]> git.uio.no Git - u/mrichter/AliRoot.git/blob - RICH/AliRICHDetect.cxx
Removal of useless dependencies via forward declarations
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /*
17   $Log$
18   Revision 1.5  2000/06/30 16:30:28  dibari
19   Disabled writing to rechits.
20
21   Revision 1.4  2000/06/15 15:46:59  jbarbosa
22   Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
23
24   Revision 1.3  2000/06/13 13:15:41  jbarbosa
25   Still some code cleanup done (variable names)
26
27   Revision 1.2  2000/06/12 15:19:30  jbarbosa
28   Cleaned up version.
29
30   Revision 1.1  2000/04/19 13:05:14  morsch
31   J. Barbosa's spot reconstruction algorithm.
32
33 */
34
35
36 #include "AliRICH.h"
37 #include "AliRICHPoints.h"
38 #include "AliRICHDetect.h"
39 #include "AliRICHHit.h"
40 #include "AliRICHDigit.h"
41 #include "AliRun.h"
42 #include "TParticle.h"
43 #include "TTree.h"
44 #include "TMath.h"
45 #include "TRandom.h"
46
47
48
49 ClassImp(AliRICHDetect)
50 //___________________________________________
51 AliRICHDetect::AliRICHDetect() : TObject()
52 {
53
54 // Default constructor 
55
56     //fChambers = 0;
57 }
58
59 //___________________________________________
60 AliRICHDetect::AliRICHDetect(const char *name, const char *title)
61     : TObject()
62 {
63     
64 // Constructor
65
66     /*fChambers = new TObjArray(7);
67     for (Int_t i=0; i<7; i++) {
68     
69         (*fChambers)[i] = new AliRICHchamber();  
70         
71     } */     
72 }
73
74
75 void AliRICHDetect::Detect()
76 {       
77     
78 //
79 // Detection algorithm
80
81
82   //printf("Detection started!\n");
83   Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
84   //Float_t theta,phi,realomega,realtheta;
85   Int_t i,j,k;
86   
87   //const Float_t Noise_Level=0;          //Noise Level in percentage of mesh points
88   //const Float_t t=0.6;                        //Softening of Noise Correction (factor)
89   
90   const Float_t kPi=3.1415927;          
91   
92   const Float_t kHeight=10;                       //Distance from Radiator to Pads in pads
93   
94   
95   const Int_t kDimensionTheta=100;              //Matrix dimension for angle Detection
96   const Int_t kDimensionPhi=100;
97   const Int_t kDimensionOmega=100;
98   
99   //const Float_t SPOTp=.2;             //Percentage of spot action
100   //const Int_t np=500;         //Number of points to reconstruct elipse 
101   const Float_t kMaxOmega=65*kPi/180;           //Maximum Cherenkov angle to identify
102   
103   Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
104   //Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
105   
106   steptheta=kPi/kDimensionTheta;
107   stepphi=kPi/kDimensionPhi;
108
109   AliRICHChamber*       iChamber;
110   
111   AliRICH *pRICH  = (AliRICH*)gAlice->GetDetector("RICH");
112   Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
113   //Int_t ntrks = gAlice->GetNtrack();
114   
115   Float_t trackglob[3];
116   Float_t trackloc[3];
117
118   //printf("Got ntracks:%d\n",ntracks);
119   /*TVector *xp = new TVector(1000);
120   TVector *yp = new TVector(1000);
121   TVector *zp = new TVector(1000);
122   TVector *ptrk = new TVector(1000);
123   TVector *phit = new TVector(1000);*/
124   
125   //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
126     
127         
128   for (Int_t track=0; track<ntracks;track++) {
129     gAlice->ResetHits();
130     gAlice->TreeH()->GetEvent(track);
131     TClonesArray *pHits  = pRICH->Hits();
132     if (pHits == 0) return;
133     Int_t nhits = pHits->GetEntriesFast();
134     if (nhits == 0) continue;
135     Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
136     gAlice->TreeD()->GetEvent(nent-1);
137     AliRICHHit *mHit = 0;
138     AliRICHDigit *points = 0;
139     //Int_t npoints=0;
140     
141     Int_t counter=0;
142     //Initialization
143     for(i=0;i<kDimensionTheta;i++)
144       {
145         for(j=0;j<kDimensionPhi;j++)
146           {
147             for(k=0;k<kDimensionOmega;k++)
148               {
149                 counter++;
150                 point[i][j][k]=0;
151                 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
152                 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
153                 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
154                 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
155               }
156           }
157       }
158     mHit = (AliRICHHit*) pHits->UncheckedAt(0);
159     //printf("Aqui vou eu\n");
160     Int_t nch  = mHit->fChamber;
161     //printf("Aqui fui eu\n");
162     trackglob[0] = mHit->X();
163     trackglob[1] = mHit->Y();
164     trackglob[2] = mHit->Z();
165
166     cx=trackglob[0];
167     cy=trackglob[2];
168     
169     
170     //printf("Chamber processed:%d\n",nch);
171     printf("Center processed: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
172
173     iChamber = &(pRICH->Chamber(nch-1));
174     
175     //printf("Nch:%d\n",nch);
176
177     iChamber->GlobaltoLocal(trackglob,trackloc);
178     
179     //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
180
181
182     iChamber->LocaltoGlobal(trackloc,trackglob);
183        
184     //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
185     
186     
187      
188
189     TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);   
190     Int_t ndigits = pDigits->GetEntriesFast();
191     
192     //printf("Got %d digits\n",ndigits);
193
194     //printf("Starting calculations\n");
195     
196     for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
197       {                 
198         for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
199           {                    
200             for (Int_t dig=0;dig<ndigits;dig++)
201               { 
202                 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
203                 
204                 x=points->fPadX-cx;
205                 y=points->fPadY-cy;
206                 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
207                 //cout<<"x="<<x<<" y="<<y<<endl;
208                 
209                 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
210                   {
211                     
212                     l=kHeight/cos(theta);
213                     
214                     aux1=-y*sin(phi)+x*cos(phi);
215                     aux2=y*cos(phi)+x*sin(phi);
216                     aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
217                     //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
218                     
219                     omega=atan(sqrt(aux3));
220                     //printf("Omega: %f\n",omega);
221                     
222                     //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
223                     //{Int_t lixo;cin>>lixo;}
224                     if(omega<kMaxOmega)point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(omega*kDimensionOmega/kMaxOmega)]+=1;    
225                     //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
226                   }
227                 }
228           }
229       } 
230     
231     
232     
233     //SPOT execute twice
234     /*for(s=1;i<=2;s++)
235       {
236         //buffer copy
237         for(i=0;i<=kDimensionTheta;i++)
238           for(j=0;j<=kDimensionPhi;j++)
239             for(k=0;k<=kDimensionOmega;k++)
240               point1[i][j][k]=point[i][j][k];   
241         
242         cout<<"COM SPOT!"<<endl;{Int_t lixo;cin>>lixo;}                                 
243         //SPOT algorithm                        
244         for(i=1;i<kDimensionTheta;i++)
245           for(j=1;j<kDimensionPhi;j++)
246             for(k=1;k<kDimensionOmega;k++)
247               {
248                 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
249                    (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
250                    (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
251                   {
252                     //cout<<"SPOT"<<endl;
253                     //Execute SPOT on point                                                                                             
254                     point1[i][j][k]+=int(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));    
255                     point1[i-1][k][j]=int(SPOTp*point[i-1][k][j]);
256                     point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
257                     point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
258                     point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
259                     point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
260                     point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
261                   }
262               }
263         //copy from buffer copy
264         for(i=1;i<kDimensionTheta;i++)
265           for(j=1;j<kDimensionPhi;j++)
266             for(k=1;k<kDimensionOmega;k++)
267               point[i][j][k]=point1[i][j][k];                                                                           
268           
269           }*/
270     
271     
272     //Identification is equivalent to maximum determination
273     max=0;maxi=0;maxj=0;maxk=0;
274     
275     //cout<<"Proceeding to Identification"<<endl;
276     
277     for(i=1;i<kDimensionTheta-3;i++)
278       for(j=1;j<=kDimensionPhi-3;j++)
279         for(k=0;k<=kDimensionOmega;k++)
280           if(point[i][j][k]>max)
281             {
282               //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
283               maxi=i;maxj=j;maxk=k;
284               max=point[i][j][k];
285               //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
286             }
287     
288     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
289     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
290
291
292     //fscanf(omegas,"%f",&realomega);
293     //fscanf(thetas,"%f",&realtheta);
294     //printf("Real Omega: %f",realomega);                       
295     //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;           
296     
297     //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
298     
299     /*for(j=0;j<np;j++)
300       pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/               
301
302
303     //Start filling rec. hits
304     
305     Float_t rechit[6];
306     
307     rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
308     rechit[1]   = (Float_t)( maxj*kPi/(kDimensionPhi*4));
309     rechit[2] = (Float_t)( maxk*kPi/(kDimensionOmega*4));
310     //rechit[0] = (Float_t)( maxi);
311     //rechit[1]   = (Float_t)( maxj);
312     //rechit[2] = (Float_t)( maxk);
313     rechit[3] = cx;
314     rechit[4] = cy;
315     rechit[5] = 0.5;
316     
317     //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
318     
319     // fill rechits
320     //pRICH->AddRecHit(nch-1,rechit);
321   }                     
322   //printf("\n\n\n\n");
323   gAlice->TreeR()->Fill();
324   //TTree *TR=gAlice->TreeR();
325   //Stat_t ndig=TR->GetEntries();
326   TClonesArray *fRec;
327   for (i=0;i<kNCH;i++) {
328     fRec=pRICH->RecHitsAddress(i);
329     int ndig=fRec->GetEntriesFast();
330     printf ("Chamber %d, rings %d\n",i,ndig);
331   }
332   //printf("Number of rec. hits: %d",ndig);
333   pRICH->ResetRecHits();
334   //char hname[30];
335   //sprintf(hname,"TreeR%d",track);
336   //gAlice->TreeR()->Write(hname);
337         
338 }
339
340 Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
341 {
342
343 //
344 // Calculates area of an ellipse for given incidence angles    
345
346
347     Float_t area;
348     const Float_t kHeight=9.25;                       //Distance from Radiator to Pads in pads
349     
350     area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
351     
352     return (area);
353 }
354
355 /*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
356 // allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] 
357 {
358 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
359 Int_t ***t;
360
361 // allocate pointers to pointers to rows 
362 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
363 if (!t) printf("allocation failure 1 in f3tensor()");
364 t += NR_END;
365 t -= nrl;
366
367 // allocate pointers to rows and set pointers to them 
368 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
369 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
370 t[nrl] += NR_END;
371 t[nrl] -= ncl;
372
373 // allocate rows and set pointers to them 
374 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
375 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
376 t[nrl][ncl] += NR_END;
377 t[nrl][ncl] -= ndl;
378
379 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
380 for(i=nrl+1;i<=nrh;i++) {
381 t[i]=t[i-1]+ncol;
382 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
383 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
384 }
385
386 // return pointer to array of pointers to rows 
387 return t;
388 }*/
389
390 /*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
391   {
392   Int_t s;
393   Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
394   
395   //cout<<"fiducial="<<fiducial<<endl;
396   
397   c0=0;c1=0;c2=0;
398   while((c1*c1-4*c2*c0)<=0)
399   {     
400   //Choose which side to go...
401   if(aleat(1)>.5) s=1; else s=-1;
402   //Trial a y
403   y=s*aleat(fiducial);          
404   Float_t alfa1=alfa*kPi/180;
405   Float_t theta1=theta*kPi/180;
406   Float_t omega1=omega*kPi/180;
407   //Solve the eq for a trial x
408   c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
409   c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
410   c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
411   //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
412   }
413   //Choose which side to go...
414   if(aleat(1)>.5) s=1; else s=-1;
415   xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
416   //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
417   fprintf(final,"%f %f\n",xtrial,cy+y);
418   }*/
419
420
421
422
423
424