Removed compiler warning.
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /*
17   $Log$
18   Revision 1.11  2001/02/27 15:21:46  jbarbosa
19   Transition to SDigits.
20
21   Revision 1.10  2001/02/13 20:39:06  jbarbosa
22   Changes to make it work with new IO.
23
24   Revision 1.9  2001/01/22 21:39:11  jbarbosa
25   Several tune-ups
26
27   Revision 1.8  2000/11/15 15:52:53  jbarbosa
28   Turned on spot algorithm.
29
30   Revision 1.7  2000/11/01 15:37:05  jbarbosa
31   Updated to use its own rec. point object.
32
33   Revision 1.6  2000/10/02 21:28:12  fca
34   Removal of useless dependecies via forward declarations
35
36   Revision 1.5  2000/06/30 16:30:28  dibari
37   Disabled writing to rechits.
38
39   Revision 1.4  2000/06/15 15:46:59  jbarbosa
40   Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
41
42   Revision 1.3  2000/06/13 13:15:41  jbarbosa
43   Still some code cleanup done (variable names)
44
45   Revision 1.2  2000/06/12 15:19:30  jbarbosa
46   Cleaned up version.
47
48   Revision 1.1  2000/04/19 13:05:14  morsch
49   J. Barbosa's spot reconstruction algorithm.
50
51 */
52
53
54 #include "AliRICH.h"
55 #include "AliRICHPoints.h"
56 #include "AliRICHDetect.h"
57 #include "AliRICHHit.h"
58 #include "AliRICHDigit.h"
59 #include "AliRun.h"
60 #include "TParticle.h"
61 #include "TTree.h"
62 #include "TMath.h"
63 #include "TRandom.h"
64
65
66
67 ClassImp(AliRICHDetect)
68 //___________________________________________
69 AliRICHDetect::AliRICHDetect() : TObject()
70 {
71
72 // Default constructor 
73
74     //fChambers = 0;
75 }
76
77 //___________________________________________
78 AliRICHDetect::AliRICHDetect(const char *name, const char *title)
79     : TObject()
80 {
81     
82 // Constructor
83
84     /*fChambers = new TObjArray(7);
85     for (Int_t i=0; i<7; i++) {
86     
87         (*fChambers)[i] = new AliRICHchamber();  
88         
89     } */     
90 }
91
92
93 void AliRICHDetect::Detect()
94 {       
95     
96 //
97 // Detection algorithm
98
99
100   //printf("Detection started!\n");
101   Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
102   //Float_t theta,phi,realomega,realtheta;
103   Int_t i,j,k;
104  
105   
106   //const Float_t Noise_Level=0;                //Noise Level in percentage of mesh points
107   //const Float_t t=0.6;                        //Softening of Noise Correction (factor)
108   
109   const Float_t kPi=3.1415927;          
110   
111   const Float_t kHeight=10;                     //Distance from Radiator to Pads in pads
112  
113   const Int_t kSpot=0;                          //number of passes with spot algorithm
114   
115   const Int_t kDimensionTheta=50;               //Matrix dimension for angle Detection
116   const Int_t kDimensionPhi=50;
117   const Int_t kDimensionOmega=50;
118   
119   const Float_t SPOTp=.2;                       //Percentage of spot action
120   //const Int_t np=500;                         //Number of points to reconstruct elipse 
121   const Float_t kMinOmega=30*kPi/180;
122   const Float_t kMaxOmega=65*kPi/180;           //Maximum Cherenkov angle to identify
123  
124   const Float_t kCorr=.5;                       //Correction factor, accounting for aberration, refractive index, etc.
125    
126   Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
127   Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
128   
129   steptheta=kPi/kDimensionTheta;
130   stepphi=kPi/kDimensionPhi;
131
132   AliRICHChamber*       iChamber;
133   
134   AliRICH *pRICH  = (AliRICH*)gAlice->GetDetector("RICH");
135   Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
136   //Int_t ntrks = gAlice->GetNtrack();
137   
138   Float_t trackglob[3];
139   Float_t trackloc[3];
140
141   //printf("Got ntracks:%d\n",ntracks);
142   /*TVector *xp = new TVector(1000);
143   TVector *yp = new TVector(1000);
144   TVector *zp = new TVector(1000);
145   TVector *ptrk = new TVector(1000);
146   TVector *phit = new TVector(1000);*/
147   
148   //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
149     
150   Int_t track;
151         
152   for (track=0; track<ntracks;track++) {
153     gAlice->ResetHits();
154     gAlice->TreeH()->GetEvent(track);
155     TClonesArray *pHits  = pRICH->Hits();
156     if (pHits == 0) return;
157     Int_t nhits = pHits->GetEntriesFast();
158     if (nhits == 0) continue;
159     //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
160     gAlice->TreeD()->GetEvent(1);
161     AliRICHHit *mHit = 0;
162     AliRICHDigit *points = 0;
163     //Int_t npoints=0;
164     
165     Int_t counter=0;
166     //Initialization
167     for(i=0;i<kDimensionTheta;i++)
168       {
169         for(j=0;j<kDimensionPhi;j++)
170           {
171             for(k=0;k<kDimensionOmega;k++)
172               {
173                 counter++;
174                 point[i][j][k]=0;
175                 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
176                 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
177                 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
178                 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
179               }
180           }
181       }
182     mHit = (AliRICHHit*) pHits->UncheckedAt(0);
183     //printf("Aqui vou eu\n");
184     Int_t nch  = mHit->fChamber;
185     //printf("Aqui fui eu\n");
186     trackglob[0] = mHit->X();
187     trackglob[1] = mHit->Y();
188     trackglob[2] = mHit->Z();
189
190     cx=trackglob[0];
191     cy=trackglob[2];
192     
193     
194     //printf("Chamber processed:%d\n",nch);
195
196     printf("\nChamber %d, particle at: %3.1f %3.1f,\n",nch,trackglob[0],trackglob[2]);
197
198     iChamber = &(pRICH->Chamber(nch-1));
199     
200     //printf("Nch:%d\n",nch);
201
202     iChamber->GlobaltoLocal(trackglob,trackloc);
203     
204     //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
205
206
207     iChamber->LocaltoGlobal(trackloc,trackglob);
208        
209     //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
210     
211     
212      
213
214     TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);   
215     Int_t ndigits = pDigits->GetEntriesFast();
216     
217     //printf("Got %d digits\n",ndigits);
218
219     //printf("Starting calculations\n");
220     
221     for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
222       {                 
223         for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
224           {                    
225             for (Int_t dig=0;dig<ndigits;dig++)
226               { 
227                 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
228                 
229                 x=points->fPadX-cx;
230                 y=points->fPadY-cy;
231                 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
232                 //cout<<"x="<<x<<" y="<<y<<endl;
233                         
234                 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
235                   {
236                     
237         
238                     l=kHeight/cos(theta);
239                     
240                     aux1=-y*sin(phi)+x*cos(phi);
241                     aux2=y*cos(phi)+x*sin(phi);
242                     aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
243                         //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
244                             
245                     omega=atan(sqrt(aux3));
246                     //printf("Omega: %f\n",omega);
247                     
248                     //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
249                     //{Int_t lixo;cin>>lixo;}
250                     if(omega<kMaxOmega && omega>kMinOmega)
251                       {
252                         omega=omega-kMinOmega;
253                         //point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*2*omega*kDimensionOmega/kMaxOmega)]+=1; 
254                         point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*(omega/(kMaxOmega-kMinOmega)*kDimensionOmega))]+=1;               
255                       }
256                     //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
257                   }
258                 }
259           }
260       } 
261     
262     
263     //SPOT execute twice
264     for(Int_t s=0;s<kSpot;s++)
265       {
266         printf("     Applying Spot algorithm, pass %d\n", s);
267         
268         //buffer copy
269         for(i=0;i<=kDimensionTheta;i++)
270           {
271             for(j=0;j<=kDimensionPhi;j++)
272               {
273                 for(k=0;k<=kDimensionOmega;k++)
274                   {
275                     point1[i][j][k]=point[i][j][k];     
276                   }
277               }
278           }
279
280         //SPOT algorithm                        
281         for(i=1;i<kDimensionTheta;i++)
282           {
283             for(j=1;j<kDimensionPhi;j++)
284               {
285                 for(k=1;k<kDimensionOmega;k++)
286                   {
287                     if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
288                        (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
289                        (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
290                       {
291                         //cout<<"SPOT"<<endl;
292                         //Execute SPOT on point                                                                                         
293                         point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));    
294                         point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
295                         point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
296                         point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
297                         point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
298                         point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
299                         point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
300                       }
301                   }
302               }
303           }
304         
305         //copy from buffer copy
306         for(i=1;i<kDimensionTheta;i++)
307           {
308             for(j=1;j<kDimensionPhi;j++)
309               {
310                 for(k=1;k<kDimensionOmega;k++)
311                   {
312                     point[i][j][k]=point1[i][j][k];
313                     //if(point1[i][j][k] != 0)
314                       //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
315                   }
316               }
317           }
318       }
319     
320     
321     //Identification is equivalent to maximum determination
322     max=0;maxi=0;maxj=0;maxk=0;
323     
324     printf("     Proceeding to identification");
325     
326     for(i=1;i<kDimensionTheta-3;i++)
327       for(j=1;j<=kDimensionPhi-3;j++)
328         for(k=0;k<=kDimensionOmega;k++)
329             if(point[i][j][k]>max)
330               {
331                 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
332                 maxi=i;maxj=j;maxk=k;
333                 max=point[i][j][k];
334                 printf(".");
335                 //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
336               }
337     printf("\n");
338     
339     maxk=maxk*(kMaxOmega-kMinOmega)/kDimensionOmega + kMinOmega;
340
341     
342     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
343     printf("     Indentified cerenkov angle: %f\n", maxk);
344     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
345
346
347     //fscanf(omegas,"%f",&realomega);
348     //fscanf(thetas,"%f",&realtheta);
349     //printf("Real Omega: %f",realomega);                       
350     //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;           
351     
352     //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
353     
354     /*for(j=0;j<np;j++)
355       pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/               
356
357
358     //Start filling rec. hits
359     
360     Float_t rechit[6];
361     
362     rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
363     rechit[1]   = (Float_t)( maxj*kPi/(kDimensionPhi*4));
364     rechit[2] = (Float_t)( maxk);
365     //rechit[0] = (Float_t)( maxi);
366     //rechit[1]   = (Float_t)( maxj);
367     //rechit[2] = (Float_t)( maxk);
368     rechit[3] = cx;
369     rechit[4] = cy;
370     rechit[5] = 0.5;
371     
372     //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
373     
374     // fill rechits
375     pRICH->AddRecHit3D(nch-1,rechit);
376     //printf("Chamber:%d",nch);
377   }                     
378   //printf("\n\n\n\n");
379   gAlice->TreeR()->Fill();
380   //TTree *TR=gAlice->TreeR();
381   //Stat_t ndig=TR->GetEntries();
382   TClonesArray *fRec;
383   for (i=0;i<kNCH;i++) {
384     fRec=pRICH->RecHitsAddress3D(i);
385     int ndig=fRec->GetEntriesFast();
386     printf ("Chamber %d, rings %d\n",i,ndig);
387   }
388   //printf("Number of rec. hits: %d",ndig);
389   pRICH->ResetRecHits3D();
390   //char hname[30];
391   //sprintf(hname,"TreeR%d",track);
392   //gAlice->TreeR()->Write(hname);
393         
394 }
395
396 Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
397 {
398
399 //
400 // Calculates area of an ellipse for given incidence angles    
401
402
403     Float_t area;
404     const Float_t kHeight=9.25;                       //Distance from Radiator to Pads in pads
405     
406     area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
407     
408     return (area);
409 }
410
411 /*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
412 // allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] 
413 {
414 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
415 Int_t ***t;
416
417 // allocate pointers to pointers to rows 
418 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
419 if (!t) printf("allocation failure 1 in f3tensor()");
420 t += NR_END;
421 t -= nrl;
422
423 // allocate pointers to rows and set pointers to them 
424 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
425 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
426 t[nrl] += NR_END;
427 t[nrl] -= ncl;
428
429 // allocate rows and set pointers to them 
430 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
431 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
432 t[nrl][ncl] += NR_END;
433 t[nrl][ncl] -= ndl;
434
435 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
436 for(i=nrl+1;i<=nrh;i++) {
437 t[i]=t[i-1]+ncol;
438 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
439 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
440 }
441
442 // return pointer to array of pointers to rows 
443 return t;
444 }*/
445
446 /*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
447   {
448   Int_t s;
449   Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
450   
451   //cout<<"fiducial="<<fiducial<<endl;
452   
453   c0=0;c1=0;c2=0;
454   while((c1*c1-4*c2*c0)<=0)
455   {     
456   //Choose which side to go...
457   if(aleat(1)>.5) s=1; else s=-1;
458   //Trial a y
459   y=s*aleat(fiducial);          
460   Float_t alfa1=alfa*kPi/180;
461   Float_t theta1=theta*kPi/180;
462   Float_t omega1=omega*kPi/180;
463   //Solve the eq for a trial x
464   c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
465   c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
466   c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
467   //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
468   }
469   //Choose which side to go...
470   if(aleat(1)>.5) s=1; else s=-1;
471   xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
472   //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
473   fprintf(final,"%f %f\n",xtrial,cy+y);
474   }*/
475
476
477
478
479
480