Still some code cleanup done (variable names)
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /*
17   $Log$
18   Revision 1.2  2000/06/12 15:19:30  jbarbosa
19   Cleaned up version.
20
21   Revision 1.1  2000/04/19 13:05:14  morsch
22   J. Barbosa's spot reconstruction algorithm.
23
24 */
25
26
27 #include "AliRICH.h"
28 #include "AliRICHPoints.h"
29 #include "AliRICHDetect.h"
30 #include "AliRICHHit.h"
31 #include "AliRICHDigit.h"
32 #include "AliRun.h"
33 #include "TParticle.h"
34 #include "TMath.h"
35 #include "TRandom.h"
36
37
38
39 ClassImp(AliRICHDetect)
40 //___________________________________________
41 AliRICHDetect::AliRICHDetect() : TObject()
42 {
43
44 // Default constructor 
45
46     //fChambers = 0;
47 }
48
49 //___________________________________________
50 AliRICHDetect::AliRICHDetect(const char *name, const char *title)
51     : TObject()
52 {
53     
54 // Constructor
55
56     /*fChambers = new TObjArray(7);
57     for (Int_t i=0; i<7; i++) {
58     
59         (*fChambers)[i] = new AliRICHchamber();  
60         
61     } */     
62 }
63
64
65 void AliRICHDetect::Detect()
66 {       
67     
68 //
69 // Detection algorithm
70
71
72   //printf("Detection started!\n");
73   Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
74   //Float_t theta,phi,realomega,realtheta;
75   Int_t i,j,k;
76   
77   //const Float_t Noise_Level=0;          //Noise Level in percentage of mesh points
78   //const Float_t t=0.6;                        //Softening of Noise Correction (factor)
79   
80   const Float_t kPi=3.1415927;          
81   
82   const Float_t kHeight=10;                       //Distance from Radiator to Pads in pads
83   
84   
85   const Int_t kDimensionTheta=100;              //Matrix dimension for angle Detection
86   const Int_t kDimensionPhi=100;
87   const Int_t kDimensionOmega=100;
88   
89   //const Float_t SPOTp=.2;             //Percentage of spot action
90   //const Int_t np=500;         //Number of points to reconstruct elipse 
91   const Float_t kMaxOmega=65*kPi/180;           //Maximum Cherenkov angle to identify
92   
93   Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
94   //Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
95   
96   steptheta=kPi/kDimensionTheta;
97   stepphi=kPi/kDimensionPhi;
98
99   AliRICHChamber*       iChamber;
100   
101   AliRICH *pRICH  = (AliRICH*)gAlice->GetDetector("RICH");
102   Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
103   //Int_t ntrks = gAlice->GetNtrack();
104   
105   Float_t trackglob[3];
106   Float_t trackloc[3];
107
108   //printf("Got ntracks:%d\n",ntracks);
109   /*TVector *xp = new TVector(1000);
110   TVector *yp = new TVector(1000);
111   TVector *zp = new TVector(1000);
112   TVector *ptrk = new TVector(1000);
113   TVector *phit = new TVector(1000);*/
114   
115   //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
116     
117         
118   for (Int_t track=0; track<ntracks;track++) {
119     gAlice->ResetHits();
120     gAlice->TreeH()->GetEvent(track);
121     TClonesArray *pHits  = pRICH->Hits();
122     if (pHits == 0) return;
123     Int_t nhits = pHits->GetEntriesFast();
124     if (nhits == 0) continue;
125     Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
126     gAlice->TreeD()->GetEvent(nent-1);
127     AliRICHHit *mHit = 0;
128     AliRICHDigit *points = 0;
129     //Int_t npoints=0;
130     
131     Int_t counter=0;
132     //Initialization
133     for(i=0;i<kDimensionTheta;i++)
134       {
135         for(j=0;j<kDimensionPhi;j++)
136           {
137             for(k=0;k<kDimensionOmega;k++)
138               {
139                 counter++;
140                 point[i][j][k]=0;
141                 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
142                 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
143                 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
144                 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
145               }
146           }
147       }
148     mHit = (AliRICHHit*) pHits->UncheckedAt(0);
149     //printf("Aqui vou eu\n");
150     Int_t nch  = mHit->fChamber;
151     //printf("Aqui fui eu\n");
152     trackglob[0] = mHit->fX;
153     trackglob[1] = mHit->fY;
154     trackglob[2] = mHit->fZ;
155
156     cx=trackglob[0];
157     cy=trackglob[2];
158     
159     
160     //printf("Chamber processed:%d\n",nch);
161     printf("Center processed: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
162
163     iChamber = &(pRICH->Chamber(nch-1));
164     
165     //printf("Nch:%d\n",nch);
166
167     iChamber->GlobaltoLocal(trackglob,trackloc);
168     
169     //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
170
171
172     iChamber->LocaltoGlobal(trackloc,trackglob);
173        
174     //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
175     
176     
177      
178
179     TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);   
180     Int_t ndigits = pDigits->GetEntriesFast();
181     
182     //printf("Got %d digits\n",ndigits);
183
184     //printf("Starting calculations\n");
185     
186     for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
187       {                 
188         for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
189           {                    
190             for (Int_t dig=0;dig<ndigits;dig++)
191               { 
192                 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
193                 
194                 x=points->fPadX-cx;
195                 y=points->fPadY-cy;
196                 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
197                 //cout<<"x="<<x<<" y="<<y<<endl;
198                 
199                 if (sqrt(pow(x,2)+pow(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
200                   {
201                     
202                     l=kHeight/cos(theta);
203                     
204                     aux1=-y*sin(phi)+x*cos(phi);
205                     aux2=y*cos(phi)+x*sin(phi);
206                     aux3=( pow(aux1,2)+pow(cos(theta)*aux2 ,2))/pow(sin(theta)*aux2+l,2);
207                     //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
208                     
209                     omega=atan(sqrt(aux3));
210                     //printf("Omega: %f\n",omega);
211                     
212                     //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
213                     //{Int_t lixo;cin>>lixo;}
214                     if(omega<kMaxOmega)point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(omega*kDimensionOmega/kMaxOmega)]+=1;    
215                     //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
216                   }
217                 }
218           }
219       } 
220     
221     
222     
223     //SPOT execute twice
224     /*for(s=1;i<=2;s++)
225       {
226         //buffer copy
227         for(i=0;i<=kDimensionTheta;i++)
228           for(j=0;j<=kDimensionPhi;j++)
229             for(k=0;k<=kDimensionOmega;k++)
230               point1[i][j][k]=point[i][j][k];   
231         
232         cout<<"COM SPOT!"<<endl;{Int_t lixo;cin>>lixo;}                                 
233         //SPOT algorithm                        
234         for(i=1;i<kDimensionTheta;i++)
235           for(j=1;j<kDimensionPhi;j++)
236             for(k=1;k<kDimensionOmega;k++)
237               {
238                 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
239                    (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
240                    (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
241                   {
242                     //cout<<"SPOT"<<endl;
243                     //Execute SPOT on point                                                                                             
244                     point1[i][j][k]+=int(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));    
245                     point1[i-1][k][j]=int(SPOTp*point[i-1][k][j]);
246                     point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
247                     point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
248                     point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
249                     point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
250                     point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
251                   }
252               }
253         //copy from buffer copy
254         for(i=1;i<kDimensionTheta;i++)
255           for(j=1;j<kDimensionPhi;j++)
256             for(k=1;k<kDimensionOmega;k++)
257               point[i][j][k]=point1[i][j][k];                                                                           
258           
259           }*/
260     
261     
262     //Identification is equivalent to maximum determination
263     max=0;maxi=0;maxj=0;maxk=0;
264     
265     //cout<<"Proceeding to Identification"<<endl;
266     
267     for(i=1;i<kDimensionTheta-3;i++)
268       for(j=1;j<=kDimensionPhi-3;j++)
269         for(k=0;k<=kDimensionOmega;k++)
270           if(point[i][j][k]>max)
271             {
272               //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
273               maxi=i;maxj=j;maxk=k;
274               max=point[i][j][k];
275               //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
276             }
277     
278     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
279     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
280
281
282     //fscanf(omegas,"%f",&realomega);
283     //fscanf(thetas,"%f",&realtheta);
284     //printf("Real Omega: %f",realomega);                       
285     //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;           
286     
287     //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
288     
289     /*for(j=0;j<np;j++)
290       pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/               
291
292
293     //Start filling rec. hits
294     
295     Float_t rechit[5];
296     
297     rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
298     rechit[1]   = (Float_t)( maxj*kPi/(kDimensionPhi*4));
299     rechit[2] = (Float_t)( maxk*kPi/(kDimensionOmega*4));
300     //rechit[0] = (Float_t)( maxi);
301     //rechit[1]   = (Float_t)( maxj);
302     //rechit[2] = (Float_t)( maxk);
303     rechit[3] = cx;
304     rechit[4] = cy;
305     
306     //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
307     
308     // fill rechits
309     pRICH->AddRecHit(nch-1,rechit);
310   }                     
311   //printf("\n\n\n\n");
312   gAlice->TreeR()->Fill();
313   //TTree *TR=gAlice->TreeR();
314   //Stat_t ndig=TR->GetEntries();
315   TClonesArray *fRec;
316   for (i=0;i<kNCH;i++) {
317     fRec=pRICH->RecHitsAddress(i);
318     int ndig=fRec->GetEntriesFast();
319     printf ("Chamber %d, rings %d\n",i,ndig);
320   }
321   //printf("Number of rec. hits: %d",ndig);
322   pRICH->ResetRecHits();
323   //char hname[30];
324   //sprintf(hname,"TreeR%d",track);
325   //gAlice->TreeR()->Write(hname);
326         
327 }
328
329 Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
330 {
331
332 //
333 // Calculates area of an ellipse for given incidence angles    
334
335
336     Float_t area;
337     const Float_t kHeight=9.25;                       //Distance from Radiator to Pads in pads
338     
339     area=TMath::Pi()*pow(kHeight*tan(omega),2)/pow(pow(cos(theta),2)-pow(tan(omega)*sin(theta),2),3/2);
340     
341     return (area);
342 }
343
344 /*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
345 // allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] 
346 {
347 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
348 Int_t ***t;
349
350 // allocate pointers to pointers to rows 
351 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
352 if (!t) printf("allocation failure 1 in f3tensor()");
353 t += NR_END;
354 t -= nrl;
355
356 // allocate pointers to rows and set pointers to them 
357 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
358 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
359 t[nrl] += NR_END;
360 t[nrl] -= ncl;
361
362 // allocate rows and set pointers to them 
363 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
364 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
365 t[nrl][ncl] += NR_END;
366 t[nrl][ncl] -= ndl;
367
368 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
369 for(i=nrl+1;i<=nrh;i++) {
370 t[i]=t[i-1]+ncol;
371 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
372 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
373 }
374
375 // return pointer to array of pointers to rows 
376 return t;
377 }*/
378
379 /*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
380   {
381   Int_t s;
382   Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
383   
384   //cout<<"fiducial="<<fiducial<<endl;
385   
386   c0=0;c1=0;c2=0;
387   while((c1*c1-4*c2*c0)<=0)
388   {     
389   //Choose which side to go...
390   if(aleat(1)>.5) s=1; else s=-1;
391   //Trial a y
392   y=s*aleat(fiducial);          
393   Float_t alfa1=alfa*kPi/180;
394   Float_t theta1=theta*kPi/180;
395   Float_t omega1=omega*kPi/180;
396   //Solve the eq for a trial x
397   c0=-pow(y*cos(alfa1)*cos(theta1),2)-pow(y*sin(alfa1),2)+pow(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*pow(tan(omega1),2)+pow(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
398   c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*pow(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*pow(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*pow(sin(theta1),2)*pow(tan(omega1),2);
399   c2=-pow(cos(alfa1),2)-pow(cos(theta1)*sin(alfa1),2)+pow(sin(alfa1)*sin(theta1)*tan(omega1),2);
400   //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
401   }
402   //Choose which side to go...
403   if(aleat(1)>.5) s=1; else s=-1;
404   xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
405   //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
406   fprintf(final,"%f %f\n",xtrial,cy+y);
407   }*/
408
409
410
411
412
413