]> git.uio.no Git - u/mrichter/AliRoot.git/blob - RICH/AliRICHv0.cxx
Major changes in geometry (parametrised), materials (updated) and
[u/mrichter/AliRoot.git] / RICH / AliRICHv0.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /*
17   $Log$
18 */
19
20
21
22 ////////////////////////////////////////////////////////
23 //  Manager and hits classes for set:RICH version 0    //
24 /////////////////////////////////////////////////////////
25
26 #include <TTUBE.h>
27 #include <TNode.h> 
28 #include <TRandom.h> 
29
30 #include "AliRICHv0.h"
31 #include "AliRun.h"
32 #include "AliMC.h"
33 #include "iostream.h"
34 #include "AliCallf77.h"
35 #include "AliConst.h" 
36 #include "AliPDG.h" 
37 #include "TGeant3.h"
38
39 ClassImp(AliRICHv0)
40     
41 //___________________________________________
42 AliRICHv0::AliRICHv0() : AliRICH()
43 {
44     //fChambers = 0;
45 }
46
47 //___________________________________________
48 AliRICHv0::AliRICHv0(const char *name, const char *title)
49     : AliRICH(name,title)
50 {
51     fCkov_number=0;
52     fFreon_prod=0;
53
54     fChambers = new TObjArray(7);
55     for (Int_t i=0; i<7; i++) {
56     
57         (*fChambers)[i] = new AliRICHChamber();  
58         
59     }
60 }
61
62
63 //___________________________________________
64 void AliRICHv0::CreateGeometry()
65 {
66     //
67     // Create the geometry for RICH version 1
68     //
69     // Modified by:  N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) 
70     //               R.A. Fini  (INFN - BARI, Rosanna.Fini@ba.infn.it) 
71     //               R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) 
72     //
73     //Begin_Html
74     /*
75       <img src="picts/AliRICHv1.gif">
76     */
77     //End_Html
78     //Begin_Html
79     /*
80       <img src="picts/AliRICHv1Tree.gif">
81     */
82     //End_Html
83
84   AliRICH *RICH = (AliRICH *) gAlice->GetDetector("RICH"); 
85   AliRICHSegmentation*  segmentation;
86   AliRICHGeometry*  geometry;
87   AliRICHChamber*       iChamber;
88
89   iChamber = &(RICH->Chamber(0));
90   segmentation=iChamber->GetSegmentationModel(0);
91   geometry=iChamber->GetGeometryModel();
92     
93     
94     Int_t *idtmed = fIdtmed->GetArray()-999;
95     
96     Int_t i;
97     Float_t zs;
98     Int_t idrotm[1099];
99     Float_t par[3];
100     
101     // --- Define the RICH detector 
102     //     External aluminium box 
103     par[0] = 71.1;
104     par[1] = 11.5;                 //Original Settings
105     par[2] = 73.15;
106     /*par[0] = 73.15;
107     par[1] = 11.5;
108     par[2] = 71.1;*/
109     gMC->Gsvolu("RICH", "BOX ", idtmed[1009], par, 3);
110     
111     //     Sensitive part of the whole RICH 
112     par[0] = 64.8;
113     par[1] = 11.5;                 //Original Settings
114     par[2] = 66.55;
115     /*par[0] = 66.55;
116     par[1] = 11.5;
117     par[2] = 64.8;*/
118     gMC->Gsvolu("SRIC", "BOX ", idtmed[1000], par, 3);
119     
120     //     Honeycomb 
121     par[0] = 63.1;
122     par[1] = .188;                 //Original Settings
123     par[2] = 66.55;
124     /*par[0] = 66.55;
125     par[1] = .188;
126     par[2] = 63.1;*/
127     gMC->Gsvolu("HONE", "BOX ", idtmed[1001], par, 3);
128     
129     //     Aluminium sheet 
130     par[0] = 63.1;
131     par[1] = .025;                 //Original Settings
132     par[2] = 66.55;
133     /*par[0] = 66.5;
134     par[1] = .025;
135     par[2] = 63.1;*/
136     gMC->Gsvolu("ALUM", "BOX ", idtmed[1009], par, 3);
137     
138     //     Quartz 
139     par[0] = geometry->GetQuartzWidth()/2;
140     par[1] = geometry->GetQuartzThickness()/2;
141     par[2] = geometry->GetQuartzLength()/2;
142     /*par[0] = 63.1;
143     par[1] = .25;                  //Original Settings
144     par[2] = 65.5;*/
145     /*par[0] = geometry->GetQuartzWidth()/2;
146     par[1] = geometry->GetQuartzThickness()/2;
147     par[2] = geometry->GetQuartzLength()/2;*/
148     //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f %f %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[0],par[1],par[2]);
149     gMC->Gsvolu("QUAR", "BOX ", idtmed[1002], par, 3);
150     
151     //     Spacers (cylinders) 
152     par[0] = 0.;
153     par[1] = .5;
154     par[2] = geometry->GetFreonThickness()/2;
155     gMC->Gsvolu("SPAC", "TUBE", idtmed[1002], par, 3);
156     
157     //     Opaque quartz 
158     par[0] = 61.95;
159     par[1] = .2;                   //Original Settings
160     par[2] = 66.5;
161     /*par[0] = 66.5;
162     par[1] = .2;
163     par[2] = 61.95;*/
164     gMC->Gsvolu("OQUA", "BOX ", idtmed[1007], par, 3);
165   
166     //     Frame of opaque quartz
167     par[0] = geometry->GetOuterFreonWidth()/2;
168     par[1] = geometry->GetFreonThickness()/2;
169     par[2] = geometry->GetOuterFreonLength()/2 + 1; 
170     /*par[0] = 20.65;
171     par[1] = .5;                   //Original Settings
172     par[2] = 66.5;*/
173     /*par[0] = 66.5;
174     par[1] = .5;
175     par[2] = 20.65;*/
176     gMC->Gsvolu("OQF1", "BOX ", idtmed[1007], par, 3);
177
178     par[0] = geometry->GetInnerFreonWidth()/2;
179     par[1] = geometry->GetFreonThickness()/2;
180     par[2] = geometry->GetInnerFreonLength()/2 + 1; 
181     gMC->Gsvolu("OQF2", "BOX ", idtmed[1007], par, 3);
182     
183     //     Little bar of opaque quartz 
184     par[0] = .275;
185     par[1] = geometry->GetQuartzThickness()/2;
186     par[2] = geometry->GetInnerFreonLength()/2 - 2.4; 
187     /*par[0] = .275;
188     par[1] = .25;                   //Original Settings
189     par[2] = 63.1;*/
190     /*par[0] = 63.1;
191     par[1] = .25;
192     par[2] = .275;*/
193     gMC->Gsvolu("BARR", "BOX ", idtmed[1007], par, 3);
194     
195     //     Freon 
196     par[0] = geometry->GetOuterFreonWidth()/2;
197     par[1] = geometry->GetFreonThickness()/2;
198     par[2] = geometry->GetOuterFreonLength()/2; 
199     /*par[0] = 20.15;
200     par[1] = .5;                   //Original Settings
201     par[2] = 65.5;*/
202     /*par[0] = 65.5;
203     par[1] = .5;
204     par[2] = 20.15;*/
205     gMC->Gsvolu("FRE1", "BOX ", idtmed[1003], par, 3);
206
207     par[0] = geometry->GetInnerFreonWidth()/2;
208     par[1] = geometry->GetFreonThickness()/2;
209     par[2] = geometry->GetInnerFreonLength()/2; 
210     gMC->Gsvolu("FRE2", "BOX ", idtmed[1003], par, 3);
211     
212     //     Methane 
213     par[0] = 64.8;
214     par[1] = geometry->GetGapThickness()/2;
215     //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]);
216     par[2] = 64.8;
217     gMC->Gsvolu("META", "BOX ", idtmed[1004], par, 3);
218     
219     //     Methane gap 
220     par[0] = 64.8;
221     par[1] = geometry->GetProximityGapThickness()/2;
222     //printf("\n\n\n\n\n\n\n\\n\n\n\n Gap Thickness: %f\n\n\n\n\n\n\n\n\n\n\n\n\n\n",par[1]);
223     par[2] = 64.8;
224     gMC->Gsvolu("GAP ", "BOX ", idtmed[1008], par, 3);
225     
226     //     CsI photocathode 
227     par[0] = 64.8;
228     par[1] = .25;
229     par[2] = 64.8;
230     gMC->Gsvolu("CSI ", "BOX ", idtmed[1005], par, 3);
231     
232     //     Anode grid 
233     par[0] = 0.;
234     par[1] = .001;
235     par[2] = 20.;
236     gMC->Gsvolu("GRID", "TUBE", idtmed[1006], par, 3);
237     
238     // --- Places the detectors defined with GSVOLU 
239     //     Place material inside RICH 
240     gMC->Gspos("SRIC", 1, "RICH", 0., 0., 0., 0, "ONLY");
241     
242     gMC->Gspos("ALUM", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 -.05 - .376 -.025, 0., 0, "ONLY");
243     gMC->Gspos("HONE", 1, "SRIC", 0., 1.276- geometry->GetGapThickness()/2  - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 -.05 - .188, 0., 0, "ONLY");
244     gMC->Gspos("ALUM", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .4 - .025, 0., 0, "ONLY");
245     gMC->Gspos("OQUA", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()- .2, 0., 0, "ONLY");
246     
247     AliMatrix(idrotm[1019], 0., 0., 90., 0., 90., 90.);
248     
249     Int_t nspacers = (Int_t)(TMath::Abs(geometry->GetInnerFreonLength()/14.4));
250     //printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Spacers:%d\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",nspacers); 
251     
252     //for (i = 1; i <= 9; ++i) {
253       //zs = (5 - i) * 14.4;                       //Original settings 
254     for (i = 0; i <= nspacers; i++) {
255         zs = (TMath::Abs(nspacers/2) - i) * 14.4;
256         gMC->Gspos("SPAC", i, "FRE1", 6.7, 0., zs, idrotm[1019], "ONLY");  //Original settings 
257         //gMC->Gspos("SPAC", i, "FRE1", zs, 0., 6.7, idrotm[1019], "ONLY"); 
258     }
259     //for (i = 10; i <= 18; ++i) {
260       //zs = (14 - i) * 14.4;                       //Original settings 
261     for (i = nspacers; i < nspacers*2; ++i) {
262         zs = (nspacers + TMath::Abs(nspacers/2) - i) * 14.4;
263         gMC->Gspos("SPAC", i, "FRE1", -6.7, 0., zs, idrotm[1019], "ONLY"); //Original settings  
264         //gMC->Gspos("SPAC", i, "FRE1", zs, 0., -6.7, idrotm[1019], "ONLY");  
265     }
266
267     //for (i = 1; i <= 9; ++i) {
268       //zs = (5 - i) * 14.4;                       //Original settings 
269       for (i = 0; i <= nspacers; i++) {
270         zs = (TMath::Abs(nspacers/2) - i) * 14.4;
271         gMC->Gspos("SPAC", i, "FRE2", 6.7, 0., zs, idrotm[1019], "ONLY");  //Original settings 
272         //gMC->Gspos("SPAC", i, "FRE2", zs, 0., 6.7, idrotm[1019], "ONLY");
273     }
274     //for (i = 10; i <= 18; ++i) {
275       //zs = (5 - i) * 14.4;                       //Original settings 
276       for (i = nspacers; i < nspacers*2; ++i) {
277         zs = (nspacers + TMath::Abs(nspacers/2) - i) * 14.4;
278         gMC->Gspos("SPAC", i, "FRE2", -6.7, 0., zs, idrotm[1019], "ONLY");  //Original settings 
279         //gMC->Gspos("SPAC", i, "FRE2", zs, 0., -6.7, idrotm[1019], "ONLY");
280     }
281     
282     /*gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY");
283     gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY");
284     gMC->Gspos("OQF1", 1, "SRIC", 31.3, -4.724, 41.3, 0, "ONLY");
285     gMC->Gspos("OQF2", 2, "SRIC", 0., -4.724, 0., 0, "ONLY");
286     gMC->Gspos("OQF1", 3, "SRIC", -31.3, -4.724, -41.3, 0, "ONLY");
287     gMC->Gspos("BARR", 1, "QUAR", -21.65, 0., 0., 0, "ONLY");           //Original settings 
288     gMC->Gspos("BARR", 2, "QUAR", 21.65, 0., 0., 0, "ONLY");            //Original settings 
289     gMC->Gspos("QUAR", 1, "SRIC", 0., -3.974, 0., 0, "ONLY");
290     gMC->Gspos("GAP ", 1, "META", 0., 4.8, 0., 0, "ONLY");
291     gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY");
292     gMC->Gspos("CSI ", 1, "SRIC", 0., 6.526, 0., 0, "ONLY");*/
293
294
295     gMC->Gspos("FRE1", 1, "OQF1", 0., 0., 0., 0, "ONLY");
296     gMC->Gspos("FRE2", 1, "OQF2", 0., 0., 0., 0, "ONLY");
297     gMC->Gspos("OQF1", 1, "SRIC", geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2, 1.276 - geometry->GetGapThickness()/2- geometry->GetQuartzThickness() -geometry->GetFreonThickness()/2, 0., 0, "ONLY"); //Original settings (31.3)
298     gMC->Gspos("OQF2", 2, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY");          //Original settings 
299     gMC->Gspos("OQF1", 3, "SRIC", - (geometry->GetOuterFreonWidth()/2 + geometry->GetInnerFreonWidth()/2), 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness() - geometry->GetFreonThickness()/2, 0., 0, "ONLY");       //Original settings (-31.3)
300     gMC->Gspos("BARR", 1, "QUAR", -21.65, 0., 0., 0, "ONLY");           //Original settings 
301     gMC->Gspos("BARR", 2, "QUAR", 21.65, 0., 0., 0, "ONLY");            //Original settings 
302     gMC->Gspos("QUAR", 1, "SRIC", 0., 1.276 - geometry->GetGapThickness()/2 - geometry->GetQuartzThickness()/2, 0., 0, "ONLY");
303     gMC->Gspos("GAP ", 1, "META", 0., geometry->GetGapThickness()/2+ geometry->GetProximityGapThickness()/2, 0., 0, "ONLY");
304     gMC->Gspos("META", 1, "SRIC", 0., 1.276, 0., 0, "ONLY");
305     gMC->Gspos("CSI ", 1, "SRIC", 0., 1.276 + geometry->GetGapThickness()/2 + geometry->GetProximityGapThickness() + .25, 0., 0, "ONLY");
306     
307     //     Place RICH inside ALICE apparatus 
308   
309     AliMatrix(idrotm[1000], 90., 0., 70.69, 90., 19.31, -90.);
310     AliMatrix(idrotm[1001], 90., -20., 90., 70., 0., 0.);
311     AliMatrix(idrotm[1002], 90., 0., 90., 90., 0., 0.);
312     AliMatrix(idrotm[1003], 90., 20., 90., 110., 0., 0.);
313     AliMatrix(idrotm[1004], 90., 340., 108.2, 70., 18.2, 70.);
314     AliMatrix(idrotm[1005], 90., 0., 109.31, 90., 19.31, 90.);
315     AliMatrix(idrotm[1006], 90., 20., 108.2, 110., 18.2, 110.);
316     
317     gMC->Gspos("RICH", 1, "ALIC", 0., 471.9, 165.26,     idrotm[1000], "ONLY");
318     gMC->Gspos("RICH", 2, "ALIC", 171., 470., 0.,        idrotm[1001], "ONLY");
319     gMC->Gspos("RICH", 3, "ALIC", 0., 500., 0.,          idrotm[1002], "ONLY");
320     gMC->Gspos("RICH", 4, "ALIC", -171., 470., 0.,       idrotm[1003], "ONLY");
321     gMC->Gspos("RICH", 5, "ALIC", 161.4, 443.4, -165.3,  idrotm[1004], "ONLY");
322     gMC->Gspos("RICH", 6, "ALIC", 0., 471.9, -165.3,     idrotm[1005], "ONLY");
323     gMC->Gspos("RICH", 7, "ALIC", -161.4, 443.4, -165.3, idrotm[1006], "ONLY");
324     
325 }
326
327
328 //___________________________________________
329 void AliRICHv0::CreateMaterials()
330 {
331     //
332     // *** DEFINITION OF AVAILABLE RICH MATERIALS *** 
333     // ORIGIN    : NICK VAN EIJNDHOVEN 
334     // Modified by:  N. Colonna (INFN - BARI, Nicola.Colonna@ba.infn.it) 
335     //               R.A. Fini  (INFN - BARI, Rosanna.Fini@ba.infn.it) 
336     //               R.A. Loconsole (Bari University, loco@riscom.ba.infn.it) 
337     //
338     Int_t   ISXFLD = gAlice->Field()->Integ();
339     Float_t SXMGMX = gAlice->Field()->Max();
340     Int_t i;
341
342     /************************************Antonnelo's Values (14-vectors)*****************************************/
343     /*
344     Float_t ppckov[14] = { 5.63e-9,5.77e-9,5.9e-9,6.05e-9,6.2e-9,6.36e-9,6.52e-9,
345                            6.7e-9,6.88e-9,7.08e-9,7.3e-9,7.51e-9,7.74e-9,8e-9 };
346     Float_t rindex_quarz[14] = { 1.528309,1.533333,
347                                  1.538243,1.544223,1.550568,1.55777,
348                                  1.565463,1.574765,1.584831,1.597027,
349                                1.611858,1.6277,1.6472,1.6724 };
350     Float_t rindex_quarzo[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
351     Float_t rindex_methane[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
352     Float_t rindex_gri[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
353     Float_t absco_freon[14] = { 179.0987,179.0987,
354                                 179.0987,179.0987,179.0987,142.92,56.65,13.95,10.43,7.07,2.03,.5773,.33496,0. };
355     //Float_t absco_freon[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,
356         //                       1e-5,1e-5,1e-5,1e-5,1e-5 };
357     Float_t absco_quarz[14] = { 64.035,39.98,35.665,31.262,27.527,22.815,21.04,17.52,
358                                 14.177,9.282,4.0925,1.149,.3627,.10857 };
359     Float_t absco_quarzo[14] = { 1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,1e-5,
360                                  1e-5,1e-5,1e-5,1e-5,1e-5 };
361     Float_t absco_csi[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,
362                               1e-4,1e-4,1e-4,1e-4 };
363     Float_t absco_methane[14] = { 1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,1e6,
364                                   1e6,1e6,1e6 };
365     Float_t absco_gri[14] = { 1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,1e-4,
366                               1e-4,1e-4,1e-4,1e-4 };
367     Float_t effic_all[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
368     Float_t effic_csi[14] = { 6e-4,.005,.0075,.01125,.045,.117,.135,.16575,
369                               .17425,.1785,.1836,.1904,.1938,.221 };
370     Float_t effic_gri[14] = { 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1. };
371     */
372    
373     
374     /**********************************End of Antonnelo's Values**********************************/
375     
376     /**********************************Values from rich_media.f (31-vectors)**********************************/
377     
378
379     //Photons energy intervals
380     Float_t ppckov[26];
381     for (i=0;i<26;i++) 
382     {
383         ppckov[i] = (Float_t(i)*0.1+5.5)*1e-9;
384         //printf ("Energy intervals: %e\n",ppckov[i]);
385     }
386     
387     
388     //Refraction index for quarz
389     Float_t rindex_quarz[26];
390     Float_t  e1= 10.666;
391     Float_t  e2= 18.125;
392     Float_t  f1= 46.411;
393     Float_t  f2= 228.71;
394     for (i=0;i<26;i++)
395     {
396         Float_t ene=ppckov[i]*1e9;
397         Float_t a=f1/(e1*e1 - ene*ene);
398         Float_t b=f2/(e2*e2 - ene*ene);
399         rindex_quarz[i] = TMath::Sqrt(1. + a + b );
400         //printf ("Rindex_quarz: %e\n",rindex_quarz[i]);
401     } 
402     
403     //Refraction index for opaque quarz, methane and grid
404     Float_t rindex_quarzo[26];
405     Float_t rindex_methane[26];
406     Float_t rindex_gri[26];
407     for (i=0;i<26;i++)
408     {
409         rindex_quarzo[i]=1;
410         rindex_methane[i]=1.000444;
411         rindex_gri[i]=1;
412         //printf ("Rindex_quarzo , etc: %e, %e, %e\n",rindex_quarzo[i], rindex_methane[i], rindex_gri[i]=1);
413     } 
414     
415     //Absorption index for freon
416     Float_t absco_freon[26] = {179.0987, 179.0987, 179.0987, 179.0987, 179.0987,  179.0987, 179.0987, 179.0987, 
417                                179.0987, 142.9206, 56.64957, 25.58622, 13.95293, 12.03905, 10.42953, 8.804196, 
418                                7.069031, 4.461292, 2.028366, 1.293013, .577267,   .40746,  .334964, 0., 0., 0.};
419     
420     //Absorption index for quarz
421     /*Float_t Qzt [21] = {.0,.0,.005,.04,.35,.647,.769,.808,.829,.844,.853,.858,.869,.887,.903,.902,.902,
422                         .906,.907,.907,.907};
423     Float_t Wavl2[] = {150.,155.,160.0,165.0,170.0,175.0,180.0,185.0,190.0,195.0,200.0,205.0,210.0,
424                        215.0,220.0,225.0,230.0,235.0,240.0,245.0,250.0};                                 
425     Float_t absco_quarz[31];         
426     for (Int_t i=0;i<31;i++)
427     {
428         Float_t Xlam = 1237.79 / (ppckov[i]*1e9);
429         if (Xlam <= 160) absco_quarz[i] = 0;
430         if (Xlam > 250) absco_quarz[i] = 1;
431         else 
432         {
433             for (Int_t j=0;j<21;j++)
434             {
435                 //printf ("Passed\n");
436                 if (Xlam > Wavl2[j] && Xlam < Wavl2[j+1])
437                 {
438                     Float_t Dabs = (Qzt[j+1] - Qzt[j])/(Wavl2[j+1] - Wavl2[j]);
439                     Float_t Abso = Qzt[j] + Dabs*(Xlam - Wavl2[j]);
440                     absco_quarz[i] = -5.0/(TMath::Log(Abso));
441                 } 
442             }
443         }
444         printf ("Absco_quarz: %e Absco_freon: %e for energy: %e\n",absco_quarz[i],absco_freon[i],ppckov[i]);
445     }*/
446
447     /*Float_t absco_quarz[31] = {49.64211, 48.41296, 47.46989, 46.50492, 45.13682, 44.47883, 43.1929 , 41.30922, 40.5943 ,
448                                39.82956, 38.98623, 38.6247 , 38.43448, 37.41084, 36.22575, 33.74852, 30.73901, 24.25086, 
449                                17.94531, 11.88753, 5.99128,  3.83503,  2.36661,  1.53155, 1.30582, 1.08574, .8779708, 
450                                .675275, 0., 0., 0.};
451     
452     for (Int_t i=0;i<31;i++)
453     {
454         absco_quarz[i] = absco_quarz[i]/10;
455     }*/
456
457     Float_t absco_quarz [26] = {105.8, 65.52, 48.58, 42.85, 35.79, 31.262, 28.598, 27.527, 25.007, 22.815, 21.004,
458                                 19.266, 17.525, 15.878, 14.177, 11.719, 9.282, 6.62, 4.0925, 2.601, 1.149, .667, .3627,
459                                 .192, .1497, .10857};
460     
461     //Absorption index for methane
462     Float_t absco_methane[26];
463     for (i=0;i<26;i++) 
464     {
465         absco_methane[i]=AbsoCH4(ppckov[i]*1e9); 
466         //printf("Absco_methane: %e for energy: %e\n", absco_methane[i],ppckov[i]*1e9);
467     }
468     
469     //Absorption index for opaque quarz, csi and grid, efficiency for all and grid
470     Float_t absco_quarzo[26];
471     Float_t absco_csi[26];
472     Float_t absco_gri[26];
473     Float_t effic_all[26];
474     Float_t effic_gri[26];
475     for (i=0;i<26;i++)
476     { 
477         absco_quarzo[i]=1e-5; 
478         absco_csi[i]=1e-4; 
479         absco_gri[i]=1e-4; 
480         effic_all[i]=1; 
481         effic_gri[i]=1;
482         //printf ("All must be 1: %e,  %e,  %e,  %e,  %e\n",absco_quarzo[i],absco_csi[i],absco_gri[i],effic_all[i],effic_gri[i]);
483     } 
484     
485     //Efficiency for csi 
486     
487     Float_t effic_csi[26] = {0.000199999995, 0.000600000028, 0.000699999975, 0.00499999989, 0.00749999983, 0.010125,
488                              0.0242999997, 0.0405000001, 0.0688500032, 0.105299994, 0.121500008, 0.141749993, 0.157949999,
489                              0.162, 0.166050002, 0.167669997, 0.174299985, 0.176789999, 0.179279998, 0.182599992, 0.18592,
490                              0.187579989, 0.189239994, 0.190899998, 0.207499996, 0.215799987};
491         
492     
493
494     //FRESNEL LOSS CORRECTION FOR PERPENDICULAR INCIDENCE AND
495     //UNPOLARIZED PHOTONS
496
497     for (i=0;i<26;i++)
498     {
499         effic_csi[i] = effic_csi[i]/(1.-Fresnel(ppckov[i]*1e9,1.,0)); 
500         //printf ("Fresnel result: %e for energy: %e\n",Fresnel(ppckov[i]*1e9,1.,0),ppckov[i]*1e9);
501     }
502         
503     /*******************************************End of rich_media.f***************************************/
504
505   
506
507     
508     
509     
510     Float_t afre[2], agri, amet[2], aqua[2], ahon, zfre[2], zgri, zhon, 
511     zmet[2], zqua[2];
512     Int_t nlmatfre;
513     Float_t densquao;
514     Int_t nlmatmet, nlmatqua;
515     Float_t wmatquao[2], rindex_freon[26];
516     Float_t aquao[2], epsil, stmin, zquao[2];
517     Int_t nlmatquao;
518     Float_t radlal, densal, tmaxfd, deemax, stemax;
519     Float_t aal, zal, radlgri, densfre, radlhon, densgri, denshon,densqua, densmet, wmatfre[2], wmatmet[2], wmatqua[2];
520     
521     Int_t *idtmed = fIdtmed->GetArray()-999;
522     
523     TGeant3 *geant3 = (TGeant3*) gMC;
524     
525     // --- Photon energy (GeV) 
526     // --- Refraction indexes 
527     for (i = 0; i < 26; ++i) {
528         rindex_freon[i] = ppckov[i] * .0172 * 1e9 + 1.177;
529         //printf ("Rindex_freon: %e \n Effic_csi: %e for energy: %e\n",rindex_freon[i], effic_csi[i], ppckov[i]);
530     }
531             
532     // --- Detection efficiencies (quantum efficiency for CsI) 
533     // --- Define parameters for honeycomb. 
534     //     Used carbon of equivalent rad. lenght 
535     
536     ahon    = 12.01;
537     zhon    = 6.;
538     denshon = 2.265;
539     radlhon = 18.8;
540     
541     // --- Parameters to include in GSMIXT, relative to Quarz (SiO2) 
542     
543     aqua[0]    = 28.09;
544     aqua[1]    = 16.;
545     zqua[0]    = 14.;
546     zqua[1]    = 8.;
547     densqua    = 2.64;
548     nlmatqua   = -2;
549     wmatqua[0] = 1.;
550     wmatqua[1] = 2.;
551     
552     // --- Parameters to include in GSMIXT, relative to opaque Quarz (SiO2) 
553     
554     aquao[0]    = 28.09;
555     aquao[1]    = 16.;
556     zquao[0]    = 14.;
557     zquao[1]    = 8.;
558     densquao    = 2.64;
559     nlmatquao   = -2;
560     wmatquao[0] = 1.;
561     wmatquao[1] = 2.;
562     
563     // --- Parameters to include in GSMIXT, relative to Freon (C6F14) 
564     
565     afre[0]    = 12.;
566     afre[1]    = 19.;
567     zfre[0]    = 6.;
568     zfre[1]    = 9.;
569     densfre    = 1.7;
570     nlmatfre   = -2;
571     wmatfre[0] = 6.;
572     wmatfre[1] = 14.;
573     
574     // --- Parameters to include in GSMIXT, relative to methane (CH4) 
575     
576     amet[0]    = 12.01;
577     amet[1]    = 1.;
578     zmet[0]    = 6.;
579     zmet[1]    = 1.;
580     densmet    = 7.17e-4;
581     nlmatmet   = -2;
582     wmatmet[0] = 1.;
583     wmatmet[1] = 4.;
584     
585     // --- Parameters to include in GSMIXT, relative to anode grid (Cu) 
586   
587     agri    = 63.54;
588     zgri    = 29.;
589     densgri = 8.96;
590     radlgri = 1.43;
591     
592     // --- Parameters to include in GSMATE related to aluminium sheet 
593     
594     aal    = 26.98;
595     zal    = 13.;
596     densal = 2.7;
597     radlal = 8.9;
598     
599     AliMaterial(1, "Air     $", 14.61, 7.3, .001205, 30420., 67500);
600     AliMaterial(6, "HON", ahon, zhon, denshon, radlhon, 0);
601     AliMaterial(16, "CSI", ahon, zhon, denshon, radlhon, 0);
602     AliMixture(20, "QUA", aqua, zqua, densqua, nlmatqua, wmatqua);
603     AliMixture(21, "QUAO", aquao, zquao, densquao, nlmatquao, wmatquao);
604     AliMixture(30, "FRE", afre, zfre, densfre, nlmatfre, wmatfre);
605     AliMixture(40, "MET", amet, zmet, densmet, nlmatmet, wmatmet);
606     AliMixture(41, "METG", amet, zmet, densmet, nlmatmet, wmatmet);
607     AliMaterial(11, "GRI", agri, zgri, densgri, radlgri, 0);
608     AliMaterial(50, "ALUM", aal, zal, densal, radlal, 0);
609     
610     tmaxfd = -10.;
611     stemax = -.1;
612     deemax = -.2;
613     epsil  = .001;
614     stmin  = -.001;
615     
616     AliMedium(1, "DEFAULT MEDIUM AIR$", 1, 0, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
617     AliMedium(2, "HONEYCOMB$", 6, 0, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
618     AliMedium(3, "QUARZO$", 20, 1, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
619     AliMedium(4, "FREON$", 30, 1, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
620     AliMedium(5, "METANO$", 40, 1, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
621     AliMedium(6, "CSI$", 16, 1, ISXFLD, SXMGMX,tmaxfd, stemax, deemax, epsil, stmin);
622     AliMedium(7, "GRIGLIA$", 11, 0, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
623     AliMedium(8, "QUARZOO$", 21, 1, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
624     AliMedium(9, "GAP$", 41, 1, ISXFLD, SXMGMX,tmaxfd, .1, -deemax, epsil, -stmin);
625     AliMedium(10, "ALUMINUM$", 50, 1, ISXFLD, SXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
626     
627
628     geant3->Gsckov(idtmed[1000], 26, ppckov, absco_methane, effic_all, rindex_methane);
629     geant3->Gsckov(idtmed[1001], 26, ppckov, absco_methane, effic_all, rindex_methane);
630     geant3->Gsckov(idtmed[1002], 26, ppckov, absco_quarz, effic_all,rindex_quarz);
631     geant3->Gsckov(idtmed[1003], 26, ppckov, absco_freon, effic_all,rindex_freon);
632     geant3->Gsckov(idtmed[1004], 26, ppckov, absco_methane, effic_all, rindex_methane);
633     geant3->Gsckov(idtmed[1005], 26, ppckov, absco_csi, effic_csi, rindex_methane);
634     geant3->Gsckov(idtmed[1006], 26, ppckov, absco_gri, effic_gri, rindex_gri);
635     geant3->Gsckov(idtmed[1007], 26, ppckov, absco_quarzo, effic_all, rindex_quarzo);
636     geant3->Gsckov(idtmed[1008], 26, ppckov, absco_methane, effic_all, rindex_methane);
637     geant3->Gsckov(idtmed[1009], 26, ppckov, absco_gri, effic_gri, rindex_gri);
638 }
639
640 //___________________________________________
641
642 Float_t AliRICHv0::Fresnel(Float_t ene,Float_t pdoti, Bool_t pola)
643 {
644
645     //ENE(EV), PDOTI=COS(INC.ANG.), PDOTR=COS(POL.PLANE ROT.ANG.)
646     
647     Float_t en[36] = {5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,
648                       6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0,7.1,7.2,7.3,7.4,7.5,7.6,7.7,
649                       7.8,7.9,8.0,8.1,8.2,8.3,8.4,8.5};
650      
651
652     Float_t csin[36] = {2.14,2.21,2.33,2.48,2.76,2.97,2.99,2.59,2.81,3.05,
653                         2.86,2.53,2.55,2.66,2.79,2.96,3.18,3.05,2.84,2.81,2.38,2.11,
654                         2.01,2.13,2.39,2.73,3.08,3.15,2.95,2.73,2.56,2.41,2.12,1.95,
655                         1.72,1.53};
656       
657     Float_t csik[36] = {0.,0.,0.,0.,0.,0.196,0.408,0.208,0.118,0.49,0.784,0.543,
658                         0.424,0.404,0.371,0.514,0.922,1.102,1.139,1.376,1.461,1.253,0.878,
659                         0.69,0.612,0.649,0.824,1.347,1.571,1.678,1.763,1.857,1.824,1.824,
660                         1.714,1.498};
661     Float_t xe=ene;
662     Int_t  j=Int_t(xe*10)-49;
663     Float_t cn=csin[j]+((csin[j+1]-csin[j])/0.1)*(xe-en[j]);
664     Float_t ck=csik[j]+((csik[j+1]-csik[j])/0.1)*(xe-en[j]);
665
666     //FORMULAE FROM HANDBOOK OF OPTICS, 33.23 OR
667     //W.R. HUNTER, J.O.S.A. 54 (1964),15 , J.O.S.A. 55(1965),1197
668
669     Float_t sinin=TMath::Sqrt(1-pdoti*pdoti);
670     Float_t tanin=sinin/pdoti;
671
672     Float_t c1=cn*cn-ck*ck-sinin*sinin;
673     Float_t c2=4*cn*cn*ck*ck;
674     Float_t aO=TMath::Sqrt(0.5*(TMath::Sqrt(c1*c1+c2)+c1));
675     Float_t b2=0.5*(TMath::Sqrt(c1*c1+c2)-c1);
676     
677     Float_t rs=((aO-pdoti)*(aO-pdoti)+b2)/((aO+pdoti)*(aO+pdoti)+b2);
678     Float_t rp=rs*((aO-sinin*tanin)*(aO-sinin*tanin)+b2)/((aO+sinin*tanin)*(aO+sinin*tanin)+b2);
679     
680
681     //CORRECTION FACTOR FOR SURFACE ROUGHNESS
682     //B.J. STAGG  APPLIED OPTICS, 30(1991),4113
683
684     Float_t sigraf=18.;
685     Float_t lamb=1240/ene;
686     Float_t fresn;
687  
688     Float_t  rO=TMath::Exp(-(4*TMath::Pi()*pdoti*sigraf/lamb)*(4*TMath::Pi()*pdoti*sigraf/lamb));
689
690     if(pola)
691     {
692         Float_t pdotr=0.8;                                 //DEGREE OF POLARIZATION : 1->P , -1->S
693         fresn=0.5*(rp*(1+pdotr)+rs*(1-pdotr));
694     }
695     else
696         fresn=0.5*(rp+rs);
697       
698     fresn = fresn*rO;
699     return(fresn);
700 }
701
702 //__________________________________________
703
704 Float_t AliRICHv0::AbsoCH4(Float_t x)
705 {
706
707     //LOSCH,SCH4(9),WL(9),EM(9),ALENGTH(31)
708     Float_t sch4[9] = {.12,.16,.23,.38,.86,2.8,7.9,28.,80.};              //MB X 10^22
709     //Float_t wl[9] = {153.,152.,151.,150.,149.,148.,147.,146.,145};
710     Float_t em[9] = {8.1,8.158,8.212,8.267,8.322,8.378,8.435,8.493,8.55};
711     const Float_t losch=2.686763E19;                                      // LOSCHMIDT NUMBER IN CM-3
712     const Float_t igas1=100, igas2=0, oxy=10., wat=5., pre=750.,tem=283.;                                      
713     Float_t pn=pre/760.;
714     Float_t tn=tem/273.16;
715     
716         
717 // ------- METHANE CROSS SECTION -----------------
718 // ASTROPH. J. 214, L47 (1978)
719         
720     Float_t sm=0;
721     if (x<7.75) 
722         sm=.06e-22;
723     
724     if(x>=7.75 && x<=8.1)
725     {
726         Float_t c0=-1.655279e-1;
727         Float_t c1=6.307392e-2;
728         Float_t c2=-8.011441e-3;
729         Float_t c3=3.392126e-4;
730         sm=(c0+c1*x+c2*x*x+c3*x*x*x)*1.e-18;
731     }
732     
733     if (x> 8.1)
734     {
735         Int_t j=0;
736         while (x<=em[j] && x>=em[j+1])
737         {
738             j++;
739             Float_t a=(sch4[j+1]-sch4[j])/(em[j+1]-em[j]);
740             sm=(sch4[j]+a*(x-em[j]))*1e-22;
741         }
742     }
743     
744     Float_t dm=(igas1/100.)*(1.-((oxy+wat)/1.e6))*losch*pn/tn;
745     Float_t abslm=1./sm/dm;
746     
747 //    ------- ISOBUTHANE CROSS SECTION --------------
748 //     i-C4H10 (ai) abs. length from curves in
749 //     Lu-McDonald paper for BARI RICH workshop .
750 //     -----------------------------------------------------------
751     
752     Float_t ai;
753     Float_t absli;
754     if (igas2 != 0) 
755     {
756         if (x<7.25)
757             ai=100000000.;
758         
759         if(x>=7.25 && x<7.375)
760             ai=24.3;
761         
762         if(x>=7.375)
763             ai=.0000000001;
764         
765         Float_t si = 1./(ai*losch*273.16/293.);                    // ISOB. CRO.SEC.IN CM2
766         Float_t di=(igas2/100.)*(1.-((oxy+wat)/1.e6))*losch*pn/tn;
767         absli =1./si/di;
768     }
769     else
770         absli=1.e18;
771 //    ---------------------------------------------------------
772 //
773 //       transmission of O2
774 //
775 //       y= path in cm, x=energy in eV
776 //       so= cross section for UV absorption in cm2
777 //       do= O2 molecular density in cm-3
778 //    ---------------------------------------------------------
779     
780     Float_t abslo;
781     Float_t so=0;
782     if(x>=6.0)
783     {
784         if(x>=6.0 && x<6.5)
785         {
786             so=3.392709e-13 * TMath::Exp(2.864104 *x);
787             so=so*1e-18;
788         }
789         
790         if(x>=6.5 && x<7.0) 
791         {
792             so=2.910039e-34 * TMath::Exp(10.3337*x);
793             so=so*1e-18;
794         }
795             
796
797         if (x>=7.0) 
798         {
799             Float_t a0=-73770.76;
800             Float_t a1=46190.69;
801             Float_t a2=-11475.44;
802             Float_t a3=1412.611;
803             Float_t a4=-86.07027;
804             Float_t a5=2.074234;
805             so= a0+(a1*x)+(a2*x*x)+(a3*x*x*x)+(a4*x*x*x*x)+(a5*x*x*x*x*x);
806             so=so*1e-18;
807         }
808         
809         Float_t dox=(oxy/1e6)*losch*pn/tn;
810         abslo=1./so/dox;
811     }
812     else
813         abslo=1.e18;
814 //     ---------------------------------------------------------
815 //
816 //       transmission of H2O
817 //
818 //       y= path in cm, x=energy in eV
819 //       sw= cross section for UV absorption in cm2
820 //       dw= H2O molecular density in cm-3
821 //     ---------------------------------------------------------
822     
823     Float_t abslw;
824     
825     Float_t b0=29231.65;
826     Float_t b1=-15807.74;
827     Float_t b2=3192.926;
828     Float_t b3=-285.4809;
829     Float_t b4=9.533944;
830     
831     if(x>6.75)
832     {    
833         Float_t sw= b0+(b1*x)+(b2*x*x)+(b3*x*x*x)+(b4*x*x*x*x);
834         sw=sw*1e-18;
835         Float_t dw=(wat/1e6)*losch*pn/tn;
836         abslw=1./sw/dw;
837     }
838     else
839         abslw=1.e18;
840             
841 //    ---------------------------------------------------------
842     
843     Float_t alength=1./(1./abslm+1./absli+1./abslo+1./abslw);
844     return (alength);
845 }
846
847
848
849
850 //___________________________________________
851
852 void AliRICHv0::Init()
853 {
854     printf("\n\n\n Start Init for version 0 - CPC chamber type \n\n\n");
855     
856     // 
857     // Initialize Tracking Chambers
858     //
859     for (Int_t i=1; i<7; i++) {
860         //printf ("i:%d",i);
861         ( (AliRICHChamber*) (*fChambers)[i])->Init();  
862     }  
863     
864     //
865     // Set the chamber (sensitive region) GEANT identifier
866     
867     ((AliRICHChamber*)(*fChambers)[0])->SetGid(1);  
868     ((AliRICHChamber*)(*fChambers)[1])->SetGid(2);  
869     ((AliRICHChamber*)(*fChambers)[2])->SetGid(3);  
870     ((AliRICHChamber*)(*fChambers)[3])->SetGid(4);  
871     ((AliRICHChamber*)(*fChambers)[4])->SetGid(5);  
872     ((AliRICHChamber*)(*fChambers)[5])->SetGid(6);  
873     ((AliRICHChamber*)(*fChambers)[6])->SetGid(7); 
874
875     Float_t pos1[3]={0,471.8999,165.2599};
876     Chamber(0).SetChamberTransform(pos1[0],pos1[1],pos1[2],new TRotMatrix("rot993","rot993",90,0,70.69,90,19.30999,-90));
877
878     Float_t pos2[3]={171,470,0};
879     Chamber(1).SetChamberTransform(pos2[0],pos2[1],pos2[2],new TRotMatrix("rot994","rot994",90,-20,90,70,0,0));
880
881     Float_t pos3[3]={0,500,0};
882     Chamber(2).SetChamberTransform(pos3[0],pos3[1],pos3[2],new TRotMatrix("rot995","rot995",90,0,90,90,0,0));
883     
884     Float_t pos4[3]={-171,470,0};
885     Chamber(3).SetChamberTransform(pos4[0],pos4[1],pos4[2], new TRotMatrix("rot996","rot996",90,20,90,110,0,0));  
886
887     Float_t pos5[3]={161.3999,443.3999,-165.3};
888     Chamber(4).SetChamberTransform(pos5[0],pos5[1],pos5[2],new TRotMatrix("rot997","rot997",90,340,108.1999,70,18.2,70));
889
890     Float_t pos6[3]={0., 471.9, -165.3,};
891     Chamber(5).SetChamberTransform(pos6[0],pos6[1],pos6[2],new TRotMatrix("rot998","rot998",90,0,109.3099,90,19.30999,90));
892
893     Float_t pos7[3]={-161.399,443.3999,-165.3};
894     Chamber(6).SetChamberTransform(pos7[0],pos7[1],pos7[2],new TRotMatrix("rot999","rot999",90,20,108.1999,110,18.2,110));
895     
896     printf("\n\n\n Finished Init for version 0 - CPC chamber type\n\n\n");
897 }
898
899 //___________________________________________
900 void AliRICHv0::StepManager()
901 {
902     Int_t          copy, id;
903     static Int_t   idvol;
904     static Int_t   vol[2];
905     Int_t          ipart;
906     static Float_t hits[16];
907     static Float_t Ckov_data[16];
908     TLorentzVector Position;
909     TLorentzVector Momentum;
910     Float_t        pos[3];
911     Float_t        mom[4];
912     Float_t        Localpos[3];
913     Float_t        Localmom[4];
914     Float_t        Localtheta,Localphi;
915     Float_t        theta,phi;
916     Float_t        destep, step;
917     Float_t        ranf[2];
918     static Float_t eloss, xhit, yhit, tlength;
919     const  Float_t big=1.e10;
920        
921     TClonesArray &lhits = *fHits;
922     TGeant3 *geant3 = (TGeant3*) gMC;
923     TParticle *current = (TParticle*)(*gAlice->Particles())[gAlice->CurrentTrack()];
924
925  //if (current->Energy()>1)
926    //{
927         
928     // Only gas gap inside chamber
929     // Tag chambers and record hits when track enters 
930     
931     idvol=-1;
932     id=gMC->CurrentVolID(copy);
933     Float_t cherenkov_loss=0;
934     //gAlice->KeepTrack(gAlice->CurrentTrack());
935     
936     gMC->TrackPosition(Position);
937     pos[0]=Position(0);
938     pos[1]=Position(1);
939     pos[2]=Position(2);
940     Ckov_data[1] = pos[0];                 // X-position for hit
941     Ckov_data[2] = pos[1];                 // Y-position for hit
942     Ckov_data[3] = pos[2];                 // Z-position for hit
943     //Ckov_data[11] = gAlice->CurrentTrack();
944
945     
946     /********************Store production parameters for Cerenkov photons************************/ 
947 //is it a Cerenkov photon? 
948     if (gMC->TrackPid() == 50000050) {          
949
950       //if (gMC->VolId("GAP ")==gMC->CurrentVolID(copy))
951         
952                             
953         Float_t Ckov_energy = current->Energy();
954         //energy interval for tracking
955         if  (Ckov_energy > 5.6e-09 && Ckov_energy < 7.8e-09 )       
956         //if (Ckov_energy > 0)
957         {
958             if (gMC->IsTrackEntering()){                                     //is track entering?
959                 if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy))
960                   {                                                          //is it in freo?
961                     if (geant3->Gctrak()->nstep<1){                          //is it the first step?
962                         Int_t mother = current->GetFirstMother(); 
963                         
964                         //printf("Second Mother:%d\n",current->GetSecondMother());
965                         
966                         Ckov_data[10] = mother;
967                         Ckov_data[11] = gAlice->CurrentTrack();
968                         Ckov_data[12] = 1;             //Media where photon was produced 1->Freon, 2->Quarz
969                         fCkov_number++;
970                         fFreon_prod=1;
971                         //printf("Index: %d\n",fCkov_number);
972                     }    //first step question
973                 }        //freo question
974                 
975                 if (geant3->Gctrak()->nstep<1){                                  //is it first step?
976                     if (gMC->VolId("QUAR")==gMC->CurrentVolID(copy))             //is it in quarz?
977                     {
978                         Ckov_data[12] = 2;
979                     }    //quarz question
980                 }        //first step question
981                 
982                 //printf("Before %d\n",fFreon_prod);
983             }   //track entering question
984             
985             if (Ckov_data[12] == 1)                                        //was it produced in Freon?
986                 //if (fFreon_prod == 1)
987             {
988                 if (gMC->IsTrackEntering()){                                     //is track entering?
989                     //printf("Got in");
990                     if (gMC->VolId("META")==gMC->CurrentVolID(copy))                //is it in gap?      
991                     {
992                         //printf("Got in\n");
993                         gMC->TrackMomentum(Momentum);
994                         mom[0]=Momentum(0);
995                         mom[1]=Momentum(1);
996                         mom[2]=Momentum(2);
997                         mom[3]=Momentum(3);
998                                        // Z-position for hit
999
1000                           
1001                         /**************** Photons lost in second grid have to be calculated by hand************/ 
1002                           
1003                         Float_t cophi = TMath::Cos(TMath::ATan2(mom[0], mom[1]));
1004                         Float_t t = (1. - .025 / cophi) * (1. - .05 /  cophi);
1005                         gMC->Rndm(ranf, 1);
1006                         //printf("grid calculation:%f\n",t);
1007                         if (ranf[0] > t) {
1008                             geant3->StopTrack();
1009                             Ckov_data[13] = 5;
1010                             AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data);
1011                             //printf("Lost one in grid\n");
1012                         }
1013                         /**********************************************************************************/
1014                     }    //gap
1015                     
1016                     if (gMC->VolId("CSI ")==gMC->CurrentVolID(copy))             //is it in csi?      
1017                     {
1018                         gMC->TrackMomentum(Momentum);
1019                         mom[0]=Momentum(0);
1020                         mom[1]=Momentum(1);
1021                         mom[2]=Momentum(2);
1022                         mom[3]=Momentum(3);
1023                         
1024                         /********* Photons lost by Fresnel reflection have to be calculated by hand********/ 
1025                         /***********************Cerenkov phtons (always polarised)*************************/
1026                         
1027                         Float_t cophi = TMath::Cos(TMath::ATan2(mom[0], mom[1]));
1028                         Float_t t = Fresnel(Ckov_energy*1e9,cophi,1);
1029                         gMC->Rndm(ranf, 1);
1030                         if (ranf[0] < t) {
1031                             geant3->StopTrack();
1032                             Ckov_data[13] = 6;
1033                             AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data);
1034                             //printf("Lost by Fresnel\n");
1035                         }
1036                           /**********************************************************************************/
1037                     }
1038                 } //track entering?
1039                 
1040                 
1041                 /********************Evaluation of losses************************/
1042                 /******************still in the old fashion**********************/
1043                 
1044                 Int_t i1 = geant3->Gctrak()->nmec;            //number of physics mechanisms acting on the particle
1045                 for (Int_t i = 0; i < i1; ++i) {
1046                     //        Reflection loss 
1047                     if (geant3->Gctrak()->lmec[i] == 106) {        //was it reflected
1048                         Ckov_data[13]=10;
1049                         if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) 
1050                             Ckov_data[13]=1;
1051                         if (gMC->CurrentVolID(copy) == gMC->VolId("QUAR")) 
1052                             Ckov_data[13]=2;
1053                         geant3->StopTrack();
1054                         AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data);
1055                     } //reflection question
1056                     
1057                   
1058                     //        Absorption loss 
1059                     else if (geant3->Gctrak()->lmec[i] == 101) {              //was it absorbed?
1060                         Ckov_data[13]=20;
1061                         if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy)) 
1062                             Ckov_data[13]=11;
1063                         if (gMC->CurrentVolID(copy) == gMC->VolId("QUAR")) 
1064                             Ckov_data[13]=12;
1065                         if (gMC->CurrentVolID(copy) == gMC->VolId("META")) 
1066                             Ckov_data[13]=13;
1067                         if (gMC->CurrentVolID(copy) == gMC->VolId("GAP ")) 
1068                             Ckov_data[13]=13;
1069                         
1070                         if (gMC->CurrentVolID(copy) == gMC->VolId("SRIC")) 
1071                             Ckov_data[13]=15;
1072                         
1073                         //        CsI inefficiency 
1074                         if (gMC->CurrentVolID(copy) == gMC->VolId("CSI ")) {
1075                             Ckov_data[13]=16;
1076                         }
1077                         geant3->StopTrack();
1078                         AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data);
1079                         //printf("Added cerenkov %d\n",fCkov_number);
1080                     } //absorption question 
1081                     
1082                   
1083                     //        Photon goes out of tracking scope 
1084                     else if (geant3->Gctrak()->lmec[i] == 30) {                 //is it below energy treshold?
1085                         Ckov_data[13]=21;
1086                         geant3->StopTrack();
1087                         AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data);
1088                     }   // energy treshold question         
1089                 }  //number of mechanisms cycle
1090                 /**********************End of evaluation************************/
1091             } //freon production question
1092         } //energy interval question
1093     } //cerenkov photon question
1094     
1095     /**************************************End of Production Parameters Storing*********************/ 
1096     
1097     
1098     /*******************************Treat photons that hit the CsI (Ckovs and Feedbacks)************/ 
1099     
1100     if (gMC->TrackPid() == 50000050 || gMC->TrackPid() == 50000051) {
1101         if (gMC->VolId("CSI ")==gMC->CurrentVolID(copy))
1102         {
1103             
1104           if (gMC->Edep() > 0.){
1105                 gMC->TrackPosition(Position);
1106                 gMC->TrackMomentum(Momentum);
1107                 pos[0]=Position(0);
1108                 pos[1]=Position(1);
1109                 pos[2]=Position(2);
1110                 mom[0]=Momentum(0);
1111                 mom[1]=Momentum(1);
1112                 mom[2]=Momentum(2);
1113                 mom[3]=Momentum(3);
1114                 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1115                 Double_t rt = TMath::Sqrt(tc);
1116                 theta   = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1117                 phi     = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1118                 gMC->Gmtod(pos,Localpos,1);                                                                    
1119                 gMC->Gmtod(mom,Localmom,2);
1120                 
1121                 gMC->CurrentVolOffID(2,copy);
1122                 vol[0]=copy;
1123                 idvol=vol[0]-1;
1124
1125                 //Int_t sector=((AliRICHChamber*) (*fChambers)[idvol])
1126                         //->Sector(Localpos[0], Localpos[2]);
1127                 //printf("Sector:%d\n",sector);
1128
1129                 /*if (gMC->TrackPid() == 50000051){
1130                   fFeedbacks++;
1131                   printf("Feedbacks:%d\n",fFeedbacks);
1132                 }*/     
1133                 
1134                 ((AliRICHChamber*) (*fChambers)[idvol])
1135                     ->SigGenInit(Localpos[0], Localpos[2], Localpos[1]);
1136                 if(idvol<7) {   
1137                     Ckov_data[0] = gMC->TrackPid();        // particle type
1138                     Ckov_data[1] = pos[0];                 // X-position for hit
1139                     Ckov_data[2] = pos[1];                 // Y-position for hit
1140                     Ckov_data[3] = pos[2];                 // Z-position for hit
1141                     Ckov_data[4] = theta;                      // theta angle of incidence
1142                     Ckov_data[5] = phi;                      // phi angle of incidence 
1143                     Ckov_data[8] = (Float_t) fNPadHits;      // first padhit
1144                     Ckov_data[9] = -1;                       // last pad hit
1145                     Ckov_data[13] = 4;                       // photon was detected
1146                     Ckov_data[14] = mom[0];
1147                     Ckov_data[15] = mom[1];
1148                     Ckov_data[16] = mom[2];
1149                     
1150                     destep = gMC->Edep();
1151                     gMC->SetMaxStep(big);
1152                     cherenkov_loss  += destep;
1153                     Ckov_data[7]=cherenkov_loss;
1154                     
1155                     MakePadHits(Localpos[0],Localpos[2],cherenkov_loss,idvol,cerenkov);
1156                     if (fNPadHits > (Int_t)Ckov_data[8]) {
1157                         Ckov_data[8]= Ckov_data[8]+1;
1158                         Ckov_data[9]= (Float_t) fNPadHits;
1159                     }
1160                     //if (sector != -1)
1161                       //{
1162                         AddHit(gAlice->CurrentTrack(),vol,Ckov_data);
1163                         AddCerenkov(gAlice->CurrentTrack(),vol,Ckov_data);
1164                       //}
1165                 }
1166             }
1167         }
1168     }
1169     
1170     /***********************************************End of photon hits*********************************************/
1171     
1172
1173     /**********************************************Charged particles treatment*************************************/
1174
1175     //else if (gMC->TrackCharge())
1176     else if (1 == 1)
1177       {
1178 //If MIP
1179         /*if (gMC->IsTrackEntering())
1180           {                
1181             hits[13]=20;//is track entering?
1182           }*/
1183         if (gMC->VolId("FRE1")==gMC->CurrentVolID(copy) || gMC->VolId("FRE2")==gMC->CurrentVolID(copy))
1184           {
1185             fFreon_prod=1;
1186           }
1187
1188         if (gMC->VolId("GAP ")== gMC->CurrentVolID(copy)) {
1189 // Get current particle id (ipart), track position (pos)  and momentum (mom)
1190             
1191             gMC->CurrentVolOffID(3,copy);
1192             vol[0]=copy;
1193             idvol=vol[0]-1;
1194
1195             //Int_t sector=((AliRICHChamber*) (*fChambers)[idvol])
1196                         //->Sector(Localpos[0], Localpos[2]);
1197             //printf("Sector:%d\n",sector);
1198             
1199             gMC->TrackPosition(Position);
1200             gMC->TrackMomentum(Momentum);
1201             pos[0]=Position(0);
1202             pos[1]=Position(1);
1203             pos[2]=Position(2);
1204             mom[0]=Momentum(0);
1205             mom[1]=Momentum(1);
1206             mom[2]=Momentum(2);
1207             mom[3]=Momentum(3);
1208             gMC->Gmtod(pos,Localpos,1);                                                                    
1209             gMC->Gmtod(mom,Localmom,2);
1210             
1211             ipart  = gMC->TrackPid();
1212             //
1213             // momentum loss and steplength in last step
1214             destep = gMC->Edep();
1215             step   = gMC->TrackStep();
1216   
1217             //
1218             // record hits when track enters ...
1219             if( gMC->IsTrackEntering()) {
1220 //              gMC->SetMaxStep(fMaxStepGas);
1221                 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1222                 Double_t rt = TMath::Sqrt(tc);
1223                 theta   = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1224                 phi     = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1225                 
1226
1227                 Double_t Localtc = Localmom[0]*Localmom[0]+Localmom[2]*Localmom[2];
1228                 Double_t Localrt = TMath::Sqrt(Localtc);
1229                 Localtheta   = Float_t(TMath::ATan2(Localrt,Double_t(Localmom[1])))*kRaddeg;                       
1230                 Localphi     = Float_t(TMath::ATan2(Double_t(Localmom[2]),Double_t(Localmom[0])))*kRaddeg;    
1231                 
1232                 hits[0] = Float_t(ipart);         // particle type
1233                 hits[1] = Localpos[0];                 // X-position for hit
1234                 hits[2] = Localpos[1];                 // Y-position for hit
1235                 hits[3] = Localpos[2];                 // Z-position for hit
1236                 hits[4] = Localtheta;                  // theta angle of incidence
1237                 hits[5] = Localphi;                    // phi angle of incidence 
1238                 hits[8] = (Float_t) fNPadHits;    // first padhit
1239                 hits[9] = -1;                     // last pad hit
1240                 hits[13] = fFreon_prod;           // did id hit the freon?
1241                 hits[14] = mom[0];
1242                 hits[15] = mom[1];
1243                 hits[16] = mom[2];
1244
1245                 tlength = 0;
1246                 eloss   = 0;
1247                 fFreon_prod = 0;
1248         
1249                 Chamber(idvol).LocaltoGlobal(Localpos,hits+1);
1250            
1251                 
1252                 //To make chamber coordinates x-y had to pass LocalPos[0], LocalPos[2]
1253                 xhit    = Localpos[0];
1254                 yhit    = Localpos[2];
1255                 // Only if not trigger chamber
1256                 if(idvol<7) {
1257                     //
1258                     //  Initialize hit position (cursor) in the segmentation model 
1259                     ((AliRICHChamber*) (*fChambers)[idvol])
1260                         ->SigGenInit(Localpos[0], Localpos[2], Localpos[1]);
1261                 }
1262             }
1263             
1264             // 
1265             // Calculate the charge induced on a pad (disintegration) in case 
1266             //
1267             // Mip left chamber ...
1268             if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1269                 gMC->SetMaxStep(big);
1270                 eloss   += destep;
1271                 tlength += step;
1272                 
1273                                 
1274                 // Only if not trigger chamber
1275                 if(idvol<7) {
1276                     if (eloss > 0) MakePadHits(xhit,yhit,eloss,idvol,mip);
1277                 }
1278                 
1279                 hits[6]=tlength;
1280                 hits[7]=eloss;
1281                 if (fNPadHits > (Int_t)hits[8]) {
1282                     hits[8]= hits[8]+1;
1283                     hits[9]= (Float_t) fNPadHits;
1284                 }
1285                 
1286                 //if(sector !=-1)
1287                 new(lhits[fNhits++]) AliRICHHit(fIshunt,gAlice->CurrentTrack(),vol,hits);
1288                 eloss = 0; 
1289                 //
1290                 // Check additional signal generation conditions 
1291                 // defined by the segmentation
1292                 // model (boundary crossing conditions) 
1293             } else if 
1294                 (((AliRICHChamber*) (*fChambers)[idvol])
1295                  ->SigGenCond(Localpos[0], Localpos[2], Localpos[1]))
1296             {
1297                 ((AliRICHChamber*) (*fChambers)[idvol])
1298                     ->SigGenInit(Localpos[0], Localpos[2], Localpos[1]);
1299                 if (eloss > 0) MakePadHits(xhit,yhit,eloss,idvol,mip);
1300                 xhit     = Localpos[0];
1301                 yhit     = Localpos[2]; 
1302                 eloss    = destep;
1303                 tlength += step ;
1304                 //
1305                 // nothing special  happened, add up energy loss
1306             } else {        
1307                 eloss   += destep;
1308                 tlength += step ;
1309             }
1310         }
1311       }
1312     /*************************************************End of MIP treatment**************************************/
1313    //}
1314 }
1315
1316   
1317 //___________________________________________
1318 void AliRICH::MakePadHits(Float_t xhit,Float_t yhit,Float_t eloss, Int_t idvol, Response_t res)
1319 {
1320 //
1321 //  Calls the charge disintegration method of the current chamber and adds
1322 //  the simulated cluster to the root treee 
1323 //
1324     Int_t clhits[7];
1325     Float_t newclust[6][500];
1326     Int_t nnew;
1327     
1328 //
1329 //  Integrated pulse height on chamber
1330     
1331     clhits[0]=fNhits+1;
1332     
1333     ((AliRICHChamber*) (*fChambers)[idvol])->DisIntegration(eloss, xhit, yhit, nnew, newclust, res);
1334     Int_t ic=0;
1335     
1336 //
1337 //  Add new clusters
1338     for (Int_t i=0; i<nnew; i++) {
1339         if (Int_t(newclust[3][i]) > 0) {
1340             ic++;
1341 // Cathode plane
1342             clhits[1] = Int_t(newclust[5][i]);
1343 //  Cluster Charge
1344             clhits[2] = Int_t(newclust[0][i]);
1345 //  Pad: ix
1346             clhits[3] = Int_t(newclust[1][i]);
1347 //  Pad: iy 
1348             clhits[4] = Int_t(newclust[2][i]);
1349 //  Pad: charge
1350             clhits[5] = Int_t(newclust[3][i]);
1351 //  Pad: chamber sector
1352             clhits[6] = Int_t(newclust[4][i]);
1353             
1354             AddPadHit(clhits);
1355         }
1356     }
1357 }