1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 Revision 1.14 2001/05/14 13:25:54 hristov
19 stdlib.h included (for Alpha)
21 Revision 1.13 2001/05/10 12:26:31 jbarbosa
22 Totally reworked version of reconstruction algorithm.
24 Revision 1.12 2001/02/27 22:15:03 jbarbosa
25 Removed compiler warning.
27 Revision 1.11 2001/02/27 15:21:46 jbarbosa
28 Transition to SDigits.
30 Revision 1.10 2001/02/13 20:39:06 jbarbosa
31 Changes to make it work with new IO.
33 Revision 1.9 2001/01/22 21:39:11 jbarbosa
36 Revision 1.8 2000/11/15 15:52:53 jbarbosa
37 Turned on spot algorithm.
39 Revision 1.7 2000/11/01 15:37:05 jbarbosa
40 Updated to use its own rec. point object.
42 Revision 1.6 2000/10/02 21:28:12 fca
43 Removal of useless dependecies via forward declarations
45 Revision 1.5 2000/06/30 16:30:28 dibari
46 Disabled writing to rechits.
48 Revision 1.4 2000/06/15 15:46:59 jbarbosa
49 Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
51 Revision 1.3 2000/06/13 13:15:41 jbarbosa
52 Still some code cleanup done (variable names)
54 Revision 1.2 2000/06/12 15:19:30 jbarbosa
57 Revision 1.1 2000/04/19 13:05:14 morsch
58 J. Barbosa's spot reconstruction algorithm.
66 #include "AliRICHPoints.h"
67 #include "AliRICHDetect.h"
68 #include "AliRICHHit.h"
69 #include "AliRICHDigit.h"
70 #include "AliRICHSegmentationV0.h"
72 #include "TParticle.h"
83 ClassImp(AliRICHDetect)
84 //___________________________________________
85 AliRICHDetect::AliRICHDetect() : TObject()
88 // Default constructor
96 //___________________________________________
97 AliRICHDetect::AliRICHDetect(const char *name, const char *title)
102 fc1= new TCanvas("c1","Reconstructed points",50,50,300,350);
104 fc2= new TCanvas("c2","Reconstructed points after SPOT",50,50,300,350);
106 fc3= new TCanvas("c3","Used Digits",50,50,300,350);
111 //___________________________________________
112 AliRICHDetect::~AliRICHDetect()
120 void AliRICHDetect::Detect(Int_t nev)
124 // Detection algorithm
127 //printf("Detection started!\n");
128 Float_t omega,omega1,theta1,steptheta,stepphi,x,y,z,cx,cy,l,aux1,aux2,aux3,max,radius=0,meanradius=0;
129 Int_t maxi,maxj,maxk;
130 //Float_t theta,phi,realomega,realtheta;
131 Float_t binomega, bintheta, binphi;
132 Int_t intomega, inttheta, intphi;
135 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
136 AliRICHSegmentationV0* segmentation;
137 AliRICHChamber* iChamber;
138 AliRICHGeometry* geometry;
140 iChamber = &(pRICH->Chamber(0));
141 segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel(0);
142 geometry=iChamber->GetGeometryModel();
145 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
146 //const Float_t t=0.6; //Softening of Noise Correction (factor)
148 const Float_t kPi=TMath::Pi();
150 const Float_t kHeight=geometry->GetRadiatorToPads(); //Distance from Radiator to Pads in centimeters
151 //printf("Distance to Pads:%f\n",kHeight);
153 const Int_t kSpot=0; //number of passes with spot algorithm
155 const Int_t kDimensionTheta=30; //Matrix dimension for angle Detection
156 const Int_t kDimensionPhi=45;
157 const Int_t kDimensionOmega=100;
159 const Float_t SPOTp=1; //Percentage of spot action
160 const Float_t kMinOmega=20*kPi/180;
161 const Float_t kMaxOmega=70*kPi/180; //Maximum Cherenkov angle to identify
162 const Float_t kMinTheta=0;
163 const Float_t kMaxTheta=15*kPi/180;
164 //const Float_t kMaxTheta=0.1;
165 const Float_t kMinPhi=0;
166 const Float_t kMaxPhi=360*kPi/180;
169 Float_t kCorr=0.61; //Correction factor, accounting for aberration, refractive index, etc.
170 //const Float_t kCorr=.9369; //from 0 incidence
171 //const Float_t kCorr=1;
175 Float_t rechit[6]; //Reconstructed point data
179 //printf("Creating matrices\n");
180 //Float_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
181 //Float_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
182 //printf("Created matrices\n");
184 Int_t ***point = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
185 Int_t ***point1 = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
187 //Int_t **point = new Int_t[kDimensionTheta][kDimensionPhi][kDimensionOmega];
188 //Int_t **point1 = new Int_t[kDimensionTheta][kDimensionPhi][kDimensionOmega];
190 steptheta=(kMaxTheta-kMinTheta)/kDimensionTheta;
191 stepphi=(kMaxPhi-kMinPhi)/kDimensionPhi;
193 static TH3F *Points = new TH3F("Points","Reconstructed points 3D",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
194 static TH2F *ThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
195 static TH2F *OmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
196 static TH2F *OmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
197 static TH3F *SpotPoints = new TH3F("Points","Reconstructed points 3D, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
198 static TH2F *SpotThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
199 static TH2F *SpotOmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
200 static TH2F *SpotOmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection, spot",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
201 static TH2F *DigitsXY = new TH2F("DigitsXY","Pads used for reconstruction",150,-25,25,150,-25,25);
202 Points->SetXTitle("theta");
203 Points->SetYTitle("phi");
204 Points->SetZTitle("omega");
205 ThetaPhi->SetXTitle("theta");
206 ThetaPhi->SetYTitle("phi");
207 OmegaTheta->SetXTitle("theta");
208 OmegaTheta->SetYTitle("omega");
209 OmegaPhi->SetXTitle("phi");
210 OmegaPhi->SetYTitle("omega");
211 SpotPoints->SetXTitle("theta");
212 SpotPoints->SetYTitle("phi");
213 SpotPoints->SetZTitle("omega");
214 SpotThetaPhi->SetXTitle("theta");
215 SpotThetaPhi->SetYTitle("phi");
216 SpotOmegaTheta->SetXTitle("theta");
217 SpotOmegaTheta->SetYTitle("omega");
218 SpotOmegaPhi->SetXTitle("phi");
219 SpotOmegaPhi->SetYTitle("omega");
221 Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
222 //Int_t ntrks = gAlice->GetNtrack();
224 Float_t trackglob[3];
227 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
231 for (track=0; track<ntracks;track++) {
233 gAlice->TreeH()->GetEvent(track);
234 TClonesArray *pHits = pRICH->Hits();
235 if (pHits == 0) return;
236 Int_t nhits = pHits->GetEntriesFast();
237 if (nhits == 0) continue;
238 //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
239 gAlice->TreeD()->GetEvent(0);
240 AliRICHHit *mHit = 0;
241 AliRICHDigit *points = 0;
244 Int_t counter=0, counter1=0;
246 for(i=0;i<kDimensionTheta;i++)
248 for(j=0;j<kDimensionPhi;j++)
250 for(k=0;k<kDimensionOmega;k++)
254 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
255 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
256 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
257 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
261 mHit = (AliRICHHit*) pHits->UncheckedAt(0);
262 //printf("Aqui vou eu\n");
263 Int_t nch = mHit->fChamber;
264 //printf("Aqui fui eu\n");
265 trackglob[0] = mHit->X();
266 trackglob[1] = mHit->Y();
267 trackglob[2] = mHit->Z();
269 printf("Chamber processed:%d\n",nch);
271 printf("Reconstructing particle at (global coordinates): %3.1f %3.1f %3.1f,\n",trackglob[0],trackglob[1],trackglob[2]);
273 iChamber = &(pRICH->Chamber(nch-1));
275 //printf("Nch:%d\n",nch);
277 iChamber->GlobaltoLocal(trackglob,trackloc);
279 printf("Reconstructing particle at (local coordinates) : %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
282 iChamber->LocaltoGlobal(trackloc,trackglob);
284 //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
290 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
291 Int_t ndigits = pDigits->GetEntriesFast();
293 //printf("Got %d digits\n",ndigits);
296 printf("Starting calculations\n");
297 for(Float_t theta=0;theta<kMaxTheta;theta+=steptheta)
300 for(Float_t phi=0;phi<=kMaxPhi;phi+=stepphi)
302 //printf("Phi:%3.1f\n", phi*180/kPi);
304 for (Int_t dig=0;dig<ndigits;dig++)
306 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
307 segmentation->GetPadC(points->fPadX, points->fPadY,x, y, z);
310 radius=TMath::Sqrt(TMath::Power(x,2)+TMath::Power(y,2));
314 //if(theta==0 && phi==0)
316 //printf("Radius: %f, Max Radius: %f\n",radius,kCorr*kHeight*tan(theta+kMaxOmega)*3/4);
321 if (radius<2*kHeight*tan(theta+kMaxOmega)*3/4)
326 //printf("Radius: %f, Max Radius: %f\n",radius,2*kHeight*tan(theta+kMaxOmega)*3/4);
327 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
328 //printf("Using digit %d, for theta %f\n",dig,theta);
333 l=kHeight/cos(theta);
337 /*if(SnellAngle(theta+omega)<999)
339 //printf("(Angle)/(Snell angle):%f\n",(theta+omega)/SnellAngle(theta+omega));
340 x=x*(theta+omega)/SnellAngle(theta+omega);
341 y=y*(theta+omega)/SnellAngle(theta+omega);
351 DigitsXY->Fill(x,y,(float) 1);
353 theta1=SnellAngle(theta)*1.5;
355 aux1=-y*sin(phi)+x*cos(phi);
356 aux2=y*cos(phi)+x*sin(phi);
357 aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta1)*aux2 ,2))/TMath::Power(sin(theta1)*aux2+l,2);
358 omega=atan(sqrt(aux3));
360 //omega is distorted, theta1 is distorted
362 if(InvSnellAngle(theta+omega)<999)
364 omega1=InvSnellAngle(omega+theta1) - theta;
365 //theta1=InvSnellAngle(omega+theta) - omega1;
366 //omega1=kCorr*omega;
368 kCorr=InvSnellAngle(omega+theta)/(omega+theta);
369 theta1=kCorr*theta/1.4;
371 //printf("Omega:%f Theta:%f Omega1:%f Theta1:%f ISA(o+t):%f ISA(t):%f\n",omega*180/kPi,theta*180/kPi,omega1*180/kPi,theta1*180/kPi,InvSnellAngle(omega+theta)*180/kPi,InvSnellAngle(theta)*180/kPi);
379 //printf("Omega:%f\n",omega);
382 //if(SnellAngle(theta+omega)<999)
383 //printf("(Angle)/(Snell angle):%f\n",(theta+omega)/SnellAngle(theta+omega));
384 if(theta==0 && phi==0)
386 //printf("Omega: %f Corrected Omega: %f\n",omega, omega/kCorr);
390 //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
391 //{Int_t lixo;cin>>lixo;}
392 if(omega1<kMaxOmega && omega1>kMinOmega)
394 //printf("Omega found:%f\n",omega);
395 omega1=omega1-kMinOmega;
397 //printf("Omega: %f Theta: %3.1f Phi:%3.1f\n",omega, theta*180/kPi, phi*180/kPi);
399 bintheta=theta1*kDimensionTheta/kMaxTheta;
400 binphi=phi*kDimensionPhi/kMaxPhi;
401 binomega=omega1*kDimensionOmega/(kMaxOmega-kMinOmega);
403 if(Int_t(bintheta+0.5)==Int_t(bintheta))
404 inttheta=Int_t(bintheta);
406 inttheta=Int_t(bintheta+0.5);
408 if(Int_t(binomega+0.5)==Int_t(binomega))
409 intomega=Int_t(binomega);
411 intomega=Int_t(binomega+0.5);
413 if(Int_t(binphi+0.5)==Int_t(binphi))
414 intphi=Int_t(binphi);
416 intphi=Int_t(binphi+0.5);
418 //printf("Point added at %d %d %d\n",inttheta,intphi,intomega);
419 point[inttheta][intphi][intomega]+=1;
420 //printf("Omega stored:%d\n",intomega);
421 Points->Fill(inttheta,intphi,intomega,(float) 1);
422 ThetaPhi->Fill(inttheta,intphi,(float) 1);
423 OmegaTheta->Fill(inttheta,intomega,(float) 1);
424 OmegaPhi->Fill(intphi,intomega,(float) 1);
425 //printf("Filling at %d %d %d\n",Int_t(theta*kDimensionTheta/kMaxTheta),Int_t(phi*kDimensionPhi/kMaxPhi),Int_t(omega*kDimensionOmega/kMaxOmega));
427 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
432 //printf("Used %d digits for theta %3.1f\n",counter1, theta*180/kPi);
435 meanradius=meanradius/counter;
436 printf("Mean radius:%f, counter:%d\n",meanradius,counter);
437 rechit[5]=meanradius;
438 printf("Used %d digits\n",counter1);
459 //Points->Draw("same");
461 //ThetaPhi->Draw("same");
463 //OmegaTheta->Draw("same");
465 //OmegaPhi->Draw("same");
471 for(Int_t s=0;s<kSpot;s++)
473 printf(" Applying Spot algorithm, pass %d\n", s);
476 for(i=0;i<=kDimensionTheta;i++)
478 for(j=0;j<=kDimensionPhi;j++)
480 for(k=0;k<=kDimensionOmega;k++)
482 point1[i][j][k]=point[i][j][k];
488 for(i=1;i<kDimensionTheta-1;i++)
490 for(j=1;j<kDimensionPhi-1;j++)
492 for(k=1;k<kDimensionOmega-1;k++)
494 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
495 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
496 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
498 //cout<<"SPOT"<<endl;
499 //Execute SPOT on point
500 point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
501 point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
502 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
503 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
504 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
505 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
506 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
512 //copy from buffer copy
514 for(i=1;i<kDimensionTheta;i++)
516 for(j=1;j<kDimensionPhi;j++)
518 for(k=1;k<kDimensionOmega;k++)
520 point[i][j][k]=point1[i][j][k];
525 if(point1[i][j][k] != 0)
527 SpotPoints->Fill(i,j,k,(float) point1[i][j][k]);
528 //printf("Random number %f\n",random->Rndm(2));
529 //if(random->Rndm() < .2)
531 SpotThetaPhi->Fill(i,j,(float) point1[i][j][k]);
532 SpotOmegaTheta->Fill(i,k,(float) point1[i][j][k]);
533 SpotOmegaPhi->Fill(j,k,(float) point1[i][j][k]);
536 //printf("Filling at %d %d %d value %f\n",i,j,k,(float) point1[i][j][k]);
540 //if(point1[i][j][k] != 0)
541 //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
547 //printf("Filled %d cells\n",counter1);
556 SpotThetaPhi->Draw();
558 SpotOmegaTheta->Draw();
560 SpotOmegaPhi->Draw();
565 //SpotPoints->Draw("same");
567 //SpotThetaPhi->Draw("same");
569 //SpotOmegaTheta->Draw("same");
571 //SpotOmegaPhi->Draw("same");
576 //Identification is equivalent to maximum determination
577 max=0;maxi=0;maxj=0;maxk=0;
579 printf(" Proceeding to identification");
581 for(i=0;i<kDimensionTheta;i++)
582 for(j=0;j<kDimensionPhi;j++)
583 for(k=0;k<kDimensionOmega;k++)
584 if(point[i][j][k]>max)
586 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
587 maxi=i;maxj=j;maxk=k;
590 //printf("Max Omega %d, Max Theta %d, Max Phi %d (%d counts)\n",maxk,maxi,maxj,max);
594 Float_t FinalOmega = maxk*(kMaxOmega-kMinOmega)/kDimensionOmega;
595 Float_t FinalTheta = maxi*kMaxTheta/kDimensionTheta;
596 Float_t FinalPhi = maxj*kMaxPhi/kDimensionPhi;
598 FinalOmega += kMinOmega;
600 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
601 printf(" Indentified angles: cerenkov - %f, theta - %3.1f, phi - %3.1f (%f activation)\n", FinalOmega, FinalTheta*180/kPi, FinalPhi*180/kPi, max);
602 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
604 //fscanf(omegas,"%f",&realomega);
605 //fscanf(thetas,"%f",&realtheta);
606 //printf("Real Omega: %f",realomega);
607 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
609 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
612 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
615 //Start filling rec. hits
617 rechit[0] = FinalTheta;
618 rechit[1] = 90*kPi/180 + FinalPhi;
619 rechit[2] = FinalOmega;
623 //CreatePoints(FinalTheta, 270*kPi/180 + FinalPhi, FinalOmega, kHeight);
625 //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
628 pRICH->AddRecHit3D(nch-1,rechit);
629 //printf("rechit %f %f %f %f %f\n",rechit[0],rechit[1],rechit[2],rechit[3],rechit[4]);
630 //printf("Chamber:%d",nch);
632 //printf("\n\n\n\n");
633 gAlice->TreeR()->Fill();
635 for (i=0;i<kNCH;i++) {
636 fRec=pRICH->RecHitsAddress3D(i);
637 int ndig=fRec->GetEntriesFast();
638 printf ("Chamber %d, rings %d\n",i+1,ndig);
640 pRICH->ResetRecHits3D();
642 free_i3tensor(point,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
643 free_i3tensor(point1,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
648 Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
652 // Calculates area of an ellipse for given incidence angles
656 const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads
658 area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
664 Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
665 // allocate a Int_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
667 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
672 // allocate pointers to pointers to rows
673 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
674 if (!t) printf("allocation failure 1 in f3tensor()");
678 // allocate pointers to rows and set pointers to them
679 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
680 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
684 // allocate rows and set pointers to them
685 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
686 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
687 t[nrl][ncl] += NR_END;
690 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
691 for(i=nrl+1;i<=nrh;i++) {
693 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
694 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
697 // return pointer to array of pointers to rows
701 void AliRICHDetect::free_i3tensor(int ***t, long nrl, long nrh, long ncl, long nch,long ndl, long ndh)
702 // free a Int_t f3tensor allocated by i3tensor()
706 free((char*) (t[nrl][ncl]+ndl-NR_END));
707 free((char*) (t[nrl]+ncl-NR_END));
708 free((char*) (t+nrl-NR_END));
712 Float_t AliRICHDetect:: SnellAngle(Float_t iangle)
715 // Compute the Snell angle
717 Float_t nfreon = 1.295;
718 Float_t nquartz = 1.585;
728 sinrangle = a1*a2*sin(iangle);
735 rangle = asin(sinrangle);
739 Float_t AliRICHDetect:: InvSnellAngle(Float_t rangle)
742 // Compute the inverse Snell angle
744 Float_t nfreon = 1.295;
745 Float_t nquartz = 1.585;
755 siniangle = sin(rangle)/(a1*a2);
756 iangle = asin(siniangle);
763 iangle = asin(siniangle);
769 //________________________________________________________________________________
770 void AliRICHDetect::CreatePoints(Float_t theta, Float_t phi, Float_t omega, Float_t h)
773 // Create points along the ellipse equation
776 Float_t fiducial=h*TMath::Tan(omega+theta), l=h/TMath::Cos(theta), xtrial, y=0, c0, c1, c2;
777 //TRandom *random=new TRandom();
779 static TH2F *REllipse = new TH2F("REllipse","Reconstructed ellipses",150,-25,25,150,-25,25);
781 for(Float_t i=0;i<1000;i++)
787 while((c1*c1-4*c2*c0)<=0 && counter<1000)
789 //Choose which side to go...
790 if(i>250 && i<750) s1=1;
791 //if (gRandom->Rndm(1)>.5) s1=1;
793 //printf("s1:%d\n",s1);
795 y=s1*i*gRandom->Rndm(Int_t(fiducial/50));
796 //printf("Fiducial %f for omega:%f theta:%f phi:%f\n",fiducial,omega,theta,fphi);
799 Float_t omega1=omega;
801 //Solve the eq for a trial x
802 c0=-TMath::Power(y*TMath::Cos(alfa1)*TMath::Cos(theta1),2)-TMath::Power(y*TMath::Sin(alfa1),2)+TMath::Power(l*TMath::Tan(omega1),2)+2*l*y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+TMath::Power(y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2);
803 c1=2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)-2*y*TMath::Cos(alfa1)*TMath::Power(TMath::Cos(theta1),2)*TMath::Sin(alfa1)+2*l*TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)*TMath::Power(TMath::Sin(theta1),2)*TMath::Power(TMath::Tan(omega1),2);
804 c2=-TMath::Power(TMath::Cos(alfa1),2)-TMath::Power(TMath::Cos(theta1)*TMath::Sin(alfa1),2)+TMath::Power(TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2);
805 //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
806 //printf("Result:%f\n\n",c1*c1-4*c2*c0);
814 //Choose which side to go...
815 //if(gRandom->Rndm(1)>.5) s=1;
818 //if (gRandom->Rndm(1)>.5) s2=1;
820 xtrial=(-c1+s2*TMath::Sqrt(c1*c1-4*c2*c0))/(2*c2);
821 //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
822 //printf("Coordinates: %f %f\n",xtrial,fCy+y);
824 REllipse->Fill(xtrial,y);
826 //printf("Coordinates: %f %f %f\n",vectorGlob[0],vectorGlob[1],vectorGlob[2]);