Several tune-ups
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /*
17   $Log$
18   Revision 1.8  2000/11/15 15:52:53  jbarbosa
19   Turned on spot algorithm.
20
21   Revision 1.7  2000/11/01 15:37:05  jbarbosa
22   Updated to use its own rec. point object.
23
24   Revision 1.6  2000/10/02 21:28:12  fca
25   Removal of useless dependecies via forward declarations
26
27   Revision 1.5  2000/06/30 16:30:28  dibari
28   Disabled writing to rechits.
29
30   Revision 1.4  2000/06/15 15:46:59  jbarbosa
31   Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
32
33   Revision 1.3  2000/06/13 13:15:41  jbarbosa
34   Still some code cleanup done (variable names)
35
36   Revision 1.2  2000/06/12 15:19:30  jbarbosa
37   Cleaned up version.
38
39   Revision 1.1  2000/04/19 13:05:14  morsch
40   J. Barbosa's spot reconstruction algorithm.
41
42 */
43
44
45 #include "AliRICH.h"
46 #include "AliRICHPoints.h"
47 #include "AliRICHDetect.h"
48 #include "AliRICHHit.h"
49 #include "AliRICHDigit.h"
50 #include "AliRun.h"
51 #include "TParticle.h"
52 #include "TTree.h"
53 #include "TMath.h"
54 #include "TRandom.h"
55
56
57
58 ClassImp(AliRICHDetect)
59 //___________________________________________
60 AliRICHDetect::AliRICHDetect() : TObject()
61 {
62
63 // Default constructor 
64
65     //fChambers = 0;
66 }
67
68 //___________________________________________
69 AliRICHDetect::AliRICHDetect(const char *name, const char *title)
70     : TObject()
71 {
72     
73 // Constructor
74
75     /*fChambers = new TObjArray(7);
76     for (Int_t i=0; i<7; i++) {
77     
78         (*fChambers)[i] = new AliRICHchamber();  
79         
80     } */     
81 }
82
83
84 void AliRICHDetect::Detect()
85 {       
86     
87 //
88 // Detection algorithm
89
90
91   //printf("Detection started!\n");
92   Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
93   //Float_t theta,phi,realomega,realtheta;
94   Int_t i,j,k;
95  
96   
97   //const Float_t Noise_Level=0;                //Noise Level in percentage of mesh points
98   //const Float_t t=0.6;                        //Softening of Noise Correction (factor)
99   
100   const Float_t kPi=3.1415927;          
101   
102   const Float_t kHeight=10;                     //Distance from Radiator to Pads in pads
103  
104   const Int_t kSpot=0;                          //number of passes with spot algorithm
105   
106   const Int_t kDimensionTheta=50;               //Matrix dimension for angle Detection
107   const Int_t kDimensionPhi=50;
108   const Int_t kDimensionOmega=50;
109   
110   const Float_t SPOTp=.2;                       //Percentage of spot action
111   //const Int_t np=500;                         //Number of points to reconstruct elipse 
112   const Float_t kMinOmega=30*kPi/180;
113   const Float_t kMaxOmega=65*kPi/180;           //Maximum Cherenkov angle to identify
114  
115   const Float_t kCorr=.5;                       //Correction factor, accounting for aberration, refractive index, etc.
116    
117   Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
118   Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
119   
120   steptheta=kPi/kDimensionTheta;
121   stepphi=kPi/kDimensionPhi;
122
123   AliRICHChamber*       iChamber;
124   
125   AliRICH *pRICH  = (AliRICH*)gAlice->GetDetector("RICH");
126   Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
127   //Int_t ntrks = gAlice->GetNtrack();
128   
129   Float_t trackglob[3];
130   Float_t trackloc[3];
131
132   //printf("Got ntracks:%d\n",ntracks);
133   /*TVector *xp = new TVector(1000);
134   TVector *yp = new TVector(1000);
135   TVector *zp = new TVector(1000);
136   TVector *ptrk = new TVector(1000);
137   TVector *phit = new TVector(1000);*/
138   
139   //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
140     
141   Int_t track;
142         
143   for (track=0; track<ntracks;track++) {
144     gAlice->ResetHits();
145     gAlice->TreeH()->GetEvent(track);
146     TClonesArray *pHits  = pRICH->Hits();
147     if (pHits == 0) return;
148     Int_t nhits = pHits->GetEntriesFast();
149     if (nhits == 0) continue;
150     Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
151     gAlice->TreeD()->GetEvent(nent-1);
152     AliRICHHit *mHit = 0;
153     AliRICHDigit *points = 0;
154     //Int_t npoints=0;
155     
156     Int_t counter=0;
157     //Initialization
158     for(i=0;i<kDimensionTheta;i++)
159       {
160         for(j=0;j<kDimensionPhi;j++)
161           {
162             for(k=0;k<kDimensionOmega;k++)
163               {
164                 counter++;
165                 point[i][j][k]=0;
166                 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
167                 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
168                 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
169                 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
170               }
171           }
172       }
173     mHit = (AliRICHHit*) pHits->UncheckedAt(0);
174     //printf("Aqui vou eu\n");
175     Int_t nch  = mHit->fChamber;
176     //printf("Aqui fui eu\n");
177     trackglob[0] = mHit->X();
178     trackglob[1] = mHit->Y();
179     trackglob[2] = mHit->Z();
180
181     cx=trackglob[0];
182     cy=trackglob[2];
183     
184     
185     //printf("Chamber processed:%d\n",nch);
186
187     printf("\nChamber %d, particle at: %3.1f %3.1f,\n",nch,trackglob[0],trackglob[2]);
188
189     iChamber = &(pRICH->Chamber(nch-1));
190     
191     //printf("Nch:%d\n",nch);
192
193     iChamber->GlobaltoLocal(trackglob,trackloc);
194     
195     //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
196
197
198     iChamber->LocaltoGlobal(trackloc,trackglob);
199        
200     //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
201     
202     
203      
204
205     TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);   
206     Int_t ndigits = pDigits->GetEntriesFast();
207     
208     //printf("Got %d digits\n",ndigits);
209
210     //printf("Starting calculations\n");
211     
212     for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
213       {                 
214         for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
215           {                    
216             for (Int_t dig=0;dig<ndigits;dig++)
217               { 
218                 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
219                 
220                 x=points->fPadX-cx;
221                 y=points->fPadY-cy;
222                 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
223                 //cout<<"x="<<x<<" y="<<y<<endl;
224                         
225                 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
226                   {
227                     
228         
229                     l=kHeight/cos(theta);
230                     
231                     aux1=-y*sin(phi)+x*cos(phi);
232                     aux2=y*cos(phi)+x*sin(phi);
233                     aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
234                         //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
235                             
236                     omega=atan(sqrt(aux3));
237                     //printf("Omega: %f\n",omega);
238                     
239                     //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
240                     //{Int_t lixo;cin>>lixo;}
241                     if(omega<kMaxOmega && omega>kMinOmega)
242                       {
243                         omega=omega-kMinOmega;
244                         //point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*2*omega*kDimensionOmega/kMaxOmega)]+=1; 
245                         point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*(omega/(kMaxOmega-kMinOmega)*kDimensionOmega))]+=1;               
246                       }
247                     //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
248                   }
249                 }
250           }
251       } 
252     
253     
254     //SPOT execute twice
255     for(Int_t s=0;s<kSpot;s++)
256       {
257         printf("     Applying Spot algorithm, pass %d\n", s);
258         
259         //buffer copy
260         for(i=0;i<=kDimensionTheta;i++)
261           {
262             for(j=0;j<=kDimensionPhi;j++)
263               {
264                 for(k=0;k<=kDimensionOmega;k++)
265                   {
266                     point1[i][j][k]=point[i][j][k];     
267                   }
268               }
269           }
270
271         //SPOT algorithm                        
272         for(i=1;i<kDimensionTheta;i++)
273           {
274             for(j=1;j<kDimensionPhi;j++)
275               {
276                 for(k=1;k<kDimensionOmega;k++)
277                   {
278                     if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
279                        (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
280                        (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
281                       {
282                         //cout<<"SPOT"<<endl;
283                         //Execute SPOT on point                                                                                         
284                         point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));    
285                         point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
286                         point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
287                         point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
288                         point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
289                         point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
290                         point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
291                       }
292                   }
293               }
294           }
295         
296         //copy from buffer copy
297         for(i=1;i<kDimensionTheta;i++)
298           {
299             for(j=1;j<kDimensionPhi;j++)
300               {
301                 for(k=1;k<kDimensionOmega;k++)
302                   {
303                     point[i][j][k]=point1[i][j][k];
304                     //if(point1[i][j][k] != 0)
305                       //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
306                   }
307               }
308           }
309       }
310     
311     
312     //Identification is equivalent to maximum determination
313     max=0;maxi=0;maxj=0;maxk=0;
314     
315     printf("     Proceeding to identification");
316     
317     for(i=1;i<kDimensionTheta-3;i++)
318       for(j=1;j<=kDimensionPhi-3;j++)
319         for(k=0;k<=kDimensionOmega;k++)
320             if(point[i][j][k]>max)
321               {
322                 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
323                 maxi=i;maxj=j;maxk=k;
324                 max=point[i][j][k];
325                 printf(".");
326                 //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
327               }
328     printf("\n");
329     
330     maxk=maxk*(kMaxOmega-kMinOmega)/kDimensionOmega + kMinOmega;
331
332     
333     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
334     printf("     Indentified cerenkov angle: %f\n", maxk);
335     //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
336
337
338     //fscanf(omegas,"%f",&realomega);
339     //fscanf(thetas,"%f",&realtheta);
340     //printf("Real Omega: %f",realomega);                       
341     //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;           
342     
343     //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
344     
345     /*for(j=0;j<np;j++)
346       pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/               
347
348
349     //Start filling rec. hits
350     
351     Float_t rechit[6];
352     
353     rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
354     rechit[1]   = (Float_t)( maxj*kPi/(kDimensionPhi*4));
355     rechit[2] = (Float_t)( maxk);
356     //rechit[0] = (Float_t)( maxi);
357     //rechit[1]   = (Float_t)( maxj);
358     //rechit[2] = (Float_t)( maxk);
359     rechit[3] = cx;
360     rechit[4] = cy;
361     rechit[5] = 0.5;
362     
363     //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
364     
365     // fill rechits
366     pRICH->AddRecHit3D(nch-1,rechit);
367     //printf("Chamber:%d",nch);
368   }                     
369   //printf("\n\n\n\n");
370   gAlice->TreeR()->Fill();
371   //TTree *TR=gAlice->TreeR();
372   //Stat_t ndig=TR->GetEntries();
373   TClonesArray *fRec;
374   for (i=0;i<kNCH;i++) {
375     fRec=pRICH->RecHitsAddress3D(i);
376     int ndig=fRec->GetEntriesFast();
377     printf ("Chamber %d, rings %d\n",i,ndig);
378   }
379   //printf("Number of rec. hits: %d",ndig);
380   pRICH->ResetRecHits3D();
381   //char hname[30];
382   //sprintf(hname,"TreeR%d",track);
383   //gAlice->TreeR()->Write(hname);
384         
385 }
386
387 Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
388 {
389
390 //
391 // Calculates area of an ellipse for given incidence angles    
392
393
394     Float_t area;
395     const Float_t kHeight=9.25;                       //Distance from Radiator to Pads in pads
396     
397     area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
398     
399     return (area);
400 }
401
402 /*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
403 // allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh] 
404 {
405 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
406 Int_t ***t;
407
408 // allocate pointers to pointers to rows 
409 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
410 if (!t) printf("allocation failure 1 in f3tensor()");
411 t += NR_END;
412 t -= nrl;
413
414 // allocate pointers to rows and set pointers to them 
415 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
416 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
417 t[nrl] += NR_END;
418 t[nrl] -= ncl;
419
420 // allocate rows and set pointers to them 
421 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
422 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
423 t[nrl][ncl] += NR_END;
424 t[nrl][ncl] -= ndl;
425
426 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
427 for(i=nrl+1;i<=nrh;i++) {
428 t[i]=t[i-1]+ncol;
429 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
430 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
431 }
432
433 // return pointer to array of pointers to rows 
434 return t;
435 }*/
436
437 /*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
438   {
439   Int_t s;
440   Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
441   
442   //cout<<"fiducial="<<fiducial<<endl;
443   
444   c0=0;c1=0;c2=0;
445   while((c1*c1-4*c2*c0)<=0)
446   {     
447   //Choose which side to go...
448   if(aleat(1)>.5) s=1; else s=-1;
449   //Trial a y
450   y=s*aleat(fiducial);          
451   Float_t alfa1=alfa*kPi/180;
452   Float_t theta1=theta*kPi/180;
453   Float_t omega1=omega*kPi/180;
454   //Solve the eq for a trial x
455   c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
456   c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
457   c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
458   //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
459   }
460   //Choose which side to go...
461   if(aleat(1)>.5) s=1; else s=-1;
462   xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
463   //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
464   fprintf(final,"%f %f\n",xtrial,cy+y);
465   }*/
466
467
468
469
470
471