1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 //-------------------------------------------------------------------------
19 // Origin: Marian Ivanov marian.ivanov@cern.ch
20 //-------------------------------------------------------------------------
22 #include <Riostream.h>
25 #include "AliESDV0MI.h"
31 AliESDV0MI::AliESDV0MI() :
54 for (Int_t i=0;i<4;i++){fCausality[i]=0;}
58 void AliESDV0MI::SetCausality(Float_t pb0, Float_t pb1, Float_t pa0, Float_t pa1)
63 fCausality[0] = pb0; // probability - track 0 exist before vertex
64 fCausality[1] = pb1; // probability - track 1 exist before vertex
65 fCausality[2] = pa0; // probability - track 0 exist close after vertex
66 fCausality[3] = pa1; // probability - track 1 exist close after vertex
69 void AliESDV0MI::SetP(const AliExternalTrackParam & paramp) {
76 void AliESDV0MI::SetM(const AliExternalTrackParam & paramm){
83 void AliESDV0MI::SetRp(const Double_t *rp){
87 for (Int_t i=0;i<5;i++) fRP[i]=rp[i];
90 void AliESDV0MI::SetRm(const Double_t *rm){
94 for (Int_t i=0;i<5;i++) fRM[i]=rm[i];
98 void AliESDV0MI::UpdatePID(Double_t pidp[5], Double_t pidm[5])
106 for (Int_t i=0;i<5;i++){
112 for (Int_t i=0;i<5;i++){
118 Float_t AliESDV0MI::GetProb(UInt_t p1, UInt_t p2){
123 return TMath::Max(fRP[p1]+fRM[p2], fRP[p2]+fRM[p1]);
126 Float_t AliESDV0MI::GetEffMass(UInt_t p1, UInt_t p2){
128 // calculate effective mass
130 const Float_t kpmass[5] = {5.10000000000000037e-04,1.05660000000000004e-01,1.39570000000000000e-01,
131 4.93599999999999983e-01, 9.38270000000000048e-01};
134 Float_t mass1 = kpmass[p1];
135 Float_t mass2 = kpmass[p2];
139 if (fRP[p1]+fRM[p2]<fRP[p2]+fRM[p1]){
144 Float_t e1 = TMath::Sqrt(mass1*mass1+
148 Float_t e2 = TMath::Sqrt(mass2*mass2+
153 (m2[0]+m1[0])*(m2[0]+m1[0])+
154 (m2[1]+m1[1])*(m2[1]+m1[1])+
155 (m2[2]+m1[2])*(m2[2]+m1[2]);
157 mass = TMath::Sqrt((e1+e2)*(e1+e2)-mass);
161 void AliESDV0MI::Update(Float_t vertex[3])
166 // Float_t distance1,distance2;
169 AliHelix phelix(fParamP);
170 AliHelix mhelix(fParamM);
172 //find intersection linear
174 Double_t phase[2][2],radius[2];
175 Int_t points = phelix.GetRPHIintersections(mhelix, phase, radius,200);
176 Double_t delta1=10000,delta2=10000;
178 if (points<=0) return;
180 phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
181 phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
182 phelix.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
185 phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
186 phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
187 phelix.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
189 distance1 = TMath::Min(delta1,delta2);
192 //find intersection parabolic
194 points = phelix.GetRPHIintersections(mhelix, phase, radius);
195 delta1=10000,delta2=10000;
196 Double_t d1=1000.,d2=10000.;
197 if (points<=0) return;
199 phelix.ParabolicDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
200 phelix.ParabolicDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
201 Double_t xd[3],xm[3];
202 phelix.Evaluate(phase[0][0],xd);
203 mhelix.Evaluate(phase[0][1],xm);
204 d1 = (xd[0]-xm[0])*(xd[0]-xm[0])+(xd[1]-xm[1])*(xd[1]-xm[1])+(xd[2]-xm[2])*(xd[2]-xm[2]);
207 phelix.ParabolicDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
208 phelix.ParabolicDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
209 Double_t xd[3],xm[3];
210 phelix.Evaluate(phase[1][0],xd);
211 mhelix.Evaluate(phase[1][1],xm);
212 d2 = (xd[0]-xm[0])*(xd[0]-xm[0])+(xd[1]-xm[1])*(xd[1]-xm[1])+(xd[2]-xm[2])*(xd[2]-xm[2]);
215 distance2 = TMath::Min(delta1,delta2);
218 Double_t xd[3],xm[3];
219 phelix.Evaluate(phase[0][0],xd);
220 mhelix.Evaluate(phase[0][1], xm);
221 fXr[0] = 0.5*(xd[0]+xm[0]);
222 fXr[1] = 0.5*(xd[1]+xm[1]);
223 fXr[2] = 0.5*(xd[2]+xm[2]);
225 phelix.GetMomentum(phase[0][0],fPP);
226 mhelix.GetMomentum(phase[0][1],fPM);
227 phelix.GetAngle(phase[0][0],mhelix,phase[0][1],fAngle);
228 fRr = TMath::Sqrt(fXr[0]*fXr[0]+fXr[1]*fXr[1]);
231 Double_t xd[3],xm[3];
232 phelix.Evaluate(phase[1][0],xd);
233 mhelix.Evaluate(phase[1][1], xm);
234 fXr[0] = 0.5*(xd[0]+xm[0]);
235 fXr[1] = 0.5*(xd[1]+xm[1]);
236 fXr[2] = 0.5*(xd[2]+xm[2]);
238 phelix.GetMomentum(phase[1][0], fPP);
239 mhelix.GetMomentum(phase[1][1], fPM);
240 phelix.GetAngle(phase[1][0],mhelix,phase[1][1],fAngle);
241 fRr = TMath::Sqrt(fXr[0]*fXr[0]+fXr[1]*fXr[1]);
243 fDist1 = TMath::Sqrt(TMath::Min(d1,d2));
244 fDist2 = TMath::Sqrt(distance2);
247 Double_t v[3] = {fXr[0]-vertex[0],fXr[1]-vertex[1],fXr[2]-vertex[2]};
248 Double_t p[3] = {fPP[0]+fPM[0], fPP[1]+fPM[1],fPP[2]+fPM[2]};
249 Double_t vnorm2 = v[0]*v[0]+v[1]*v[1];
250 Double_t vnorm3 = TMath::Sqrt(v[2]*v[2]+vnorm2);
251 vnorm2 = TMath::Sqrt(vnorm2);
252 Double_t pnorm2 = p[0]*p[0]+p[1]*p[1];
253 Double_t pnorm3 = TMath::Sqrt(p[2]*p[2]+pnorm2);
254 pnorm2 = TMath::Sqrt(pnorm2);
255 fPointAngleFi = (v[0]*p[0]+v[1]*p[1])/(vnorm2*pnorm2);
256 fPointAngleTh = (v[2]*p[2]+vnorm2*pnorm2)/(vnorm3*pnorm3);
257 fPointAngle = (v[0]*p[0]+v[1]*p[1]+v[2]*p[2])/(vnorm3*pnorm3);