Updated to use its own rec. point object.
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /*
17   $Log$
18   Revision 1.6  2000/10/02 21:28:12  fca
19   Removal of useless dependecies via forward declarations
20
21   Revision 1.5  2000/06/30 16:30:28  dibari
22   Disabled writing to rechits.
23
24   Revision 1.4  2000/06/15 15:46:59  jbarbosa
25   Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
26
27   Revision 1.3  2000/06/13 13:15:41  jbarbosa
28   Still some code cleanup done (variable names)
29
30   Revision 1.2  2000/06/12 15:19:30  jbarbosa
31   Cleaned up version.
32
33   Revision 1.1  2000/04/19 13:05:14  morsch
34   J. Barbosa's spot reconstruction algorithm.
35
36 */
37
38
39 #include "AliRICH.h"
40 #include "AliRICHPoints.h"
41 #include "AliRICHDetect.h"
42 #include "AliRICHHit.h"
43 #include "AliRICHDigit.h"
44 #include "AliRun.h"
45 #include "TParticle.h"
46 #include "TTree.h"
47 #include "TMath.h"
48 #include "TRandom.h"
49
50
51
52 ClassImp(AliRICHDetect)
53 //___________________________________________
54 AliRICHDetect::AliRICHDetect() : TObject()
55 {
56
57 // Default constructor 
58
59     //fChambers = 0;
60 }
61
62 //___________________________________________
63 AliRICHDetect::AliRICHDetect(const char *name, const char *title)
64     : TObject()
65 {
66     
67 // Constructor
68
69     /*fChambers = new TObjArray(7);
70     for (Int_t i=0; i<7; i++) {
71     
72         (*fChambers)[i] = new AliRICHchamber();  
73         
74     } */     
75 }
76
77
78 void AliRICHDetect::Detect()
79 {       
80     
81 //
82 // Detection algorithm
83
84
85   //printf("Detection started!\n");
86   Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
87   //Float_t theta,phi,realomega,realtheta;
88   Int_t i,j,k;
89   
90   //const Float_t Noise_Level=0;          //Noise Level in percentage of mesh points
91   //const Float_t t=0.6;                        //Softening of Noise Correction (factor)
92   
93   const Float_t kPi=3.1415927;          
94   
95   const Float_t kHeight=10;                       //Distance from Radiator to Pads in pads
96   
97   
98   const Int_t kDimensionTheta=100;              //Matrix dimension for angle Detection
99   const Int_t kDimensionPhi=100;
100   const Int_t kDimensionOmega=100;
101   
102   //const Float_t SPOTp=.2;             //Percentage of spot action
103   //const Int_t np=500;         //Number of points to reconstruct elipse 
104   const Float_t kMaxOmega=65*kPi/180;           //Maximum Cherenkov angle to identify
105   
106   Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
107   //Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
108   
109   steptheta=kPi/kDimensionTheta;
110   stepphi=kPi/kDimensionPhi;
111
112   AliRICHChamber*       iChamber;
113   
114   AliRICH *pRICH  = (AliRICH*)gAlice->GetDetector("RICH");
115   Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
116   //Int_t ntrks = gAlice->GetNtrack();
117   
118   Float_t trackglob[3];
119   Float_t trackloc[3];
120
121   //printf("Got ntracks:%d\n",ntracks);
122   /*TVector *xp = new TVector(1000);
123   TVector *yp = new TVector(1000);
124   TVector *zp = new TVector(1000);
125   TVector *ptrk = new TVector(1000);
126   TVector *phit = new TVector(1000);*/
127   
128   //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
129     
130   Int_t track;
131         
132   for (track=0; track<ntracks;track++) {
133     gAlice->ResetHits();
134     gAlice->TreeH()->GetEvent(track);
135     TClonesArray *pHits  = pRICH->Hits();
136     if (pHits == 0) return;
137     Int_t nhits = pHits->GetEntriesFast();
138     if (nhits == 0) continue;
139     Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
140     gAlice->TreeD()->GetEvent(nent-1);
141     AliRICHHit *mHit = 0;
142     AliRICHDigit *points = 0;
143     //Int_t npoints=0;
144     
145     Int_t counter=0;
146     //Initialization
147     for(i=0;i<kDimensionTheta;i++)
148       {
149         for(j=0;j<kDimensionPhi;j++)
150           {
151             for(k=0;k<kDimensionOmega;k++)
152               {
153                 counter++;
154                 point[i][j][k]=0;
155                 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
156                 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
157                 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
158                 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
159               }
160           }
161       }
162     mHit = (AliRICHHit*) pHits->UncheckedAt(0);
163     //printf("Aqui vou eu\n");
164     Int_t nch  = mHit->fChamber;
165     //printf("Aqui fui eu\n");
166     trackglob[0] = mHit->X();
167     trackglob[1] = mHit->Y();
168     trackglob[2] = mHit->Z();
169
170     cx=trackglob[0];
171     cy=trackglob[2];
172     
173     
174     //printf("Chamber processed:%d\n",nch);
175     printf("Center processed: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
176
177     iChamber = &(pRICH->Chamber(nch-1));
178     
179     //printf("Nch:%d\n",nch);
180
181     iChamber->GlobaltoLocal(trackglob,trackloc);
182     
183     //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
184
185
186     iChamber->LocaltoGlobal(trackloc,trackglob);
187        
188     //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
189     
190     
191      
192
193     TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);   
194     Int_t ndigits = pDigits->GetEntriesFast();
195     
196     //printf("Got %d digits\n",ndigits);
197
198     //printf("Starting calculations\n");
199     
200     for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
201       {                 
202         for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
203           {                    
204             for (Int_t dig=0;dig<ndigits;dig++)
205               { 
206                 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
207                 
208                 x=points->fPadX-cx;
209                 y=points->fPadY-cy;
210                 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
211                 //cout<<"x="<<x<<" y="<<y<<endl;
212                 
213                 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
214                   {
215                     
216                     l=kHeight/cos(theta);
217                     
218                     aux1=-y*sin(phi)+x*cos(phi);
219                     aux2=y*cos(phi)+x*sin(phi);
220                     aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
221                     //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
222                     
223                     omega=atan(sqrt(aux3));
224                     //printf("Omega: %f\n",omega);
225                     
226                     //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
227                     //{Int_t lixo;cin>>lixo;}
228                     if(omega<kMaxOmega)point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(omega*kDimensionOmega/kMaxOmega)]+=1;    
229                     //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
230                   }
231                 }
232           }
233       } 
234     
235     
236     
237     //SPOT execute twice
238     /*for(s=1;i<=2;s++)
239       {
240         //buffer copy
241         for(i=0;i<=kDimensionTheta;i++)
242           for(j=0;j<=kDimensionPhi;j++)
243             for(k=0;k<=kDimensionOmega;k++)
244               point1[i][j][k]=point[i][j][k];   
245         
246         cout<<"COM SPOT!"<<endl;{Int_t lixo;cin>>lixo;}                                 
247         //SPOT algorithm                        
248         for(i=1;i<kDimensionTheta;i++)
249           for(j=1;j<kDimensionPhi;j++)
250             for(k=1;k<kDimensionOmega;k++)
251               {
252                 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
253                    (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
254                    (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
255                   {
256                     //cout<<"SPOT"<<endl;
257                     //Execute SPOT on point                                                                                             
258                     point1[i][j][k]+=int(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));    
259                     point1[i-1][k][j]=int(SPOTp*point[i-1][k][j]);
260                     point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
261                     point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
262                     point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
263                     point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
264                     point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
265                   }
266               }
267         //copy from buffer copy
268         for(i=1;i<kDimensionTheta;i++)
269           for(j=1;j<kDimensionPhi;j++)
270             for(k=1;k<kDimensionOmega;k++)
271               point[i][j][k]=point1[i][j][k];                                                                           
272           
273           }*/
274     
275     
276     //Identification is equivalent to maximum determination
277     max=0;maxi=0;maxj=0;maxk=0;
278     
279     //cout<<"Proceeding to Identification"<<endl;
280     
281     for(i=1;i<kDimensionTheta-3;i++)
282       for(j=1;j<=kDimensionPhi-3;j++)
283         for(k=0;k<=kDimensionOmega;k++)
284           if(point[i][j][k]>max)
285             {
286               //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
287               maxi=i;maxj=j;maxk=k;
288               max=point[i][j][k];
289               //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
290             }
291     
292     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
293     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
294
295
296     //fscanf(omegas,"%f",&realomega);
297     //fscanf(thetas,"%f",&realtheta);
298     //printf("Real Omega: %f",realomega);                       
299     //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;           
300     
301     //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
302     
303     /*for(j=0;j<np;j++)
304       pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/               
305
306
307     //Start filling rec. hits
308     
309     Float_t rechit[6];
310     
311     rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
312     rechit[1]   = (Float_t)( maxj*kPi/(kDimensionPhi*4));
313     rechit[2] = (Float_t)( maxk*kPi/(kDimensionOmega*4));
314     //rechit[0] = (Float_t)( maxi);
315     //rechit[1]   = (Float_t)( maxj);
316     //rechit[2] = (Float_t)( maxk);
317     rechit[3] = cx;
318     rechit[4] = cy;
319     rechit[5] = 0.5;
320     
321     //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
322     
323     // fill rechits
324     pRICH->AddRecHit3D(nch-1,rechit);
325     printf("Chamber:%d",nch);
326   }                     
327   //printf("\n\n\n\n");
328   gAlice->TreeR()->Fill();
329   //TTree *TR=gAlice->TreeR();
330   //Stat_t ndig=TR->GetEntries();
331   TClonesArray *fRec;
332   for (i=0;i<kNCH;i++) {
333     fRec=pRICH->RecHitsAddress3D(i);
334     int ndig=fRec->GetEntriesFast();
335     printf ("Chamber %d, rings %d\n",i,ndig);
336   }
337   //printf("Number of rec. hits: %d",ndig);
338   pRICH->ResetRecHits3D();
339   //char hname[30];
340   //sprintf(hname,"TreeR%d",track);
341   //gAlice->TreeR()->Write(hname);
342         
343 }
344
345 Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
346 {
347
348 //
349 // Calculates area of an ellipse for given incidence angles    
350
351
352     Float_t area;
353     const Float_t kHeight=9.25;                       //Distance from Radiator to Pads in pads
354     
355     area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
356     
357     return (area);
358 }
359
360 /*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
361 // allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] 
362 {
363 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
364 Int_t ***t;
365
366 // allocate pointers to pointers to rows 
367 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
368 if (!t) printf("allocation failure 1 in f3tensor()");
369 t += NR_END;
370 t -= nrl;
371
372 // allocate pointers to rows and set pointers to them 
373 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
374 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
375 t[nrl] += NR_END;
376 t[nrl] -= ncl;
377
378 // allocate rows and set pointers to them 
379 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
380 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
381 t[nrl][ncl] += NR_END;
382 t[nrl][ncl] -= ndl;
383
384 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
385 for(i=nrl+1;i<=nrh;i++) {
386 t[i]=t[i-1]+ncol;
387 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
388 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
389 }
390
391 // return pointer to array of pointers to rows 
392 return t;
393 }*/
394
395 /*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
396   {
397   Int_t s;
398   Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
399   
400   //cout<<"fiducial="<<fiducial<<endl;
401   
402   c0=0;c1=0;c2=0;
403   while((c1*c1-4*c2*c0)<=0)
404   {     
405   //Choose which side to go...
406   if(aleat(1)>.5) s=1; else s=-1;
407   //Trial a y
408   y=s*aleat(fiducial);          
409   Float_t alfa1=alfa*kPi/180;
410   Float_t theta1=theta*kPi/180;
411   Float_t omega1=omega*kPi/180;
412   //Solve the eq for a trial x
413   c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
414   c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
415   c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
416   //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
417   }
418   //Choose which side to go...
419   if(aleat(1)>.5) s=1; else s=-1;
420   xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
421   //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
422   fprintf(final,"%f %f\n",xtrial,cy+y);
423   }*/
424
425
426
427
428
429