist>protondist)
2735                              {
2736                                printf("Identified as a PROTON!\n");
2737                                protonCount += 1;
2738                              }
2739                            else
2740                              {
2741                                printf("Identified as a KAON!\n");
2742                                pionCount += 1;
2743                              }
2744                          }
2745                        if(protoncer>r_omega)
2746                          {
2747                            printf("Identified as a PROTON!\n");
2748                            protonCount += 1;
2749                          }
2750
2751                        printf("\nReconstruction efficiency: %5.2f%%\n", recEffEvent*100);
2752                  }
2753              }
2754        }
2755    
2756        
2757        for (Int_t nmothers=0;nmothers<ntracks;nmothers++){
2758          totalphotonstrack->Fill(mothers[nmothers],(float) 1);
2759          mother->Fill(mothers2[nmothers],(float) 1);
2760          //printf ("Entries in %d : %d\n",nmothers, mothers[nmothers]);
2761        }
2762        
2763        clusev->Fill(nraw,(float) 1);
2764        photev->Fill(phot,(float) 1);
2765        feedev->Fill(feed,(float) 1);
2766        padsmip->Fill(padmip,(float) 1);
2767        padscl->Fill(pads,(float) 1);
2768        //printf("Photons:%d\n",phot);
2769        phot = 0;
2770        feed = 0;
2771        pads = 0;
2772        nraw=0;
2773        padmip=0;
2774        
2775        
2776        
2777        gAlice->ResetDigits();
2778        //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
2779        gAlice->TreeD()->GetEvent(0);
2780        
2781        if (diaglevel < 4)
2782          {
2783            
2784            
2785            TClonesArray *Digits  = pRICH->DigitsAddress(2);
2786            Int_t ndigits = Digits->GetEntriesFast();
2787            printf("Digits          : %d\n",ndigits);
2788            padsev->Fill(ndigits,(float) 1);
2789            for (Int_t hit=0;hit<ndigits;hit++) {
2790              AliRICHDigit* dHit = (AliRICHDigit*) Digits->UncheckedAt(hit);
2791              Int_t qtot = dHit->Signal();                // charge
2792              Int_t ipx  = dHit->PadX();               // pad number on X
2793              Int_t ipy  = dHit->PadY();               // pad number on Y
2794              //printf("%d, %d\n",ipx,ipy);
2795              if( ipx<=100 && ipy <=100) hc0->Fill(ipx,ipy,(float) qtot);
2796            }
2797          }
2798        
2799        if (diaglevel == 5)
2800          {
2801            for (Int_t ich=0;ich<7;ich++)
2802              {
2803                TClonesArray *Digits = pRICH->DigitsAddress(ich);    //  Raw clusters branch
2804                Int_t ndigits = Digits->GetEntriesFast();
2805                //printf("Digits:%d\n",ndigits);
2806                padsev->Fill(ndigits,(float) 1); 
2807                if (ndigits) {
2808                  for (Int_t hit=0;hit<ndigits;hit++) {
2809                    AliRICHDigit* dHit = (AliRICHDigit*) Digits->UncheckedAt(hit);
2810                    //Int_t nchamber = dHit->GetChamber();     // chamber number
2811                    //Int_t nhit = dHit->fHitNumber;          // hit number
2812                    Int_t qtot = dHit->Signal();                // charge
2813                    Int_t ipx  = dHit->PadX();               // pad number on X
2814                    Int_t ipy  = dHit->PadY();               // pad number on Y
2815                    //Int_t iqpad  = dHit->fQpad;           // charge per pad
2816                    //Int_t rpad  = dHit->fRSec;            // R-position of pad
2817                    //printf ("Pad hit, PadX:%d, PadY:%d\n",ipx,ipy);
2818                    if( ipx<=100 && ipy <=100 && ich==2) hc0->Fill(ipx,ipy,(float) qtot);
2819                    if( ipx<=162 && ipy <=162 && ich==0) hc1->Fill(ipx,ipy,(float) qtot);
2820                    if( ipx<=162 && ipy <=162 && ich==1) hc2->Fill(ipx,ipy,(float) qtot);
2821                    if( ipx<=162 && ipy <=162 && ich==2) hc3->Fill(ipx,ipy,(float) qtot);
2822                    if( ipx<=162 && ipy <=162 && ich==3) hc4->Fill(ipx,ipy,(float) qtot);
2823                    if( ipx<=162 && ipy <=162 && ich==4) hc5->Fill(ipx,ipy,(float) qtot);
2824                    if( ipx<=162 && ipy <=162 && ich==5) hc6->Fill(ipx,ipy,(float) qtot);
2825                    if( ipx<=162 && ipy <=162 && ich==6) hc7->Fill(ipx,ipy,(float) qtot);
2826                  }
2827                }
2828              }
2829          }
2830    }
2831    
2832    if(diaglevel == 4)
2833      {
2834
2835        Stat_t omegaE;
2836        Stat_t thetaE;
2837        Stat_t phiE;
2838        
2839        Stat_t omegaO;
2840        Stat_t thetaO;
2841        Stat_t phiO;
2842        
2843        for(Int_t i=0;i<99;i++)
2844          {
2845            omegaE = OriginalOmega->GetBinContent(i);
2846            if(omegaE != 0)
2847              {
2848                omegaO = Omega3D->GetBinContent(i);
2849                chiSquareOmega += (TMath::Power(omegaE,2) - TMath::Power(omegaO,2))/omegaO;
2850              }
2851
2852            thetaE = OriginalTheta->GetBinContent(i);
2853            if(thetaE != 0)
2854              {
2855                thetaO = Theta->GetBinContent(i);
2856                chiSquareTheta += (TMath::Power(thetaE,2) - TMath::Power(thetaO,2))/thetaO;
2857              }
2858
2859            phiE = OriginalPhi->GetBinContent(i);
2860            if(phiE != 0)
2861              {
2862                phiO = Phi->GetBinContent(i);
2863                chiSquarePhi += (TMath::Power(phiE,2) - TMath::Power(phiO,2))/phiO;
2864              }
2865            
2866            //printf(" o: %f  t: %f  p: %f\n", OriginalOmega->GetBinContent(i), OriginalTheta->GetBinContent(i),OriginalPhi->GetBinContent(i));
2867
2868          }
2869
2870        
2871
2872        printf("\nChi square test values:   Omega - %f\n", chiSquareOmega);
2873        printf("                          Theta - %f\n", chiSquareTheta);
2874        printf("                          Phi   - %f\n", chiSquarePhi);
2875        
2876        printf("\nKolmogorov test values:   Omega - %5.4f\n", Omega3D->KolmogorovTest(OriginalOmega));
2877        printf("                          Theta - %5.4f\n", Theta->KolmogorovTest(OriginalTheta));
2878        printf("                          Phi   - %5.4f\n", Phi->KolmogorovTest(OriginalPhi));
2879
2880        recEffTotal = recEffTotal/evNumber2;
2881        printf("\nTotal reconstruction efficiency: %5.2f%%\n", recEffTotal*100);
2882        printf("\n Pions: %d\n Kaons: %d\n Protons:%d\n",pionCount, kaonCount, protonCount);
2883
2884      }
2885    
2886    
2887    //Create canvases, set the view range, show histograms
2888
2889    TCanvas *c1 = 0;
2890    TCanvas *c2 = 0;
2891    TCanvas *c3 = 0;
2892    TCanvas *c4 = 0;
2893    TCanvas *c5 = 0;
2894    TCanvas *c6 = 0;
2895    TCanvas *c7 = 0;
2896    TCanvas *c8 = 0;
2897    TCanvas *c9 = 0;
2898    TCanvas *c10 = 0;
2899    TCanvas *c11 = 0;
2900    TCanvas *c12 = 0;
2901    TCanvas *c13 = 0;
2902
2903    //TF1* expo = 0;
2904    //TF1* gaus = 0;
2905    
2906    TStyle *mystyle=new TStyle("Plain","mystyle");
2907    mystyle->SetPalette(1,0);
2908    //mystyle->SetTitleYSize(0.2);
2909    //mystyle->SetStatW(0.19);
2910    //mystyle->SetStatH(0.1);
2911    //mystyle->SetStatFontSize(0.01);
2912    //mystyle->SetTitleYSize(0.3);
2913    mystyle->SetFuncColor(2);
2914    //mystyle->SetOptStat(0111);
2915    mystyle->SetDrawBorder(0);
2916    mystyle->SetTitleBorderSize(0);
2917    mystyle->SetOptFit(1111);
2918    mystyle->cd();
2919
2920    
2921    TClonesArray *RecHits3D = pRICH->RecHitsAddress3D(2);
2922    Int_t nrechits3D = RecHits3D->GetEntriesFast();
2923    TClonesArray *RecHits1D = pRICH->RecHitsAddress1D(2);
2924    Int_t nrechits1D = RecHits1D->GetEntriesFast();
2925
2926   switch(diaglevel)
2927      {
2928      case 1:
2929        
2930        c1 = new TCanvas("c1","Alice RICH digits",50,50,300,350);
2931        hc0->SetXTitle("ix (npads)");
2932        hc0->Draw("colz");
2933         
2934 //
2935        c2 = new TCanvas("c2","Hits per type",100,100,600,700);
2936        c2->Divide(2,2);
2937        //c4->SetFillColor(42);
2938
2939        c2->cd(1);
2940        feedback->SetXTitle("x (cm)");
2941        feedback->SetYTitle("y (cm)");
2942        feedback->Draw("colz");
2943        
2944        c2->cd(2);
2945        //mip->SetFillColor(5);
2946        mip->SetXTitle("x (cm)");
2947        mip->SetYTitle("y (cm)");
2948        mip->Draw("colz");
2949        
2950        c2->cd(3);
2951        //cerenkov->SetFillColor(5);
2952        cerenkov->SetXTitle("x (cm)");
2953        cerenkov->SetYTitle("y (cm)"); 
2954        cerenkov->Draw("colz");
2955        
2956        c2->cd(4);
2957        //h->SetFillColor(5);
2958        h->SetXTitle("x (cm)");
2959        h->SetYTitle("y (cm)");
2960        h->Draw("colz");
2961
2962        c3 = new TCanvas("c3","Hits distribution",150,150,600,350);
2963        c3->Divide(2,1);
2964        //c10->SetFillColor(42);
2965        
2966        c3->cd(1);
2967        hitsX->SetFillColor(5);
2968        hitsX->SetXTitle("(cm)");
2969        hitsX->Draw();
2970        
2971        c3->cd(2);
2972        hitsY->SetFillColor(5);
2973        hitsY->SetXTitle("(cm)");
2974        hitsY->Draw();
2975        
2976       
2977        break;
2978 //
2979      case 2:
2980        
2981        c4 = new TCanvas("c4","Photon Spectra",50,50,600,350);
2982        c4->Divide(2,1);
2983        //c6->SetFillColor(42);
2984        
2985        c4->cd(1);
2986        phspectra2->SetFillColor(5);
2987        phspectra2->SetXTitle("energy (eV)");
2988        phspectra2->Draw();
2989        c4->cd(2);
2990        phspectra1->SetFillColor(5);
2991        phspectra1->SetXTitle("energy (eV)");
2992        phspectra1->Draw();
2993        
2994        c5 = new TCanvas("c5","Particles Spectra",100,100,600,700);
2995        c5->Divide(2,2);
2996        //c9->SetFillColor(42);
2997        
2998        c5->cd(1);
2999        pionspectra->SetFillColor(5);
3000        pionspectra->SetXTitle("(GeV)");
3001        pionspectra->Draw();
3002        
3003        c5->cd(2);
3004        protonspectra->SetFillColor(5);
3005        protonspectra->SetXTitle("(GeV)");
3006        protonspectra->Draw();
3007        
3008        c5->cd(3);
3009        kaonspectra->SetFillColor(5);
3010        kaonspectra->SetXTitle("(GeV)");
3011        kaonspectra->Draw();
3012        
3013        c5->cd(4);
3014        chargedspectra->SetFillColor(5);
3015        chargedspectra->SetXTitle("(GeV)");
3016        chargedspectra->Draw();
3017
3018        break;
3019        
3020      case 3:
3021
3022        
3023        if(gAlice->TreeR())
3024          {
3025            c6=new TCanvas("c6","Clusters Statistics",50,50,600,700);
3026            c6->Divide(2,2);
3027            //c3->SetFillColor(42);
3028            
3029            c6->cd(1);
3030            //TPad* c6_1;
3031            //c6_1->SetLogy();
3032            Clcharge->SetFillColor(5);
3033            Clcharge->SetXTitle("ADC counts");
3034            if (evNumber2>10)
3035              {
3036                Clcharge->Fit("expo");
3037                //expo->SetLineColor(2);
3038                //expo->SetLineWidth(3);
3039              }
3040            Clcharge->Draw();
3041            
3042            c6->cd(2);
3043            padnumber->SetFillColor(5);
3044            padnumber->SetXTitle("(counts)");
3045            padnumber->Draw();
3046            
3047            c6->cd(3);
3048            clusev->SetFillColor(5);
3049            clusev->SetXTitle("(counts)");
3050            if (evNumber2>10)
3051              {
3052                clusev->Fit("gaus");
3053                //gaus->SetLineColor(2);
3054                //gaus->SetLineWidth(3);
3055              }
3056            clusev->Draw();
3057            
3058            c6->cd(4);
3059            padsmip->SetFillColor(5);
3060            padsmip->SetXTitle("(counts)");
3061            padsmip->Draw(); 
3062          }
3063        
3064        if(evNumber2<1)
3065          {
3066            c11 = new TCanvas("c11","Cherenkov per Mip",400,10,600,700);
3067            mother->SetFillColor(5);
3068            mother->SetXTitle("counts");
3069            mother->Draw();
3070          }
3071
3072        c7 = new TCanvas("c7","Production Statistics",100,100,600,700);
3073        c7->Divide(2,2);
3074        //c7->SetFillColor(42);
3075        
3076        c7->cd(1);
3077        totalphotonsevent->SetFillColor(5);
3078        totalphotonsevent->SetXTitle("Photons (counts)");
3079        if (evNumber2>10)
3080            {
3081              totalphotonsevent->Fit("gaus");
3082              //gaus->SetLineColor(2);
3083              //gaus->SetLineWidth(3);
3084            }
3085        totalphotonsevent->Draw();
3086        
3087        c7->cd(2);
3088        photev->SetFillColor(5);
3089        photev->SetXTitle("(counts)");
3090        if (evNumber2>10)
3091          {
3092            photev->Fit("gaus");
3093            //gaus->SetLineColor(2);
3094            //gaus->SetLineWidth(3);
3095          }
3096        photev->Draw();
3097        
3098        c7->cd(3);
3099        feedev->SetFillColor(5);
3100        feedev->SetXTitle("(counts)");
3101        if (evNumber2>10)
3102          {
3103            feedev->Fit("gaus");
3104            //gaus->SetLineColor(2);
3105            //gaus->SetLineWidth(3);
3106          }
3107        feedev->Draw();
3108
3109        c7->cd(4);
3110        padsev->SetFillColor(5);
3111        padsev->SetXTitle("(counts)");
3112        if (evNumber2>10)
3113          {
3114            padsev->Fit("gaus");
3115            //gaus->SetLineColor(2);
3116            //gaus->SetLineWidth(3);
3117          }
3118        padsev->Draw();
3119
3120        break;
3121
3122      case 4:
3123        
3124
3125        if(nrechits3D)
3126          {
3127            c8 = new TCanvas("c8","3D reconstruction of Phi angle",50,50,300,1050);
3128            c8->Divide(1,3);
3129            //c2->SetFillColor(42);
3130            
3131            
3132            // data per hit
3133            c8->cd(1);
3134            hitsPhi->SetFillColor(5);
3135            if (evNumber2>10)
3136              hitsPhi->Fit("gaus");
3137            hitsPhi->Draw();
3138            
3139             //data per track
3140            c8->cd(2);
3141            OriginalPhi->SetFillColor(5);
3142            if (evNumber2>10)
3143              OriginalPhi->Fit("gaus");
3144            OriginalPhi->Draw();
3145
3146            //recontructed data
3147            c8->cd(3);
3148            Phi->SetFillColor(5);
3149            if (evNumber2>10)
3150              Phi->Fit("gaus");
3151            Phi->Draw();
3152
3153            c9 = new TCanvas("c9","3D reconstruction of theta angle",75,75,300,1050);
3154            c9->Divide(1,3);
3155
3156            // data per hit
3157            c9->cd(1);
3158            hitsTheta->SetFillColor(5);
3159            if (evNumber2>10)
3160              hitsTheta->Fit("gaus");
3161            hitsTheta->Draw();
3162            
3163            //data per track
3164            c9->cd(2);
3165            OriginalTheta->SetFillColor(5);
3166            if (evNumber2>10)
3167              OriginalTheta->Fit("gaus");
3168            OriginalTheta->Draw();
3169
3170            //recontructed data
3171            c9->cd(3);
3172            Theta->SetFillColor(5);
3173            if (evNumber2>10)
3174              Theta->Fit("gaus");
3175            Theta->Draw();
3176
3177            c10 = new TCanvas("c10","3D reconstruction of cherenkov angle",100,100,300,1050);
3178            c10->Divide(1,3);
3179
3180            // data per hit
3181            c10->cd(1);
3182            ckovangle->SetFillColor(5);
3183            ckovangle->SetXTitle("angle (radians)");
3184            if (evNumber2>10)
3185              ckovangle->Fit("gaus");
3186            ckovangle->Draw();
3187            
3188            //data per track
3189            c10->cd(2);
3190            OriginalOmega->SetFillColor(5);
3191            OriginalOmega->SetXTitle("angle (radians)");
3192            if (evNumber2>10)
3193              OriginalOmega->Fit("gaus");
3194            OriginalOmega->Draw();
3195
3196            //recontructed data
3197            c10->cd(3);
3198            Omega3D->SetFillColor(5);
3199            Omega3D->SetXTitle("angle (radians)");
3200            if (evNumber2>10)
3201              Omega3D->Fit("gaus");
3202            Omega3D->Draw(); 
3203
3204
3205            c11 = new TCanvas("c11","3D reconstruction of mean radius",125,125,300,700);
3206            c11->Divide(1,2);
3207
3208            // data per hit
3209            c11->cd(1);
3210            radius->SetFillColor(5);
3211            radius->SetXTitle("radius (cm)");
3212            radius->Draw();
3213
3214            //recontructed data
3215            c11->cd(2);
3216            MeanRadius->SetFillColor(5);
3217            MeanRadius->SetXTitle("radius (cm)");
3218            MeanRadius->Draw();
3219
3220            
3221            c12 = new TCanvas("c12","Cerenkov angle vs. Momentum",150,150,550,350);
3222
3223            c12->cd(1);
3224            identification->SetFillColor(5);
3225            identification->SetXTitle("Momentum (GeV/c)");
3226            identification->SetYTitle("Cherenkov angle (radians)");
3227            
3228            //Float_t pionmass=.139;
3229            //Float_t kaonmass=.493;
3230            //Float_t protonmass=.938;
3231            //Float_t n=1.295;
3232            
3233            TF1 *pionplot = new TF1("pion","acos(sqrt((.139*.139+x*x)/(x*x*1.285*1.285)))",1,5);
3234            TF1 *kaonplot = new TF1("kaon","acos(sqrt((.439*.439+x*x)/(x*x*1.285*1.285)))",1,5);
3235            TF1 *protonplot = new TF1("proton","acos(sqrt((.938*.938+x*x)/(x*x*1.285*1.285)))",1,5);
3236            
3237            identification->Draw();
3238
3239            pionplot->SetLineColor(5);
3240            pionplot->Draw("same");
3241
3242            kaonplot->SetLineColor(4);
3243            kaonplot->Draw("same");
3244
3245            protonplot->SetLineColor(3);
3246            protonplot->Draw("same");
3247            //identification->Draw("same");
3248
3249
3250
3251            c13 = new TCanvas("c13","Reconstruction Errors",200,200,900,350);
3252            c13->Divide(3,1);
3253
3254            c13->cd(1);
3255            PhiError->SetFillColor(5);
3256            if (evNumber2>10)
3257              PhiError->Fit("gaus");
3258            PhiError->Draw();
3259            c13->cd(2);
3260            ThetaError->SetFillColor(5);
3261            if (evNumber2>10)
3262              ThetaError->Fit("gaus");
3263            ThetaError->Draw();
3264            c13->cd(3);
3265            OmegaError->SetFillColor(5);
3266            OmegaError->SetXTitle("angle (radians)");
3267            if (evNumber2>10)
3268              OmegaError->Fit("gaus");
3269            OmegaError->Draw();
3270            
3271          }
3272        
3273        if(nrechits1D)
3274          {
3275            c9 = new TCanvas("c9","1D Reconstruction",100,100,1100,700);
3276            c9->Divide(3,2);
3277            //c5->SetFillColor(42);
3278            
3279            c9->cd(1);
3280            ckovangle->SetFillColor(5);
3281            ckovangle->SetXTitle("angle (radians)");
3282            ckovangle->Draw();
3283            
3284            c9->cd(2);
3285            radius->SetFillColor(5);
3286            radius->SetXTitle("radius (cm)");
3287            radius->Draw();
3288            
3289            c9->cd(3);
3290            hc0->SetXTitle("pads");
3291            hc0->Draw("box"); 
3292            
3293            c9->cd(5);
3294            Omega1D->SetFillColor(5);
3295            Omega1D->SetXTitle("angle (radians)");
3296            Omega1D->Draw();
3297            
3298            c9->cd(4);
3299            PhotonCer->SetFillColor(5);
3300            PhotonCer->SetXTitle("angle (radians)");
3301            PhotonCer->Draw();
3302            
3303            c9->cd(6);
3304            PadsUsed->SetXTitle("pads");
3305            PadsUsed->Draw("box"); 
3306          }
3307        
3308        break;
3309        
3310      case 5:
3311        
3312        printf("Drawing histograms.../n");
3313
3314        //if (ndigits)
3315          //{
3316        c10 = new TCanvas("c10","Alice RICH digits",50,50,1200,700);
3317        c1->Divide(4,2);
3318        //c1->SetFillColor(42);
3319        
3320        c10->cd(1);
3321        hc1->SetXTitle("ix (npads)");
3322        hc1->Draw("box");
3323        c10->cd(2);
3324        hc2->SetXTitle("ix (npads)");
3325        hc2->Draw("box");
3326        c10->cd(3);
3327        hc3->SetXTitle("ix (npads)");
3328        hc3->Draw("box");
3329        c10->cd(4);
3330        hc4->SetXTitle("ix (npads)");
3331        hc4->Draw("box");
3332        c10->cd(5);
3333        hc5->SetXTitle("ix (npads)");
3334        hc5->Draw("box");
3335        c10->cd(6);
3336        hc6->SetXTitle("ix (npads)");
3337        hc6->Draw("box");
3338        c10->cd(7);
3339        hc7->SetXTitle("ix (npads)");
3340        hc7->Draw("box");
3341        c10->cd(8);
3342        hc0->SetXTitle("ix (npads)");
3343        hc0->Draw("box");
3344          //}
3345 //
3346        c11 = new TCanvas("c11","Hits per type",100,100,600,700);
3347        c11->Divide(2,2);
3348        //c4->SetFillColor(42);
3349        
3350        c11->cd(1);
3351        feedback->SetXTitle("x (cm)");
3352        feedback->SetYTitle("y (cm)");
3353        feedback->Draw();
3354        
3355        c11->cd(2);
3356        //mip->SetFillColor(5);
3357        mip->SetXTitle("x (cm)");
3358        mip->SetYTitle("y (cm)");
3359        mip->Draw();
3360        
3361        c11->cd(3);
3362        //cerenkov->SetFillColor(5);
3363        cerenkov->SetXTitle("x (cm)");
3364        cerenkov->SetYTitle("y (cm)"); 
3365        cerenkov->Draw();
3366        
3367        c11->cd(4);
3368        //h->SetFillColor(5);
3369        h->SetXTitle("x (cm)");
3370        h->SetYTitle("y (cm)");
3371        h->Draw();
3372
3373        c12 = new TCanvas("c12","Hits distribution",150,150,600,350);
3374        c12->Divide(2,1);
3375        //c10->SetFillColor(42);
3376        
3377        c12->cd(1);
3378        hitsX->SetFillColor(5);
3379        hitsX->SetXTitle("(cm)");
3380        hitsX->Draw();
3381        
3382        c12->cd(2);
3383        hitsY->SetFillColor(5);
3384        hitsY->SetXTitle("(cm)");
3385        hitsY->Draw();
3386        
3387        break;
3388        
3389      }
3390        
3391
3392    // calculate the number of pads which give a signal
3393
3394
3395    //Int_t Np=0;
3396    /*for (Int_t i=0;i< NpadX;i++) {
3397        for (Int_t j=0;j< NpadY;j++) {
3398            if (Pad[i][j]>=6){
3399                Np+=1;
3400            }
3401        }
3402    }*/
3403    //printf("The total number of pads which give a signal: %d %d\n",Nh,Nh1);
3404    printf("\nEnd of analysis\n");
3405    printf("**********************************\n");
3406 }//void AliRICH::DiagnosticsSE(Int_t diaglevel,Int_t evNumber1,Int_t evNumber2)
3407 //______________________________________________________________________________
3408 void AliRICH::MakeBranchInTreeD(TTree *treeD, const char *file)
3409 {// Create TreeD branches for the RICH.
3410   if(GetDebug())Info("MakeBranchInTreeD","Start.");
3411
3412   const Int_t kBufferSize = 4000;
3413   char branchname[30];
3414     
3415   //
3416   // one branch for digits per chamber
3417   // 
3418   for (Int_t i=0; i<kNCH ;i++) {
3419     sprintf(branchname,"%sDigits%d",GetName(),i+1);     
3420     if (fDchambers && treeD) {
3421       MakeBranchInTree(treeD,branchname, &((*fDchambers)[i]), kBufferSize, file);
3422 //      printf("Making Branch %s for digits in chamber %d\n",branchname,i+1);
3423     }
3424   }
3425 }
3426 //______________________________________________________________________________
3427 void AliRICH::MakeBranch(Option_t* option)
3428 {//Create Tree branches for the RICH.
3429   if(GetDebug())Info("MakeBranch","Start with option= %s.",option);
3430     
3431   const Int_t kBufferSize = 4000;
3432   char branchname[20];
3433       
3434    
3435   const char *cH = strstr(option,"H");
3436   const char *cD = strstr(option,"D");
3437   const char *cR = strstr(option,"R");
3438   const char *cS = strstr(option,"S");
3439
3440
3441   if(cH&&TreeH()){
3442     if(!fHits) fHits=new TClonesArray("AliRICHhit",1000  );
3443     if(!fCerenkovs) fCerenkovs  = new TClonesArray("AliRICHCerenkov",1000);
3444     MakeBranchInTree(TreeH(),"RICHCerenkov", &fCerenkovs, kBufferSize, 0) ;
3445
3446     //kir if(!fSDigits) fSDigits    = new TClonesArray("AliRICHdigit",100000);
3447     //kir MakeBranchInTree(TreeH(),"RICHSDigits", &fSDigits, kBufferSize, 0) ;
3448   }     
3449   AliDetector::MakeBranch(option);//this is after cH because we need to guarantee that fHits array is created
3450       
3451   if(cS&&fLoader->TreeS()){  
3452     if(!fSDigits) fSDigits=new TClonesArray("AliRICHdigit",100000);
3453     MakeBranchInTree(fLoader->TreeS(),"RICH",&fSDigits,kBufferSize,0) ;
3454   }
3455    
3456   int i;
3457   if (cD&&fLoader->TreeD()){
3458     if(!fDchambers){
3459       fDchambers=new TObjArray(kNCH);    // one branch for digits per chamber
3460       for(i=0;i<kNCH;i++){ 
3461         fDchambers->AddAt(new TClonesArray("AliRICHDigit",10000), i); 
3462       }       
3463     }
3464     for (i=0; i<kNCH ;i++) 
3465       {
3466         sprintf(branchname,"%sDigits%d",GetName(),i+1); 
3467         MakeBranchInTree(fLoader->TreeD(),branchname, &((*fDchambers)[i]), kBufferSize, 0);
3468       }
3469    }
3470
3471   if (cR&&gAlice->TreeR()){//one branch for raw clusters per chamber
3472     Int_t i;
3473     if (fRawClusters == 0x0 ) 
3474      {
3475        fRawClusters = new TObjArray(kNCH);
3476        for (i=0; i<kNCH ;i++) 
3477          {
3478            fRawClusters->AddAt(new TClonesArray("AliRICHRawCluster",10000), i); 
3479          }
3480      }
3481      
3482     if (fRecHits1D == 0x0) 
3483      {
3484         fRecHits1D = new TObjArray(kNCH);
3485         for (i=0; i<kNCH ;i++) 
3486          {
3487           fRecHits1D->AddAt(new TClonesArray("AliRICHRecHit1D",1000), i);
3488          }
3489      }
3490
3491     if (fRecHits3D == 0x0) 
3492      {
3493         fRecHits3D = new TObjArray(kNCH);
3494         for (i=0; i<kNCH ;i++) 
3495          {
3496           fRecHits3D->AddAt(new TClonesArray("AliRICHRecHit3D",1000), i);
3497          }
3498      }
3499        
3500     for (i=0; i<kNCH ;i++){
3501        sprintf(branchname,"%sRawClusters%d",GetName(),i+1);      
3502        MakeBranchInTree(gAlice->TreeR(),branchname, &((*fRawClusters)[i]), kBufferSize, 0);
3503        sprintf(branchname,"%sRecHits1D%d",GetName(),i+1);
3504        MakeBranchInTree(fLoader->TreeR(),branchname, &((*fRecHits1D)[i]), kBufferSize, 0);
3505        sprintf(branchname,"%sRecHits3D%d",GetName(),i+1);  
3506        MakeBranchInTree(fLoader->TreeR(),branchname, &((*fRecHits3D)[i]), kBufferSize, 0);
3507      }
3508    }//if (cR && gAlice->TreeR())
3509   if(GetDebug())Info("MakeBranch","Stop.");   
3510 }
3511 //______________________________________________________________________________
3512 void AliRICH::SetTreeAddress()
3513 {//Set branch address for the Hits and Digits Tree.
3514   if(GetDebug())Info("SetTreeAddress","Start.");
3515   
3516   char branchname[20];
3517   Int_t i;
3518
3519     
3520   TBranch *branch;
3521   TTree *treeH = fLoader->TreeH();
3522   TTree *treeD = fLoader->TreeD();
3523   TTree *treeR = fLoader->TreeR();
3524   TTree *treeS = fLoader->TreeS();
3525     
3526   if(treeH){
3527     if(GetDebug())Info("SetTreeAddress","tree H is requested.");
3528     if(fHits==0x0) fHits=new TClonesArray("AliRICHhit",1000); 
3529     
3530     branch = treeH->GetBranch("RICHCerenkov");
3531     if(branch){
3532       if (fCerenkovs == 0x0) fCerenkovs  = new TClonesArray("AliRICHCerenkov",1000); 
3533         branch->SetAddress(&fCerenkovs);
3534     }
3535        
3536 //kir      branch = treeH->GetBranch("RICHSDigits");
3537 //kir      if (branch) 
3538 //kir       {
3539 //kir         if (fSDigits == 0x0) fSDigits    = new TClonesArray("AliRICHdigit",100000);
3540 //kir         branch->SetAddress(&fSDigits);
3541 //kir       }
3542   }//if(treeH)
3543  
3544    //this is after TreeH because we need to guarantee that fHits array is created
3545   AliDetector::SetTreeAddress();
3546     
3547   if(treeS){
3548     if(GetDebug())Info("SetTreeAddress","tree S is requested.");
3549     branch = treeS->GetBranch("RICH");
3550     if(branch){
3551       if(!fSDigits) fSDigits=new TClonesArray("AliRICHdigit",100000);
3552       branch->SetAddress(&fSDigits);
3553     }
3554   }
3555     
3556     
3557   if(treeD){
3558     if(GetDebug())Info("SetTreeAddress","tree D is requested.");
3559
3560       if (fDchambers == 0x0) 
3561         {
3562            fDchambers = new TObjArray(kNCH);
3563            for (i=0; i<kNCH ;i++) 
3564              {
3565                fDchambers->AddAt(new TClonesArray("AliRICHDigit",10000), i); 
3566              }
3567         }
3568       
3569       for (i=0; i<kNCH; i++) {
3570         sprintf(branchname,"%sDigits%d",GetName(),i+1);
3571         if (fDchambers) {
3572            branch = treeD->GetBranch(branchname);
3573            if (branch) branch->SetAddress(&((*fDchambers)[i]));
3574         }
3575       }
3576     }
3577     
3578   if(treeR){
3579     if(GetDebug())Info("SetTreeAddress","tree R is requested.");
3580
3581     if (fRawClusters == 0x0 ) 
3582      {
3583        fRawClusters = new TObjArray(kNCH);
3584        for (i=0; i<kNCH ;i++) 
3585          {
3586            fRawClusters->AddAt(new TClonesArray("AliRICHRawCluster",10000), i); 
3587          }
3588      }
3589      
3590     if (fRecHits1D == 0x0) 
3591      {
3592         fRecHits1D = new TObjArray(kNCH);
3593         for (i=0; i<kNCH ;i++) 
3594          {
3595           fRecHits1D->AddAt(new TClonesArray("AliRICHRecHit1D",1000), i);
3596          }
3597      }
3598
3599     if (fRecHits3D == 0x0) 
3600      {
3601         fRecHits3D = new TObjArray(kNCH);
3602         for (i=0; i<kNCH ;i++) 
3603          {
3604           fRecHits3D->AddAt(new TClonesArray("AliRICHRecHit3D",1000), i);
3605          }
3606      }
3607     
3608     for (i=0; i<kNCH; i++) {
3609           sprintf(branchname,"%sRawClusters%d",GetName(),i+1);
3610           if (fRawClusters) {
3611               branch = treeR->GetBranch(branchname);
3612               if (branch) branch->SetAddress(&((*fRawClusters)[i]));
3613           }
3614     }
3615       
3616     for (i=0; i<kNCH; i++) {
3617         sprintf(branchname,"%sRecHits1D%d",GetName(),i+1);
3618         if (fRecHits1D) {
3619           branch = treeR->GetBranch(branchname);
3620           if (branch) branch->SetAddress(&((*fRecHits1D)[i]));
3621           }
3622      }
3623       
3624      for (i=0; i<kNCH; i++) {
3625         sprintf(branchname,"%sRecHits3D%d",GetName(),i+1);
3626         if (fRecHits3D) {
3627           branch = treeR->GetBranch(branchname);
3628           if (branch) branch->SetAddress(&((*fRecHits3D)[i]));
3629           }
3630       } 
3631       
3632   }//if(treeR)
3633   if(GetDebug())Info("SetTreeAddress","Stop.");
3634 }//void AliRICH::SetTreeAddress()
3635 //______________________________________________________________________________
3636 void AliRICH::Print(Option_t *option)const
3637 {
3638   TObject::Print(option);
3639   GetGeometryModel(0)->Print(option);
3640   GetSegmentationModel(0)->Print(option);
3641   GetResponseModel(0)->Print(option);
3642 }//void AliRICH::Print(Option_t *option)const
3643