Transition to SDigits.
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /*
17   $Log$
18   Revision 1.10  2001/02/13 20:39:06  jbarbosa
19   Changes to make it work with new IO.
20
21   Revision 1.9  2001/01/22 21:39:11  jbarbosa
22   Several tune-ups
23
24   Revision 1.8  2000/11/15 15:52:53  jbarbosa
25   Turned on spot algorithm.
26
27   Revision 1.7  2000/11/01 15:37:05  jbarbosa
28   Updated to use its own rec. point object.
29
30   Revision 1.6  2000/10/02 21:28:12  fca
31   Removal of useless dependecies via forward declarations
32
33   Revision 1.5  2000/06/30 16:30:28  dibari
34   Disabled writing to rechits.
35
36   Revision 1.4  2000/06/15 15:46:59  jbarbosa
37   Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
38
39   Revision 1.3  2000/06/13 13:15:41  jbarbosa
40   Still some code cleanup done (variable names)
41
42   Revision 1.2  2000/06/12 15:19:30  jbarbosa
43   Cleaned up version.
44
45   Revision 1.1  2000/04/19 13:05:14  morsch
46   J. Barbosa's spot reconstruction algorithm.
47
48 */
49
50
51 #include "AliRICH.h"
52 #include "AliRICHPoints.h"
53 #include "AliRICHDetect.h"
54 #include "AliRICHHit.h"
55 #include "AliRICHDigit.h"
56 #include "AliRun.h"
57 #include "TParticle.h"
58 #include "TTree.h"
59 #include "TMath.h"
60 #include "TRandom.h"
61
62
63
64 ClassImp(AliRICHDetect)
65 //___________________________________________
66 AliRICHDetect::AliRICHDetect() : TObject()
67 {
68
69 // Default constructor 
70
71     //fChambers = 0;
72 }
73
74 //___________________________________________
75 AliRICHDetect::AliRICHDetect(const char *name, const char *title)
76     : TObject()
77 {
78     
79 // Constructor
80
81     /*fChambers = new TObjArray(7);
82     for (Int_t i=0; i<7; i++) {
83     
84         (*fChambers)[i] = new AliRICHchamber();  
85         
86     } */     
87 }
88
89
90 void AliRICHDetect::Detect()
91 {       
92     
93 //
94 // Detection algorithm
95
96
97   //printf("Detection started!\n");
98   Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
99   //Float_t theta,phi,realomega,realtheta;
100   Int_t i,j,k;
101  
102   
103   //const Float_t Noise_Level=0;                //Noise Level in percentage of mesh points
104   //const Float_t t=0.6;                        //Softening of Noise Correction (factor)
105   
106   const Float_t kPi=3.1415927;          
107   
108   const Float_t kHeight=10;                     //Distance from Radiator to Pads in pads
109  
110   const Int_t kSpot=0;                          //number of passes with spot algorithm
111   
112   const Int_t kDimensionTheta=50;               //Matrix dimension for angle Detection
113   const Int_t kDimensionPhi=50;
114   const Int_t kDimensionOmega=50;
115   
116   const Float_t SPOTp=.2;                       //Percentage of spot action
117   //const Int_t np=500;                         //Number of points to reconstruct elipse 
118   const Float_t kMinOmega=30*kPi/180;
119   const Float_t kMaxOmega=65*kPi/180;           //Maximum Cherenkov angle to identify
120  
121   const Float_t kCorr=.5;                       //Correction factor, accounting for aberration, refractive index, etc.
122    
123   Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
124   Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
125   
126   steptheta=kPi/kDimensionTheta;
127   stepphi=kPi/kDimensionPhi;
128
129   AliRICHChamber*       iChamber;
130   
131   AliRICH *pRICH  = (AliRICH*)gAlice->GetDetector("RICH");
132   Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
133   //Int_t ntrks = gAlice->GetNtrack();
134   
135   Float_t trackglob[3];
136   Float_t trackloc[3];
137
138   //printf("Got ntracks:%d\n",ntracks);
139   /*TVector *xp = new TVector(1000);
140   TVector *yp = new TVector(1000);
141   TVector *zp = new TVector(1000);
142   TVector *ptrk = new TVector(1000);
143   TVector *phit = new TVector(1000);*/
144   
145   //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
146     
147   Int_t track;
148         
149   for (track=0; track<ntracks;track++) {
150     gAlice->ResetHits();
151     gAlice->TreeH()->GetEvent(track);
152     TClonesArray *pHits  = pRICH->Hits();
153     if (pHits == 0) return;
154     Int_t nhits = pHits->GetEntriesFast();
155     if (nhits == 0) continue;
156     Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
157     gAlice->TreeD()->GetEvent(1);
158     AliRICHHit *mHit = 0;
159     AliRICHDigit *points = 0;
160     //Int_t npoints=0;
161     
162     Int_t counter=0;
163     //Initialization
164     for(i=0;i<kDimensionTheta;i++)
165       {
166         for(j=0;j<kDimensionPhi;j++)
167           {
168             for(k=0;k<kDimensionOmega;k++)
169               {
170                 counter++;
171                 point[i][j][k]=0;
172                 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
173                 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
174                 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
175                 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
176               }
177           }
178       }
179     mHit = (AliRICHHit*) pHits->UncheckedAt(0);
180     //printf("Aqui vou eu\n");
181     Int_t nch  = mHit->fChamber;
182     //printf("Aqui fui eu\n");
183     trackglob[0] = mHit->X();
184     trackglob[1] = mHit->Y();
185     trackglob[2] = mHit->Z();
186
187     cx=trackglob[0];
188     cy=trackglob[2];
189     
190     
191     //printf("Chamber processed:%d\n",nch);
192
193     printf("\nChamber %d, particle at: %3.1f %3.1f,\n",nch,trackglob[0],trackglob[2]);
194
195     iChamber = &(pRICH->Chamber(nch-1));
196     
197     //printf("Nch:%d\n",nch);
198
199     iChamber->GlobaltoLocal(trackglob,trackloc);
200     
201     //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
202
203
204     iChamber->LocaltoGlobal(trackloc,trackglob);
205        
206     //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
207     
208     
209      
210
211     TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);   
212     Int_t ndigits = pDigits->GetEntriesFast();
213     
214     //printf("Got %d digits\n",ndigits);
215
216     //printf("Starting calculations\n");
217     
218     for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
219       {                 
220         for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
221           {                    
222             for (Int_t dig=0;dig<ndigits;dig++)
223               { 
224                 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
225                 
226                 x=points->fPadX-cx;
227                 y=points->fPadY-cy;
228                 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
229                 //cout<<"x="<<x<<" y="<<y<<endl;
230                         
231                 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
232                   {
233                     
234         
235                     l=kHeight/cos(theta);
236                     
237                     aux1=-y*sin(phi)+x*cos(phi);
238                     aux2=y*cos(phi)+x*sin(phi);
239                     aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
240                         //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
241                             
242                     omega=atan(sqrt(aux3));
243                     //printf("Omega: %f\n",omega);
244                     
245                     //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
246                     //{Int_t lixo;cin>>lixo;}
247                     if(omega<kMaxOmega && omega>kMinOmega)
248                       {
249                         omega=omega-kMinOmega;
250                         //point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*2*omega*kDimensionOmega/kMaxOmega)]+=1; 
251                         point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*(omega/(kMaxOmega-kMinOmega)*kDimensionOmega))]+=1;               
252                       }
253                     //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
254                   }
255                 }
256           }
257       } 
258     
259     
260     //SPOT execute twice
261     for(Int_t s=0;s<kSpot;s++)
262       {
263         printf("     Applying Spot algorithm, pass %d\n", s);
264         
265         //buffer copy
266         for(i=0;i<=kDimensionTheta;i++)
267           {
268             for(j=0;j<=kDimensionPhi;j++)
269               {
270                 for(k=0;k<=kDimensionOmega;k++)
271                   {
272                     point1[i][j][k]=point[i][j][k];     
273                   }
274               }
275           }
276
277         //SPOT algorithm                        
278         for(i=1;i<kDimensionTheta;i++)
279           {
280             for(j=1;j<kDimensionPhi;j++)
281               {
282                 for(k=1;k<kDimensionOmega;k++)
283                   {
284                     if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
285                        (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
286                        (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
287                       {
288                         //cout<<"SPOT"<<endl;
289                         //Execute SPOT on point                                                                                         
290                         point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));    
291                         point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
292                         point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
293                         point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
294                         point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
295                         point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
296                         point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
297                       }
298                   }
299               }
300           }
301         
302         //copy from buffer copy
303         for(i=1;i<kDimensionTheta;i++)
304           {
305             for(j=1;j<kDimensionPhi;j++)
306               {
307                 for(k=1;k<kDimensionOmega;k++)
308                   {
309                     point[i][j][k]=point1[i][j][k];
310                     //if(point1[i][j][k] != 0)
311                       //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
312                   }
313               }
314           }
315       }
316     
317     
318     //Identification is equivalent to maximum determination
319     max=0;maxi=0;maxj=0;maxk=0;
320     
321     printf("     Proceeding to identification");
322     
323     for(i=1;i<kDimensionTheta-3;i++)
324       for(j=1;j<=kDimensionPhi-3;j++)
325         for(k=0;k<=kDimensionOmega;k++)
326             if(point[i][j][k]>max)
327               {
328                 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
329                 maxi=i;maxj=j;maxk=k;
330                 max=point[i][j][k];
331                 printf(".");
332                 //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
333               }
334     printf("\n");
335     
336     maxk=maxk*(kMaxOmega-kMinOmega)/kDimensionOmega + kMinOmega;
337
338     
339     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
340     printf("     Indentified cerenkov angle: %f\n", maxk);
341     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
342
343
344     //fscanf(omegas,"%f",&realomega);
345     //fscanf(thetas,"%f",&realtheta);
346     //printf("Real Omega: %f",realomega);                       
347     //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;           
348     
349     //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
350     
351     /*for(j=0;j<np;j++)
352       pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/               
353
354
355     //Start filling rec. hits
356     
357     Float_t rechit[6];
358     
359     rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
360     rechit[1]   = (Float_t)( maxj*kPi/(kDimensionPhi*4));
361     rechit[2] = (Float_t)( maxk);
362     //rechit[0] = (Float_t)( maxi);
363     //rechit[1]   = (Float_t)( maxj);
364     //rechit[2] = (Float_t)( maxk);
365     rechit[3] = cx;
366     rechit[4] = cy;
367     rechit[5] = 0.5;
368     
369     //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
370     
371     // fill rechits
372     pRICH->AddRecHit3D(nch-1,rechit);
373     //printf("Chamber:%d",nch);
374   }                     
375   //printf("\n\n\n\n");
376   gAlice->TreeR()->Fill();
377   //TTree *TR=gAlice->TreeR();
378   //Stat_t ndig=TR->GetEntries();
379   TClonesArray *fRec;
380   for (i=0;i<kNCH;i++) {
381     fRec=pRICH->RecHitsAddress3D(i);
382     int ndig=fRec->GetEntriesFast();
383     printf ("Chamber %d, rings %d\n",i,ndig);
384   }
385   //printf("Number of rec. hits: %d",ndig);
386   pRICH->ResetRecHits3D();
387   //char hname[30];
388   //sprintf(hname,"TreeR%d",track);
389   //gAlice->TreeR()->Write(hname);
390         
391 }
392
393 Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
394 {
395
396 //
397 // Calculates area of an ellipse for given incidence angles    
398
399
400     Float_t area;
401     const Float_t kHeight=9.25;                       //Distance from Radiator to Pads in pads
402     
403     area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
404     
405     return (area);
406 }
407
408 /*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
409 // allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] 
410 {
411 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
412 Int_t ***t;
413
414 // allocate pointers to pointers to rows 
415 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
416 if (!t) printf("allocation failure 1 in f3tensor()");
417 t += NR_END;
418 t -= nrl;
419
420 // allocate pointers to rows and set pointers to them 
421 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
422 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
423 t[nrl] += NR_END;
424 t[nrl] -= ncl;
425
426 // allocate rows and set pointers to them 
427 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
428 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
429 t[nrl][ncl] += NR_END;
430 t[nrl][ncl] -= ndl;
431
432 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
433 for(i=nrl+1;i<=nrh;i++) {
434 t[i]=t[i-1]+ncol;
435 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
436 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
437 }
438
439 // return pointer to array of pointers to rows 
440 return t;
441 }*/
442
443 /*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
444   {
445   Int_t s;
446   Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
447   
448   //cout<<"fiducial="<<fiducial<<endl;
449   
450   c0=0;c1=0;c2=0;
451   while((c1*c1-4*c2*c0)<=0)
452   {     
453   //Choose which side to go...
454   if(aleat(1)>.5) s=1; else s=-1;
455   //Trial a y
456   y=s*aleat(fiducial);          
457   Float_t alfa1=alfa*kPi/180;
458   Float_t theta1=theta*kPi/180;
459   Float_t omega1=omega*kPi/180;
460   //Solve the eq for a trial x
461   c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
462   c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
463   c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
464   //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
465   }
466   //Choose which side to go...
467   if(aleat(1)>.5) s=1; else s=-1;
468   xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
469   //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
470   fprintf(final,"%f %f\n",xtrial,cy+y);
471   }*/
472
473
474
475
476
477