Turned on spot algorithm.
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /*
17   $Log$
18   Revision 1.7  2000/11/01 15:37:05  jbarbosa
19   Updated to use its own rec. point object.
20
21   Revision 1.6  2000/10/02 21:28:12  fca
22   Removal of useless dependecies via forward declarations
23
24   Revision 1.5  2000/06/30 16:30:28  dibari
25   Disabled writing to rechits.
26
27   Revision 1.4  2000/06/15 15:46:59  jbarbosa
28   Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
29
30   Revision 1.3  2000/06/13 13:15:41  jbarbosa
31   Still some code cleanup done (variable names)
32
33   Revision 1.2  2000/06/12 15:19:30  jbarbosa
34   Cleaned up version.
35
36   Revision 1.1  2000/04/19 13:05:14  morsch
37   J. Barbosa's spot reconstruction algorithm.
38
39 */
40
41
42 #include "AliRICH.h"
43 #include "AliRICHPoints.h"
44 #include "AliRICHDetect.h"
45 #include "AliRICHHit.h"
46 #include "AliRICHDigit.h"
47 #include "AliRun.h"
48 #include "TParticle.h"
49 #include "TTree.h"
50 #include "TMath.h"
51 #include "TRandom.h"
52
53
54
55 ClassImp(AliRICHDetect)
56 //___________________________________________
57 AliRICHDetect::AliRICHDetect() : TObject()
58 {
59
60 // Default constructor 
61
62     //fChambers = 0;
63 }
64
65 //___________________________________________
66 AliRICHDetect::AliRICHDetect(const char *name, const char *title)
67     : TObject()
68 {
69     
70 // Constructor
71
72     /*fChambers = new TObjArray(7);
73     for (Int_t i=0; i<7; i++) {
74     
75         (*fChambers)[i] = new AliRICHchamber();  
76         
77     } */     
78 }
79
80
81 void AliRICHDetect::Detect()
82 {       
83     
84 //
85 // Detection algorithm
86
87
88   //printf("Detection started!\n");
89   Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
90   //Float_t theta,phi,realomega,realtheta;
91   Int_t i,j,k;
92  
93   
94   //const Float_t Noise_Level=0;          //Noise Level in percentage of mesh points
95   //const Float_t t=0.6;                        //Softening of Noise Correction (factor)
96   
97   const Float_t kPi=3.1415927;          
98   
99   const Float_t kHeight=10;                       //Distance from Radiator to Pads in pads
100  
101   const Int_t kSpot=3;                                //number of passes with spot algorithm
102   
103   const Int_t kDimensionTheta=50;               //Matrix dimension for angle Detection
104   const Int_t kDimensionPhi=50;
105   const Int_t kDimensionOmega=50;
106   
107   const Float_t SPOTp=.2;               //Percentage of spot action
108   //const Int_t np=500;                 //Number of points to reconstruct elipse 
109   const Float_t kMaxOmega=65*kPi/180;           //Maximum Cherenkov angle to identify
110   
111   Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
112   Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
113   
114   steptheta=kPi/kDimensionTheta;
115   stepphi=kPi/kDimensionPhi;
116
117   AliRICHChamber*       iChamber;
118   
119   AliRICH *pRICH  = (AliRICH*)gAlice->GetDetector("RICH");
120   Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
121   //Int_t ntrks = gAlice->GetNtrack();
122   
123   Float_t trackglob[3];
124   Float_t trackloc[3];
125
126   //printf("Got ntracks:%d\n",ntracks);
127   /*TVector *xp = new TVector(1000);
128   TVector *yp = new TVector(1000);
129   TVector *zp = new TVector(1000);
130   TVector *ptrk = new TVector(1000);
131   TVector *phit = new TVector(1000);*/
132   
133   //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
134     
135   Int_t track;
136         
137   for (track=0; track<ntracks;track++) {
138     gAlice->ResetHits();
139     gAlice->TreeH()->GetEvent(track);
140     TClonesArray *pHits  = pRICH->Hits();
141     if (pHits == 0) return;
142     Int_t nhits = pHits->GetEntriesFast();
143     if (nhits == 0) continue;
144     Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
145     gAlice->TreeD()->GetEvent(nent-1);
146     AliRICHHit *mHit = 0;
147     AliRICHDigit *points = 0;
148     //Int_t npoints=0;
149     
150     Int_t counter=0;
151     //Initialization
152     for(i=0;i<kDimensionTheta;i++)
153       {
154         for(j=0;j<kDimensionPhi;j++)
155           {
156             for(k=0;k<kDimensionOmega;k++)
157               {
158                 counter++;
159                 point[i][j][k]=0;
160                 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
161                 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
162                 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
163                 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
164               }
165           }
166       }
167     mHit = (AliRICHHit*) pHits->UncheckedAt(0);
168     //printf("Aqui vou eu\n");
169     Int_t nch  = mHit->fChamber;
170     //printf("Aqui fui eu\n");
171     trackglob[0] = mHit->X();
172     trackglob[1] = mHit->Y();
173     trackglob[2] = mHit->Z();
174
175     cx=trackglob[0];
176     cy=trackglob[2];
177     
178     
179     //printf("Chamber processed:%d\n",nch);
180
181     printf("\nChamber %d, particle at: %3.1f %3.1f,\n",nch,trackglob[0],trackglob[2]);
182
183     iChamber = &(pRICH->Chamber(nch-1));
184     
185     //printf("Nch:%d\n",nch);
186
187     iChamber->GlobaltoLocal(trackglob,trackloc);
188     
189     //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
190
191
192     iChamber->LocaltoGlobal(trackloc,trackglob);
193        
194     //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
195     
196     
197      
198
199     TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);   
200     Int_t ndigits = pDigits->GetEntriesFast();
201     
202     //printf("Got %d digits\n",ndigits);
203
204     //printf("Starting calculations\n");
205     
206     for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
207       {                 
208         for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
209           {                    
210             for (Int_t dig=0;dig<ndigits;dig++)
211               { 
212                 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
213                 
214                 x=points->fPadX-cx;
215                 y=points->fPadY-cy;
216                 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
217                 //cout<<"x="<<x<<" y="<<y<<endl;
218                 
219                 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
220                   {
221                     
222                     l=kHeight/cos(theta);
223                     
224                     aux1=-y*sin(phi)+x*cos(phi);
225                     aux2=y*cos(phi)+x*sin(phi);
226                     aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
227                     //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
228                     
229                     omega=atan(sqrt(aux3));
230                     //printf("Omega: %f\n",omega);
231                     
232                     //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
233                     //{Int_t lixo;cin>>lixo;}
234                     if(omega<kMaxOmega)point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(omega*kDimensionOmega/kMaxOmega)]+=1;    
235                     //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
236                   }
237                 }
238           }
239       } 
240     
241     
242     //SPOT execute twice
243     for(Int_t s=0;s<kSpot;s++)
244       {
245         printf("     Applying Spot algorithm, pass %d\n", s);
246         
247         //buffer copy
248         for(i=0;i<=kDimensionTheta;i++)
249           {
250             for(j=0;j<=kDimensionPhi;j++)
251               {
252                 for(k=0;k<=kDimensionOmega;k++)
253                   {
254                     point1[i][j][k]=point[i][j][k];     
255                   }
256               }
257           }
258
259         //SPOT algorithm                        
260         for(i=1;i<kDimensionTheta;i++)
261           {
262             for(j=1;j<kDimensionPhi;j++)
263               {
264                 for(k=1;k<kDimensionOmega;k++)
265                   {
266                     if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
267                        (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
268                        (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
269                       {
270                         //cout<<"SPOT"<<endl;
271                         //Execute SPOT on point                                                                                         
272                         point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));    
273                         point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
274                         point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
275                         point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
276                         point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
277                         point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
278                         point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
279                       }
280                   }
281               }
282           }
283         
284         //copy from buffer copy
285         for(i=1;i<kDimensionTheta;i++)
286           {
287             for(j=1;j<kDimensionPhi;j++)
288               {
289                 for(k=1;k<kDimensionOmega;k++)
290                   {
291                     point[i][j][k]=point1[i][j][k];
292                     //if(point1[i][j][k] != 0)
293                       //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
294                   }
295               }
296           }
297       }
298     
299     
300     //Identification is equivalent to maximum determination
301     max=0;maxi=0;maxj=0;maxk=0;
302     
303     printf("     Proceeding to identification");
304     
305     for(i=1;i<kDimensionTheta-3;i++)
306       for(j=1;j<=kDimensionPhi-3;j++)
307         for(k=0;k<=kDimensionOmega;k++)
308             if(point[i][j][k]>max)
309               {
310                 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
311                 maxi=i;maxj=j;maxk=k;
312                 max=point[i][j][k];
313                 printf(".");
314                 //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
315               }
316     printf("\n");
317     
318     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
319     printf("     Indentified cerenkov angle: %f\n", maxk*kPi/(kDimensionTheta*4));
320     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
321
322
323     //fscanf(omegas,"%f",&realomega);
324     //fscanf(thetas,"%f",&realtheta);
325     //printf("Real Omega: %f",realomega);                       
326     //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;           
327     
328     //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
329     
330     /*for(j=0;j<np;j++)
331       pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/               
332
333
334     //Start filling rec. hits
335     
336     Float_t rechit[6];
337     
338     rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
339     rechit[1]   = (Float_t)( maxj*kPi/(kDimensionPhi*4));
340     rechit[2] = (Float_t)( maxk*kPi/(kDimensionOmega*4));
341     //rechit[0] = (Float_t)( maxi);
342     //rechit[1]   = (Float_t)( maxj);
343     //rechit[2] = (Float_t)( maxk);
344     rechit[3] = cx;
345     rechit[4] = cy;
346     rechit[5] = 0.5;
347     
348     //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
349     
350     // fill rechits
351     pRICH->AddRecHit3D(nch-1,rechit);
352     //printf("Chamber:%d",nch);
353   }                     
354   //printf("\n\n\n\n");
355   gAlice->TreeR()->Fill();
356   //TTree *TR=gAlice->TreeR();
357   //Stat_t ndig=TR->GetEntries();
358   TClonesArray *fRec;
359   for (i=0;i<kNCH;i++) {
360     fRec=pRICH->RecHitsAddress3D(i);
361     int ndig=fRec->GetEntriesFast();
362     printf ("Chamber %d, rings %d\n",i,ndig);
363   }
364   //printf("Number of rec. hits: %d",ndig);
365   pRICH->ResetRecHits3D();
366   //char hname[30];
367   //sprintf(hname,"TreeR%d",track);
368   //gAlice->TreeR()->Write(hname);
369         
370 }
371
372 Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
373 {
374
375 //
376 // Calculates area of an ellipse for given incidence angles    
377
378
379     Float_t area;
380     const Float_t kHeight=9.25;                       //Distance from Radiator to Pads in pads
381     
382     area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
383     
384     return (area);
385 }
386
387 /*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
388 // allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] 
389 {
390 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
391 Int_t ***t;
392
393 // allocate pointers to pointers to rows 
394 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
395 if (!t) printf("allocation failure 1 in f3tensor()");
396 t += NR_END;
397 t -= nrl;
398
399 // allocate pointers to rows and set pointers to them 
400 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
401 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
402 t[nrl] += NR_END;
403 t[nrl] -= ncl;
404
405 // allocate rows and set pointers to them 
406 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
407 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
408 t[nrl][ncl] += NR_END;
409 t[nrl][ncl] -= ndl;
410
411 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
412 for(i=nrl+1;i<=nrh;i++) {
413 t[i]=t[i-1]+ncol;
414 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
415 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
416 }
417
418 // return pointer to array of pointers to rows 
419 return t;
420 }*/
421
422 /*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
423   {
424   Int_t s;
425   Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
426   
427   //cout<<"fiducial="<<fiducial<<endl;
428   
429   c0=0;c1=0;c2=0;
430   while((c1*c1-4*c2*c0)<=0)
431   {     
432   //Choose which side to go...
433   if(aleat(1)>.5) s=1; else s=-1;
434   //Trial a y
435   y=s*aleat(fiducial);          
436   Float_t alfa1=alfa*kPi/180;
437   Float_t theta1=theta*kPi/180;
438   Float_t omega1=omega*kPi/180;
439   //Solve the eq for a trial x
440   c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
441   c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
442   c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
443   //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
444   }
445   //Choose which side to go...
446   if(aleat(1)>.5) s=1; else s=-1;
447   xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
448   //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
449   fprintf(final,"%f %f\n",xtrial,cy+y);
450   }*/
451
452
453
454
455
456