a3e83c0a77db0822ef32fcdd7b58b3c85b818c9f
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /*
17   $Log$
18   Revision 1.14  2001/05/14 13:25:54  hristov
19   stdlib.h included (for Alpha)
20
21   Revision 1.13  2001/05/10 12:26:31  jbarbosa
22   Totally reworked version of reconstruction algorithm.
23
24   Revision 1.12  2001/02/27 22:15:03  jbarbosa
25   Removed compiler warning.
26
27   Revision 1.11  2001/02/27 15:21:46  jbarbosa
28   Transition to SDigits.
29
30   Revision 1.10  2001/02/13 20:39:06  jbarbosa
31   Changes to make it work with new IO.
32
33   Revision 1.9  2001/01/22 21:39:11  jbarbosa
34   Several tune-ups
35
36   Revision 1.8  2000/11/15 15:52:53  jbarbosa
37   Turned on spot algorithm.
38
39   Revision 1.7  2000/11/01 15:37:05  jbarbosa
40   Updated to use its own rec. point object.
41
42   Revision 1.6  2000/10/02 21:28:12  fca
43   Removal of useless dependecies via forward declarations
44
45   Revision 1.5  2000/06/30 16:30:28  dibari
46   Disabled writing to rechits.
47
48   Revision 1.4  2000/06/15 15:46:59  jbarbosa
49   Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
50
51   Revision 1.3  2000/06/13 13:15:41  jbarbosa
52   Still some code cleanup done (variable names)
53
54   Revision 1.2  2000/06/12 15:19:30  jbarbosa
55   Cleaned up version.
56
57   Revision 1.1  2000/04/19 13:05:14  morsch
58   J. Barbosa's spot reconstruction algorithm.
59
60 */
61
62 #include <stdlib.h>
63
64
65 #include "AliRICH.h"
66 #include "AliRICHPoints.h"
67 #include "AliRICHDetect.h"
68 #include "AliRICHHit.h"
69 #include "AliRICHDigit.h"
70 #include "AliRICHSegmentationV0.h"
71 #include "AliRun.h"
72 #include "TParticle.h"
73 #include "TTree.h"
74 #include "TMath.h"
75 #include "TRandom.h"
76 #include "TH3.h"
77 #include "TH2.h"
78 #include "TCanvas.h"
79
80 #include "malloc.h"
81
82
83 ClassImp(AliRICHDetect)
84 //___________________________________________
85 AliRICHDetect::AliRICHDetect() : TObject()
86 {
87
88 // Default constructor 
89
90   fc1 = 0;
91   fc2 = 0;
92   fc3 = 0;
93
94 }
95
96 //___________________________________________
97 AliRICHDetect::AliRICHDetect(const char *name, const char *title)
98     : TObject()
99 {
100
101
102   fc1= new TCanvas("c1","Reconstructed points",50,50,300,350);
103   fc1->Divide(2,2);
104   fc2= new TCanvas("c2","Reconstructed points after SPOT",50,50,300,350);
105   fc2->Divide(2,2); 
106   fc3= new TCanvas("c3","Used Digits",50,50,300,350);
107   //fc3->Divide(2,1); 
108
109 }
110
111 //___________________________________________
112 AliRICHDetect::~AliRICHDetect()
113 {
114     
115 // Destructor
116
117 }
118
119
120 void AliRICHDetect::Detect(Int_t nev)
121 {       
122     
123 //
124 // Detection algorithm
125
126
127   //printf("Detection started!\n");
128   Float_t omega,omega1,theta1,steptheta,stepphi,x,y,z,cx,cy,l,aux1,aux2,aux3,max,radius=0,meanradius=0;
129   Int_t maxi,maxj,maxk;
130   //Float_t theta,phi,realomega,realtheta;
131   Float_t binomega, bintheta, binphi;
132   Int_t intomega, inttheta, intphi;
133   Int_t i,j,k;
134
135   AliRICH *pRICH  = (AliRICH*)gAlice->GetDetector("RICH");
136   AliRICHSegmentationV0*  segmentation;
137   AliRICHChamber*       iChamber;
138   AliRICHGeometry*  geometry;
139   
140   iChamber = &(pRICH->Chamber(0));
141   segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel(0);
142   geometry=iChamber->GetGeometryModel();
143  
144   
145   //const Float_t Noise_Level=0;                       //Noise Level in percentage of mesh points
146   //const Float_t t=0.6;                               //Softening of Noise Correction (factor)
147   
148   const Float_t kPi=TMath::Pi();                
149   
150   const Float_t kHeight=geometry->GetRadiatorToPads(); //Distance from Radiator to Pads in centimeters
151   //printf("Distance to Pads:%f\n",kHeight);
152  
153   const Int_t kSpot=0;                                 //number of passes with spot algorithm
154   
155   const Int_t kDimensionTheta=30;                      //Matrix dimension for angle Detection
156   const Int_t kDimensionPhi=45;
157   const Int_t kDimensionOmega=100;
158   
159   const Float_t SPOTp=1;                              //Percentage of spot action
160   const Float_t kMinOmega=20*kPi/180;
161   const Float_t kMaxOmega=70*kPi/180;                 //Maximum Cherenkov angle to identify
162   const Float_t kMinTheta=0;
163   const Float_t kMaxTheta=15*kPi/180;   
164   //const Float_t kMaxTheta=0.1;
165   const Float_t kMinPhi=0;
166   const Float_t kMaxPhi=360*kPi/180;
167
168  
169   Float_t kCorr=0.61;                              //Correction factor, accounting for aberration, refractive index, etc.
170   //const Float_t kCorr=.9369;                        //from 0 incidence  
171   //const Float_t kCorr=1;
172
173   //TRandom* random=0;
174
175   Float_t rechit[6];                                 //Reconstructed point data
176
177   
178
179   //printf("Creating matrices\n");
180   //Float_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
181   //Float_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
182   //printf("Created matrices\n");
183
184   Int_t ***point = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
185   Int_t ***point1 = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
186   
187   //Int_t **point  = new Int_t[kDimensionTheta][kDimensionPhi][kDimensionOmega];
188   //Int_t **point1 = new Int_t[kDimensionTheta][kDimensionPhi][kDimensionOmega];
189
190   steptheta=(kMaxTheta-kMinTheta)/kDimensionTheta;
191   stepphi=(kMaxPhi-kMinPhi)/kDimensionPhi;
192
193   static TH3F *Points = new TH3F("Points","Reconstructed points 3D",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
194   static TH2F *ThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
195   static TH2F *OmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
196   static TH2F *OmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
197   static TH3F *SpotPoints = new TH3F("Points","Reconstructed points 3D, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
198   static TH2F *SpotThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
199   static TH2F *SpotOmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
200   static TH2F *SpotOmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection, spot",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
201   static TH2F *DigitsXY = new TH2F("DigitsXY","Pads used for reconstruction",150,-25,25,150,-25,25);
202   Points->SetXTitle("theta");
203   Points->SetYTitle("phi");
204   Points->SetZTitle("omega");
205   ThetaPhi->SetXTitle("theta");
206   ThetaPhi->SetYTitle("phi");
207   OmegaTheta->SetXTitle("theta");
208   OmegaTheta->SetYTitle("omega");
209   OmegaPhi->SetXTitle("phi");
210   OmegaPhi->SetYTitle("omega");
211   SpotPoints->SetXTitle("theta");
212   SpotPoints->SetYTitle("phi");
213   SpotPoints->SetZTitle("omega");
214   SpotThetaPhi->SetXTitle("theta");
215   SpotThetaPhi->SetYTitle("phi");
216   SpotOmegaTheta->SetXTitle("theta");
217   SpotOmegaTheta->SetYTitle("omega");
218   SpotOmegaPhi->SetXTitle("phi");
219   SpotOmegaPhi->SetYTitle("omega");
220
221   Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
222   //Int_t ntrks = gAlice->GetNtrack();
223   
224   Float_t trackglob[3];
225   Float_t trackloc[3];
226
227   //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
228     
229   Int_t track;
230         
231   for (track=0; track<ntracks;track++) {
232     gAlice->ResetHits();
233     gAlice->TreeH()->GetEvent(track);
234     TClonesArray *pHits  = pRICH->Hits();
235     if (pHits == 0) return;
236     Int_t nhits = pHits->GetEntriesFast();
237     if (nhits == 0) continue;
238     //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
239     gAlice->TreeD()->GetEvent(0);
240     AliRICHHit *mHit = 0;
241     AliRICHDigit *points = 0;
242     //Int_t npoints=0;
243     
244     Int_t counter=0, counter1=0;
245     //Initialization
246     for(i=0;i<kDimensionTheta;i++)
247       {
248         for(j=0;j<kDimensionPhi;j++)
249           {
250             for(k=0;k<kDimensionOmega;k++)
251               {
252                 counter++;
253                 point[i][j][k]=0;
254                 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
255                 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
256                 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
257                 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
258               }
259           }
260       }
261     mHit = (AliRICHHit*) pHits->UncheckedAt(0);
262     //printf("Aqui vou eu\n");
263     Int_t nch  = mHit->fChamber;
264     //printf("Aqui fui eu\n");
265     trackglob[0] = mHit->X();
266     trackglob[1] = mHit->Y();
267     trackglob[2] = mHit->Z();
268
269     printf("Chamber processed:%d\n",nch);
270
271     printf("Reconstructing particle at (global coordinates): %3.1f %3.1f %3.1f,\n",trackglob[0],trackglob[1],trackglob[2]);
272
273     iChamber = &(pRICH->Chamber(nch-1));
274     
275     //printf("Nch:%d\n",nch);
276
277     iChamber->GlobaltoLocal(trackglob,trackloc);
278     
279     printf("Reconstructing particle at (local coordinates) : %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
280
281
282     iChamber->LocaltoGlobal(trackloc,trackglob);
283        
284     //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
285     
286     cx=trackloc[0];
287     cy=trackloc[2];
288      
289
290     TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);   
291     Int_t ndigits = pDigits->GetEntriesFast();
292     
293     //printf("Got %d digits\n",ndigits);
294
295     counter=0;
296     printf("Starting calculations\n");
297     for(Float_t theta=0;theta<kMaxTheta;theta+=steptheta)
298       {         
299         //printf(".");
300         for(Float_t phi=0;phi<=kMaxPhi;phi+=stepphi)
301           {             
302             //printf("Phi:%3.1f\n", phi*180/kPi);
303             counter1=0;
304             for (Int_t dig=0;dig<ndigits;dig++)
305               { 
306                 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
307                 segmentation->GetPadC(points->fPadX, points->fPadY,x, y, z);
308                 x=x-cx;
309                 y=y-cy;
310                 radius=TMath::Sqrt(TMath::Power(x,2)+TMath::Power(y,2));
311
312                 if(radius>4)
313                   {
314                     //if(theta==0 && phi==0)
315                       //{
316                         //printf("Radius: %f, Max Radius: %f\n",radius,kCorr*kHeight*tan(theta+kMaxOmega)*3/4);
317                         meanradius+=radius;
318                         counter++;
319                       //}
320                     
321                     if (radius<2*kHeight*tan(theta+kMaxOmega)*3/4)
322                       {
323                         
324                         if(phi==0)
325                           {
326                             //printf("Radius: %f, Max Radius: %f\n",radius,2*kHeight*tan(theta+kMaxOmega)*3/4);
327                             //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
328                             //printf("Using digit %d, for theta %f\n",dig,theta);
329                           }
330                         
331                         counter1++;
332
333                         l=kHeight/cos(theta);
334                         
335                         //x=x*kCorr;
336                         //y=y*kCorr;
337                         /*if(SnellAngle(theta+omega)<999)
338                           {
339                             //printf("(Angle)/(Snell angle):%f\n",(theta+omega)/SnellAngle(theta+omega));
340                             x=x*(theta+omega)/SnellAngle(theta+omega);
341                             y=y*(theta+omega)/SnellAngle(theta+omega);
342                           }
343                         else
344                           {
345                             x=0;
346                             y=0;
347                           }*/
348
349                         //main calculation
350
351                         DigitsXY->Fill(x,y,(float) 1);
352
353                         theta1=SnellAngle(theta)*1.5;
354                 
355                         aux1=-y*sin(phi)+x*cos(phi);
356                         aux2=y*cos(phi)+x*sin(phi);
357                         aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta1)*aux2 ,2))/TMath::Power(sin(theta1)*aux2+l,2);
358                         omega=atan(sqrt(aux3));
359                         
360                         //omega is distorted, theta1 is distorted
361
362                         if(InvSnellAngle(theta+omega)<999)
363                           {
364                             omega1=InvSnellAngle(omega+theta1) - theta;
365                             //theta1=InvSnellAngle(omega+theta) - omega1;
366                             //omega1=kCorr*omega;
367                             
368                             kCorr=InvSnellAngle(omega+theta)/(omega+theta);
369                             theta1=kCorr*theta/1.4;
370                             //if(phi==0)
371                               //printf("Omega:%f Theta:%f Omega1:%f Theta1:%f ISA(o+t):%f ISA(t):%f\n",omega*180/kPi,theta*180/kPi,omega1*180/kPi,theta1*180/kPi,InvSnellAngle(omega+theta)*180/kPi,InvSnellAngle(theta)*180/kPi);
372                           }
373                         else
374                           {
375                             omega1=0;
376                             theta1=0;
377                           }
378                         
379                         //printf("Omega:%f\n",omega);
380
381
382                         //if(SnellAngle(theta+omega)<999)
383                           //printf("(Angle)/(Snell angle):%f\n",(theta+omega)/SnellAngle(theta+omega));
384                         if(theta==0 && phi==0)
385                           {
386                             //printf("Omega: %f Corrected Omega: %f\n",omega, omega/kCorr);
387                             //omega=omega/kCorr;
388                           }
389                         
390                         //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
391                         //{Int_t lixo;cin>>lixo;}
392                         if(omega1<kMaxOmega && omega1>kMinOmega)
393                           {
394                             //printf("Omega found:%f\n",omega);
395                             omega1=omega1-kMinOmega;
396                             
397                             //printf("Omega: %f Theta: %3.1f Phi:%3.1f\n",omega, theta*180/kPi, phi*180/kPi);
398
399                             bintheta=theta1*kDimensionTheta/kMaxTheta;
400                             binphi=phi*kDimensionPhi/kMaxPhi;
401                             binomega=omega1*kDimensionOmega/(kMaxOmega-kMinOmega);
402
403                             if(Int_t(bintheta+0.5)==Int_t(bintheta))
404                               inttheta=Int_t(bintheta);
405                             else
406                               inttheta=Int_t(bintheta+0.5);
407
408                             if(Int_t(binomega+0.5)==Int_t(binomega))
409                               intomega=Int_t(binomega);
410                             else
411                               intomega=Int_t(binomega+0.5);
412                             
413                             if(Int_t(binphi+0.5)==Int_t(binphi))
414                               intphi=Int_t(binphi);
415                             else
416                               intphi=Int_t(binphi+0.5);
417                                                  
418                             //printf("Point added at %d %d %d\n",inttheta,intphi,intomega);
419                             point[inttheta][intphi][intomega]+=1;
420                             //printf("Omega stored:%d\n",intomega);
421                             Points->Fill(inttheta,intphi,intomega,(float) 1);
422                             ThetaPhi->Fill(inttheta,intphi,(float) 1);
423                             OmegaTheta->Fill(inttheta,intomega,(float) 1);
424                             OmegaPhi->Fill(intphi,intomega,(float) 1);
425                             //printf("Filling at %d %d %d\n",Int_t(theta*kDimensionTheta/kMaxTheta),Int_t(phi*kDimensionPhi/kMaxPhi),Int_t(omega*kDimensionOmega/kMaxOmega));
426                           }
427                         //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
428                       }
429                   }
430               }
431           }
432         //printf("Used %d digits for theta %3.1f\n",counter1, theta*180/kPi);
433       }
434
435     meanradius=meanradius/counter;
436     printf("Mean radius:%f, counter:%d\n",meanradius,counter);
437     rechit[5]=meanradius;
438     printf("Used %d digits\n",counter1);
439     //printf("\n");
440
441     if(nev<20)
442       {
443         if(nev==0)
444           {
445             fc1->cd(1);
446             Points->Draw();
447             fc1->cd(2);
448             ThetaPhi->Draw();
449             fc1->cd(3);
450             OmegaTheta->Draw();
451             fc1->cd(4);
452             OmegaPhi->Draw();
453             fc3->cd();
454             DigitsXY->Draw();
455           }
456         else
457           {
458             //fc1->cd(1);
459             //Points->Draw("same");
460             //fc1->cd(2);
461             //ThetaPhi->Draw("same");
462             //fc1->cd(3);
463             //OmegaTheta->Draw("same");
464             //fc1->cd(4);
465             //OmegaPhi->Draw("same");   
466           }
467       }
468         
469     
470     //SPOT execute twice
471     for(Int_t s=0;s<kSpot;s++)
472       {
473         printf("     Applying Spot algorithm, pass %d\n", s);
474         
475         //buffer copy
476         for(i=0;i<=kDimensionTheta;i++)
477           {
478             for(j=0;j<=kDimensionPhi;j++)
479               {
480                 for(k=0;k<=kDimensionOmega;k++)
481                   {
482                     point1[i][j][k]=point[i][j][k];     
483                   }
484               }
485           }
486
487         //SPOT algorithm                        
488         for(i=1;i<kDimensionTheta-1;i++)
489           {
490             for(j=1;j<kDimensionPhi-1;j++)
491               {
492                 for(k=1;k<kDimensionOmega-1;k++)
493                   {
494                     if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
495                        (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
496                        (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
497                       {
498                         //cout<<"SPOT"<<endl;
499                         //Execute SPOT on point                                                                                         
500                         point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));    
501                         point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
502                         point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
503                         point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
504                         point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
505                         point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
506                         point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
507                       }
508                   }
509               }
510           }
511         
512         //copy from buffer copy
513         counter1=0;
514         for(i=1;i<kDimensionTheta;i++)
515           {
516             for(j=1;j<kDimensionPhi;j++)
517               {
518                 for(k=1;k<kDimensionOmega;k++)
519                   {
520                     point[i][j][k]=point1[i][j][k];
521                     if(nev<20)
522                       {
523                         if(s==kSpot-1)
524                           {
525                             if(point1[i][j][k] != 0)
526                               {
527                                 SpotPoints->Fill(i,j,k,(float) point1[i][j][k]);
528                                 //printf("Random number %f\n",random->Rndm(2));
529                                 //if(random->Rndm() < .2)
530                                   //{
531                                 SpotThetaPhi->Fill(i,j,(float) point1[i][j][k]);
532                                 SpotOmegaTheta->Fill(i,k,(float) point1[i][j][k]);
533                                 SpotOmegaPhi->Fill(j,k,(float) point1[i][j][k]);
534                                     counter1++;
535                                   //}
536                                 //printf("Filling at %d %d %d value %f\n",i,j,k,(float) point1[i][j][k]);
537                               }
538                           }
539                       }
540                     //if(point1[i][j][k] != 0)
541                       //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
542                   }
543               }
544           }
545       }
546     
547     //printf("Filled %d cells\n",counter1);
548
549     if(nev<20)
550       {
551         if(nev==0)
552           {
553             fc2->cd(1);
554             SpotPoints->Draw();
555             fc2->cd(2);
556             SpotThetaPhi->Draw();
557             fc2->cd(3);
558             SpotOmegaTheta->Draw();
559             fc2->cd(4);
560             SpotOmegaPhi->Draw();
561           }
562         else
563           {
564             //fc2->cd(1);
565             //SpotPoints->Draw("same");
566             //fc2->cd(2);
567             //SpotThetaPhi->Draw("same");
568             //fc2->cd(3);
569             //SpotOmegaTheta->Draw("same");
570             //fc2->cd(4);
571             //SpotOmegaPhi->Draw("same");       
572           }
573       }
574     
575     
576     //Identification is equivalent to maximum determination
577     max=0;maxi=0;maxj=0;maxk=0;
578     
579     printf("     Proceeding to identification");
580     
581     for(i=0;i<kDimensionTheta;i++)
582       for(j=0;j<kDimensionPhi;j++)
583         for(k=0;k<kDimensionOmega;k++)
584             if(point[i][j][k]>max)
585               {
586                 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
587                 maxi=i;maxj=j;maxk=k;
588                 max=point[i][j][k];
589                 printf(".");
590                 //printf("Max Omega %d, Max Theta %d, Max Phi %d (%d counts)\n",maxk,maxi,maxj,max);
591               }
592     printf("\n");
593     
594     Float_t FinalOmega = maxk*(kMaxOmega-kMinOmega)/kDimensionOmega; 
595     Float_t FinalTheta = maxi*kMaxTheta/kDimensionTheta;
596     Float_t FinalPhi = maxj*kMaxPhi/kDimensionPhi;
597
598     FinalOmega += kMinOmega;
599     
600     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
601     printf("     Indentified angles: cerenkov - %f, theta - %3.1f, phi - %3.1f (%f activation)\n", FinalOmega, FinalTheta*180/kPi, FinalPhi*180/kPi, max);
602     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
603
604     //fscanf(omegas,"%f",&realomega);
605     //fscanf(thetas,"%f",&realtheta);
606     //printf("Real Omega: %f",realomega);                       
607     //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;           
608     
609     //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
610     
611     /*for(j=0;j<np;j++)
612       pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/               
613
614
615     //Start filling rec. hits
616     
617     rechit[0] = FinalTheta;
618     rechit[1] = 90*kPi/180 + FinalPhi;
619     rechit[2] = FinalOmega;
620     rechit[3] = cx;
621     rechit[4] = cy;
622
623     //CreatePoints(FinalTheta, 270*kPi/180 + FinalPhi, FinalOmega, kHeight);
624        
625     //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
626     
627     // fill rechits
628     pRICH->AddRecHit3D(nch-1,rechit);
629     //printf("rechit %f %f %f %f %f\n",rechit[0],rechit[1],rechit[2],rechit[3],rechit[4]);
630     //printf("Chamber:%d",nch);
631   }                     
632   //printf("\n\n\n\n");
633   gAlice->TreeR()->Fill();
634   TClonesArray *fRec;
635   for (i=0;i<kNCH;i++) {
636     fRec=pRICH->RecHitsAddress3D(i);
637     int ndig=fRec->GetEntriesFast();
638     printf ("Chamber %d, rings %d\n",i+1,ndig);
639   }
640   pRICH->ResetRecHits3D();
641
642   free_i3tensor(point,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
643   free_i3tensor(point1,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
644 }
645
646
647
648 Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
649 {
650
651 //
652 // Calculates area of an ellipse for given incidence angles    
653
654
655     Float_t area;
656     const Float_t kHeight=9.25;                       //Distance from Radiator to Pads in pads
657     
658     area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
659     
660     return (area);
661 }
662
663
664 Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
665 // allocate a Int_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] 
666 {
667   long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
668   Int_t ***t;
669   
670   int NR_END=1; 
671
672   // allocate pointers to pointers to rows 
673   t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
674   if (!t) printf("allocation failure 1 in f3tensor()");
675   t += NR_END;
676   t -= nrl;
677   
678   // allocate pointers to rows and set pointers to them 
679   t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
680   if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
681   t[nrl] += NR_END;
682   t[nrl] -= ncl;
683   
684   // allocate rows and set pointers to them 
685   t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
686   if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
687   t[nrl][ncl] += NR_END;
688   t[nrl][ncl] -= ndl;
689   
690   for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
691   for(i=nrl+1;i<=nrh;i++) {
692     t[i]=t[i-1]+ncol;
693     t[i][ncl]=t[i-1][ncl]+ncol*ndep;
694     for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
695   }
696   
697   // return pointer to array of pointers to rows 
698   return t;
699 }
700
701 void AliRICHDetect::free_i3tensor(int ***t, long nrl, long nrh, long ncl, long nch,long ndl, long ndh)
702 // free a Int_t f3tensor allocated by i3tensor()
703 {
704   int NR_END=1; 
705
706   free((char*) (t[nrl][ncl]+ndl-NR_END));
707   free((char*) (t[nrl]+ncl-NR_END));
708   free((char*) (t+nrl-NR_END));
709 }
710
711
712 Float_t AliRICHDetect:: SnellAngle(Float_t iangle)
713
714
715 // Compute the Snell angle
716
717   Float_t nfreon  = 1.295;
718   Float_t nquartz = 1.585;
719   Float_t ngas = 1;
720
721   Float_t sinrangle;
722   Float_t rangle;
723   Float_t a1, a2;
724
725   a1=nfreon/nquartz;
726   a2=nquartz/ngas;
727
728   sinrangle = a1*a2*sin(iangle);
729
730   if(sinrangle>1.) {
731      rangle = 999.;
732      return rangle;
733   }
734   
735   rangle = asin(sinrangle);  
736   return rangle;
737 }
738
739 Float_t AliRICHDetect:: InvSnellAngle(Float_t rangle)
740
741
742 // Compute the inverse Snell angle
743
744   Float_t nfreon  = 1.295;
745   Float_t nquartz = 1.585;
746   Float_t ngas = 1;
747
748   Float_t siniangle;
749   Float_t iangle;
750   Float_t a1,a2;
751
752   a1=nfreon/nquartz;
753   a2=nquartz/ngas;
754
755   siniangle = sin(rangle)/(a1*a2);
756   iangle = asin(siniangle);
757
758   if(siniangle>1.) {
759      iangle = 999.;
760      return iangle;
761   }
762   
763   iangle = asin(siniangle);
764   return iangle;
765 }
766
767
768
769 //________________________________________________________________________________
770 void AliRICHDetect::CreatePoints(Float_t theta, Float_t phi, Float_t omega, Float_t h)
771 {
772   
773   // Create points along the ellipse equation
774   
775   Int_t s1,s2;
776   Float_t fiducial=h*TMath::Tan(omega+theta), l=h/TMath::Cos(theta), xtrial, y=0, c0, c1, c2;
777   //TRandom *random=new TRandom();
778   
779   static TH2F *REllipse = new TH2F("REllipse","Reconstructed ellipses",150,-25,25,150,-25,25);
780
781   for(Float_t i=0;i<1000;i++)
782     {
783       
784       Float_t counter=0;
785       
786       c0=0;c1=0;c2=0;
787       while((c1*c1-4*c2*c0)<=0 && counter<1000)
788         {
789           //Choose which side to go...
790           if(i>250 && i<750) s1=1; 
791           //if (gRandom->Rndm(1)>.5) s1=1;
792           else s1=-1;
793           //printf("s1:%d\n",s1);
794           //Trial a y
795           y=s1*i*gRandom->Rndm(Int_t(fiducial/50));
796           //printf("Fiducial %f  for omega:%f theta:%f phi:%f\n",fiducial,omega,theta,fphi);
797           Float_t alfa1=theta;
798           Float_t theta1=phi;
799           Float_t omega1=omega;
800           
801           //Solve the eq for a trial x
802           c0=-TMath::Power(y*TMath::Cos(alfa1)*TMath::Cos(theta1),2)-TMath::Power(y*TMath::Sin(alfa1),2)+TMath::Power(l*TMath::Tan(omega1),2)+2*l*y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+TMath::Power(y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2);
803           c1=2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)-2*y*TMath::Cos(alfa1)*TMath::Power(TMath::Cos(theta1),2)*TMath::Sin(alfa1)+2*l*TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)*TMath::Power(TMath::Sin(theta1),2)*TMath::Power(TMath::Tan(omega1),2);
804           c2=-TMath::Power(TMath::Cos(alfa1),2)-TMath::Power(TMath::Cos(theta1)*TMath::Sin(alfa1),2)+TMath::Power(TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2);
805           //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
806           //printf("Result:%f\n\n",c1*c1-4*c2*c0);
807           //i+=.01;
808           counter +=1;
809         }
810       
811       if (counter>=1000)
812         y=0; 
813
814       //Choose which side to go...
815       //if(gRandom->Rndm(1)>.5) s=1; 
816       //else s=-1;
817       if(i>500) s2=1;
818       //if (gRandom->Rndm(1)>.5) s2=1;
819       else s2=-1;
820       xtrial=(-c1+s2*TMath::Sqrt(c1*c1-4*c2*c0))/(2*c2);
821       //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
822       //printf("Coordinates: %f %f\n",xtrial,fCy+y);
823
824       REllipse->Fill(xtrial,y);
825
826       //printf("Coordinates: %f %f %f\n",vectorGlob[0],vectorGlob[1],vectorGlob[2]);
827     }
828   
829   fc3->cd(2);
830   REllipse->Draw();
831 }