1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
18 #include <Riostream.h>
20 #include "TClonesArray.h"
22 #include "TCallf77.h" //For the fortran calls
23 #include "Fdblprc.h" //(DBLPRC) fluka common
24 #include "Fepisor.h" //(EPISOR) fluka common
25 #include "Ffinuc.h" //(FINUC) fluka common
26 #include "Fiounit.h" //(IOUNIT) fluka common
27 #include "Fpaprop.h" //(PAPROP) fluka common
28 #include "Fpart.h" //(PART) fluka common
29 #include "Ftrackr.h" //(TRACKR) fluka common
30 #include "Fpaprop.h" //(PAPROP) fluka common
31 #include "Ffheavy.h" //(FHEAVY) fluka common
33 #include "TVirtualMC.h"
34 #include "TG4GeometryManager.h" //For the geometry management
35 #include "TG4DetConstruction.h" //For the detector construction
37 #include "FGeometryInit.hh"
38 #include "TLorentzVector.h"
39 #include "FlukaVolume.h"
41 // Fluka methods that may be needed.
43 # define flukam flukam_
44 # define fluka_openinp fluka_openinp_
45 # define fluka_closeinp fluka_closeinp_
46 # define mcihad mcihad_
47 # define mpdgha mpdgha_
49 # define flukam FLUKAM
50 # define fluka_openinp FLUKA_OPENINP
51 # define fluka_closeinp FLUKA_CLOSEINP
52 # define mcihad MCIHAD
53 # define mpdgha MPDGHA
59 // Prototypes for FLUKA functions
61 void type_of_call flukam(const int&);
62 void type_of_call fluka_openinp(const int&, DEFCHARA);
63 void type_of_call fluka_closeinp(const int&);
64 int type_of_call mcihad(const int&);
65 int type_of_call mpdgha(const int&);
69 // Class implementation for ROOT
74 //----------------------------------------------------------------------------
75 // TFluka constructors and destructors.
76 //____________________________________________________________________________
82 fCurrentFlukaRegion(-1)
85 // Default constructor
89 TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported)
90 :TVirtualMC("TFluka",title, isRootGeometrySupported),
91 fVerbosityLevel(verbosity),
96 fCurrentFlukaRegion(-1)
98 if (fVerbosityLevel >=3)
99 cout << "==> TFluka::TFluka(" << title << ") constructor called." << endl;
102 // create geometry manager
103 if (fVerbosityLevel >=2)
104 cout << "\t* Creating G4 Geometry manager..." << endl;
105 fGeometryManager = new TG4GeometryManager();
106 if (fVerbosityLevel >=2)
107 cout << "\t* Creating G4 Detector..." << endl;
108 fDetector = new TG4DetConstruction();
109 FGeometryInit* geominit = FGeometryInit::GetInstance();
111 geominit->setDetConstruction(fDetector);
113 cerr << "ERROR: Could not create FGeometryInit!" << endl;
114 cerr << " Exiting!!!" << endl;
118 if (fVerbosityLevel >=3)
119 cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl;
121 fVolumeMediaMap = new TClonesArray("FlukaVolume",1000);
127 if (fVerbosityLevel >=3)
128 cout << "==> TFluka::~TFluka() destructor called." << endl;
130 delete fGeometryManager;
131 fVolumeMediaMap->Delete();
132 delete fVolumeMediaMap;
135 if (fVerbosityLevel >=3)
136 cout << "<== TFluka::~TFluka() destructor called." << endl;
140 //_____________________________________________________________________________
141 // TFluka control methods
142 //____________________________________________________________________________
143 void TFluka::Init() {
145 if (fVerbosityLevel >=3)
146 cout << "==> TFluka::Init() called." << endl;
148 cout << "\t* InitPhysics() - Prepare input file to be called" << endl;
149 InitPhysics(); // prepare input file
150 cout << "\t* InitPhysics() - Prepare input file was called" << endl;
152 if (fVerbosityLevel >=2)
153 cout << "\t* Changing lfdrtr = (" << (GLOBAL.lfdrtr?'T':'F')
154 << ") in fluka..." << endl;
155 GLOBAL.lfdrtr = true;
157 if (fVerbosityLevel >=2)
158 cout << "\t* Opening file " << sInputFileName << endl;
159 const char* fname = sInputFileName;
160 fluka_openinp(lunin, PASSCHARA(fname));
162 if (fVerbosityLevel >=2)
163 cout << "\t* Calling flukam..." << endl;
166 if (fVerbosityLevel >=2)
167 cout << "\t* Closing file " << sInputFileName << endl;
168 fluka_closeinp(lunin);
172 if (fVerbosityLevel >=3)
173 cout << "<== TFluka::Init() called." << endl;
177 void TFluka::FinishGeometry() {
179 // Build-up table with region to medium correspondance
183 if (fVerbosityLevel >=3)
184 cout << "==> TFluka::FinishGeometry() called." << endl;
186 // fGeometryManager->Ggclos();
188 FGeometryInit* flugg = FGeometryInit::GetInstance();
190 fMediaByRegion = new Int_t[fNVolumes+2];
191 for (Int_t i = 0; i < fNVolumes; i++)
193 FlukaVolume* vol = dynamic_cast<FlukaVolume*>((*fVolumeMediaMap)[i]);
194 TString volName = vol->GetName();
195 Int_t media = vol->GetMedium();
196 if (fVerbosityLevel >= 3)
197 printf("Finish Geometry: volName, media %d %s %d \n", i, volName.Data(), media);
198 strcpy(tmp, volName.Data());
200 flugg->SetMediumFromName(tmp, media, i+1);
201 fMediaByRegion[i] = media;
204 flugg->BuildMediaMap();
206 if (fVerbosityLevel >=3)
207 cout << "<== TFluka::FinishGeometry() called." << endl;
210 void TFluka::BuildPhysics() {
211 if (fVerbosityLevel >=3)
212 cout << "==> TFluka::BuildPhysics() called." << endl;
215 if (fVerbosityLevel >=3)
216 cout << "<== TFluka::BuildPhysics() called." << endl;
219 void TFluka::ProcessEvent() {
220 if (fVerbosityLevel >=3)
221 cout << "==> TFluka::ProcessEvent() called." << endl;
222 fApplication->GeneratePrimaries();
223 EPISOR.lsouit = true;
225 if (fVerbosityLevel >=3)
226 cout << "<== TFluka::ProcessEvent() called." << endl;
230 void TFluka::ProcessRun(Int_t nevent) {
231 if (fVerbosityLevel >=3)
232 cout << "==> TFluka::ProcessRun(" << nevent << ") called."
235 if (fVerbosityLevel >=2) {
236 cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl;
237 cout << "\t* Calling flukam again..." << endl;
239 fApplication->InitGeometry();
240 fApplication->BeginEvent();
242 fApplication->FinishEvent();
243 if (fVerbosityLevel >=3)
244 cout << "<== TFluka::ProcessRun(" << nevent << ") called."
249 //_____________________________________________________________________________
250 // methods for building/management of geometry
251 //____________________________________________________________________________
252 // functions from GCONS
253 void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z,
254 Float_t &dens, Float_t &radl, Float_t &absl,
255 Float_t* ubuf, Int_t& nbuf) {
257 fGeometryManager->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf);
260 void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z,
261 Double_t &dens, Double_t &radl, Double_t &absl,
262 Double_t* ubuf, Int_t& nbuf) {
264 fGeometryManager->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf);
267 // detector composition
268 void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
269 Double_t z, Double_t dens, Double_t radl, Double_t absl,
270 Float_t* buf, Int_t nwbuf) {
273 ->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf);
275 void TFluka::Material(Int_t& kmat, const char* name, Double_t a,
276 Double_t z, Double_t dens, Double_t radl, Double_t absl,
277 Double_t* buf, Int_t nwbuf) {
280 ->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf);
283 void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a,
284 Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) {
287 ->Mixture(kmat, name, a, z, dens, nlmat, wmat);
289 void TFluka::Mixture(Int_t& kmat, const char *name, Double_t *a,
290 Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) {
293 ->Mixture(kmat, name, a, z, dens, nlmat, wmat);
296 void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
297 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
298 Double_t stemax, Double_t deemax, Double_t epsil,
299 Double_t stmin, Float_t* ubuf, Int_t nbuf) {
302 ->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
303 epsil, stmin, ubuf, nbuf);
305 void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat,
306 Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd,
307 Double_t stemax, Double_t deemax, Double_t epsil,
308 Double_t stmin, Double_t* ubuf, Int_t nbuf) {
311 ->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax,
312 epsil, stmin, ubuf, nbuf);
315 void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX,
316 Double_t thetaY, Double_t phiY, Double_t thetaZ,
320 ->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ);
323 void TFluka::Gstpar(Int_t itmed, const char *param, Double_t parval) {
325 fGeometryManager->Gstpar(itmed, param, parval);
328 // functions from GGEOM
329 Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
330 Float_t *upar, Int_t np) {
332 // fVolumeMediaMap[TString(name)] = nmed;
333 if (fVerbosityLevel >= 3)
334 printf("TFluka::Gsvolu() name = %s, nmed = %d\n", name, nmed);
336 TClonesArray &lvols = *fVolumeMediaMap;
337 new(lvols[fNVolumes++])
338 FlukaVolume(name, nmed);
339 return fGeometryManager->Gsvolu(name, shape, nmed, upar, np);
341 Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed,
342 Double_t *upar, Int_t np) {
344 TClonesArray &lvols = *fVolumeMediaMap;
345 new(lvols[fNVolumes++])
346 FlukaVolume(name, nmed);
348 return fGeometryManager->Gsvolu(name, shape, nmed, upar, np);
351 void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv,
354 // The medium of the daughter is the one of the mother
355 Int_t volid = TFluka::VolId(mother);
356 Int_t med = TFluka::VolId2Mate(volid);
357 TClonesArray &lvols = *fVolumeMediaMap;
358 new(lvols[fNVolumes++])
359 FlukaVolume(name, med);
360 fGeometryManager->Gsdvn(name, mother, ndiv, iaxis);
363 void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv,
364 Int_t iaxis, Double_t c0i, Int_t numed) {
366 TClonesArray &lvols = *fVolumeMediaMap;
367 new(lvols[fNVolumes++])
368 FlukaVolume(name, numed);
369 fGeometryManager->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed);
372 void TFluka::Gsdvt(const char *name, const char *mother, Double_t step,
373 Int_t iaxis, Int_t numed, Int_t ndvmx) {
375 TClonesArray &lvols = *fVolumeMediaMap;
376 new(lvols[fNVolumes++])
377 FlukaVolume(name, numed);
378 fGeometryManager->Gsdvt(name, mother, step, iaxis, numed, ndvmx);
381 void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step,
382 Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) {
384 TClonesArray &lvols = *fVolumeMediaMap;
385 new(lvols[fNVolumes++])
386 FlukaVolume(name, numed);
387 fGeometryManager->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx);
390 void TFluka::Gsord(const char *name, Int_t iax) {
392 fGeometryManager->Gsord(name, iax);
395 void TFluka::Gspos(const char *name, Int_t nr, const char *mother,
396 Double_t x, Double_t y, Double_t z, Int_t irot,
399 fGeometryManager->Gspos(name, nr, mother, x, y, z, irot, konly);
402 void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
403 Double_t x, Double_t y, Double_t z, Int_t irot,
404 const char *konly, Float_t *upar, Int_t np) {
406 fGeometryManager->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
408 void TFluka::Gsposp(const char *name, Int_t nr, const char *mother,
409 Double_t x, Double_t y, Double_t z, Int_t irot,
410 const char *konly, Double_t *upar, Int_t np) {
412 fGeometryManager->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np);
415 void TFluka::Gsbool(const char* onlyVolName, const char* manyVolName) {
417 fGeometryManager->Gsbool(onlyVolName, manyVolName);
420 void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t *ppckov,
421 Float_t *absco, Float_t *effic, Float_t *rindex) {
423 fGeometryManager->SetCerenkov(itmed, npckov, ppckov, absco, effic, rindex);
425 void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Double_t *ppckov,
426 Double_t *absco, Double_t *effic, Double_t *rindex) {
428 fGeometryManager->SetCerenkov(itmed, npckov, ppckov, absco, effic, rindex);
432 void TFluka::WriteEuclid(const char* fileName, const char* topVol,
433 Int_t number, Int_t nlevel) {
435 fGeometryManager->WriteEuclid(fileName, topVol, number, nlevel);
440 //_____________________________________________________________________________
441 // methods needed by the stepping
442 //____________________________________________________________________________
444 Int_t TFluka::GetMedium() const {
446 // Get the medium number for the current fluka region
448 FGeometryInit* flugg = FGeometryInit::GetInstance();
449 return flugg->GetMedium(fCurrentFlukaRegion);
454 //____________________________________________________________________________
455 // particle table usage
456 // ID <--> PDG transformations
457 //_____________________________________________________________________________
458 Int_t TFluka::IdFromPDG(Int_t pdg) const
461 // Return Fluka code from PDG and pseudo ENDF code
463 // Catch the feedback photons
464 if (pdg == 50000051) return (-1);
465 // MCIHAD() goes from pdg to fluka internal.
466 Int_t intfluka = mcihad(pdg);
467 // KPTOIP array goes from internal to official
468 return GetFlukaKPTOIP(intfluka);
471 Int_t TFluka::PDGFromId(Int_t id) const
474 // Return PDG code and pseudo ENDF code from Fluka code
476 // IPTOKP array goes from official to internal
480 if (fVerbosityLevel >= 1)
481 printf("\n PDGFromId: Cerenkov Photon \n");
486 if (fVerbosityLevel >= 1)
487 printf("PDGFromId: Error id = 0\n");
491 Int_t intfluka = GetFlukaIPTOKP(id);
493 if (fVerbosityLevel >= 1)
494 printf("PDGFromId: Error intfluka = 0: %d\n", id);
496 } else if (intfluka < 0) {
497 if (fVerbosityLevel >= 1)
498 printf("PDGFromId: Error intfluka < 0: %d\n", id);
501 if (fVerbosityLevel >= 3)
502 printf("mpdgha called with %d %d \n", id, intfluka);
503 // MPDGHA() goes from fluka internal to pdg.
504 return mpdgha(intfluka);
507 //_____________________________________________________________________________
508 // methods for physics management
509 //____________________________________________________________________________
514 void TFluka::SetProcess(const char* flagName, Int_t flagValue)
517 if (iNbOfProc < 100) {
518 for (i=0; i<iNbOfProc; i++) {
519 if (strcmp(&sProcessFlag[i][0],flagName) == 0) {
520 iProcessValue[iNbOfProc] = flagValue;
524 strcpy(&sProcessFlag[iNbOfProc][0],flagName);
525 iProcessValue[iNbOfProc++] = flagValue;
528 cout << "Nb of SetProcess calls exceeds 100 - ignored" << endl;
530 iNbOfProc = iNbOfProc;
533 void TFluka::SetCut(const char* cutName, Double_t cutValue)
536 if (iNbOfCut < 100) {
537 for (i=0; i<iNbOfCut; i++) {
538 if (strcmp(&sCutFlag[i][0],cutName) == 0) {
539 fCutValue[iNbOfCut] = cutValue;
543 strcpy(&sCutFlag[iNbOfCut][0],cutName);
544 fCutValue[iNbOfCut++] = cutValue;
547 cout << "Nb of SetCut calls exceeds 100 - ignored" << endl;
552 Double_t TFluka::Xsec(char*, Double_t, Int_t, Int_t)
554 printf("WARNING: Xsec not yet implemented !\n"); return -1.;
558 void TFluka::InitPhysics()
560 // Last material number taken from the "corealice.inp" file, presently 31
561 // !!! it should be available from Flugg !!!
564 Float_t fLastMaterial = 31.0;
566 // construct file names
567 TString sAliceInp = getenv("ALICE_ROOT");
568 sAliceInp +="/TFluka/input/";
569 TString sAliceCoreInp = sAliceInp;
570 sAliceInp += GetInputFileName();
571 sAliceCoreInp += GetCoreInputFileName();
572 ifstream AliceCoreInp(sAliceCoreInp.Data());
573 ofstream AliceInp(sAliceInp.Data());
575 // copy core input file until (not included) START card
577 Float_t fEventsPerRun;
578 while (AliceCoreInp.getline(sLine,255)) {
579 if (strncmp(sLine,"START",5) != 0)
580 AliceInp << sLine << endl;
582 sscanf(sLine+10,"%10f",&fEventsPerRun);
588 // in G3 the process control values meaning can be different for
589 // different processes, but for most of them is:
590 // 0 process is not activated
591 // 1 process is activated WITH generation of secondaries
592 // 2 process is activated WITHOUT generation of secondaries
593 // if process does not generate secondaries => 1 same as 2
602 // Loop over number of SetProcess calls
603 AliceInp << "*----------------------------------------------------------------------------- ";
605 AliceInp << "*----- The following data are generated from SetProcess and SetCut calls ----- ";
607 AliceInp << "*----------------------------------------------------------------------------- ";
609 for (i=0; i<iNbOfProc; i++) {
612 // G3 default value: 1
613 // G4 processes: G4eplusAnnihilation/G4IeplusAnnihilation
616 // flag = 0 no annihilation
617 // flag = 1 annihilation, decays processed
618 // flag = 2 annihilation, no decay product stored
619 // gMC ->SetProcess("ANNI",1); // EMFCUT -1. 0. 0. 3. lastmat 0. ANNH-THR
620 if (strncmp(&sProcessFlag[i][0],"ANNI",4) == 0) {
621 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
624 AliceInp << "*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0.";
626 AliceInp << "*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)";
628 AliceInp << setw(10) << "EMFCUT ";
629 AliceInp << setiosflags(ios::scientific) << setprecision(5);
630 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
631 AliceInp << setw(10) << -1.0; // kinetic energy threshold (GeV) for e+ annihilation (resets to default=0)
632 AliceInp << setw(10) << 0.0; // not used
633 AliceInp << setw(10) << 0.0; // not used
634 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
635 AliceInp << setw(10) << setprecision(2);
636 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
637 AliceInp << setprecision(1);
638 AliceInp << setw(10) << 1.0; // step length in assigning indices
639 AliceInp << setw(8) << "ANNH-THR";
642 else if (iProcessValue[i] == 0) {
645 AliceInp << "*No annihilation - no FLUKA card generated";
647 AliceInp << "*Generated from call: SetProcess('ANNI',0)";
653 AliceInp << "*Illegal flag value in SetProcess('ANNI',?) call.";
655 AliceInp << "*No FLUKA card generated";
660 // bremsstrahlung and pair production are both activated
661 // G3 default value: 1
662 // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung,
663 // G4MuBremsstrahlung/G4IMuBremsstrahlung,
664 // G4LowEnergyBremstrahlung
665 // Particles: e-/e+; mu+/mu-
667 // flag = 0 no bremsstrahlung
668 // flag = 1 bremsstrahlung, photon processed
669 // flag = 2 bremsstrahlung, no photon stored
670 // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat
671 // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR
672 // G3 default value: 1
673 // G4 processes: G4GammaConversion,
674 // G4MuPairProduction/G4IMuPairProduction
675 // G4LowEnergyGammaConversion
676 // Particles: gamma, mu
678 // flag = 0 no delta rays
679 // flag = 1 delta rays, secondaries processed
680 // flag = 2 delta rays, no secondaries stored
681 // gMC ->SetProcess("PAIR",1); // PAIRBREM 1. 0. 0. 3. lastmat
682 // EMFCUT 0. 0. -1. 3. lastmat 0. PHOT-THR
683 else if ((strncmp(&sProcessFlag[i][0],"PAIR",4) == 0) && (iProcessValue[i] == 1 || iProcessValue[i] == 2)) {
684 for (j=0; j<iNbOfProc; j++) {
685 if ((strncmp(&sProcessFlag[j][0],"BREM",4) == 0) && (iProcessValue[j] == 1 || iProcessValue[j] == 2)) {
688 AliceInp << "*Bremsstrahlung and pair production by muons and charged hadrons both activated";
690 AliceInp << "*Generated from call: SetProcess('BREM',1) and SetProcess('PAIR',1)";
692 AliceInp << "*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.";
694 AliceInp << "*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.";
696 AliceInp << setw(10) << "PAIRBREM ";
697 AliceInp << setiosflags(ios::scientific) << setprecision(5);
698 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
699 AliceInp << setw(10) << 3.0; // bremsstrahlung and pair production by muons and charged hadrons both are activated
700 // direct pair production by muons
701 // G4 particles: "e-", "e+"
702 // G3 default value: 0.01 GeV
703 //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
705 for (k=0; k<iNbOfCut; k++) {
706 if (strncmp(&sCutFlag[k][0],"PPCUTM",6) == 0) fCut = fCutValue[k];
708 AliceInp << setiosflags(ios::scientific) << setprecision(5);
709 AliceInp << setw(10) << fCut; // e+, e- kinetic energy threshold (in GeV) for explicit pair production.
710 // muon and hadron bremsstrahlung
711 // G4 particles: "gamma"
712 // G3 default value: CUTGAM=0.001 GeV
713 //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
715 for (k=0; k<iNbOfCut; k++) {
716 if (strncmp(&sCutFlag[k][0],"BCUTM",5) == 0) fCut = fCutValue[k];
718 AliceInp << setiosflags(ios::scientific) << setprecision(5);
719 AliceInp << setw(10) << fCut; // photon energy threshold (GeV) for explicit bremsstrahlung production
720 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
721 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
722 AliceInp << setw(10) << setprecision(2);
723 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
729 AliceInp << "*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.";
731 AliceInp << "*Generated from call: SetProcess('BREM',1);";
733 AliceInp << setw(10) << "EMFCUT ";
735 for (k=0; k<iNbOfCut; k++) {
736 if (strncmp(&sCutFlag[k][0],"BCUTE",5) == 0) fCut = fCutValue[k];
738 AliceInp << setiosflags(ios::scientific) << setprecision(5);
739 AliceInp << setw(10) << fCut; // kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
740 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
741 AliceInp << setw(10) << 0.0; // not used
742 AliceInp << setw(10) << 0.0; // not used
743 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
744 AliceInp << setw(10) << setprecision(2);
745 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
746 AliceInp << setprecision(1);
747 AliceInp << setw(10) << 1.0; // step length in assigning indices
748 AliceInp << setw(8) << "ELPO-THR";
754 AliceInp << "*Pair production by electrons is activated";
756 AliceInp << "*Generated from call: SetProcess('PAIR',1);";
758 AliceInp << setw(10) << "EMFCUT ";
759 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
760 AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Compton scattering (= 0.0 : ignored)
761 AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Photoelectric (= 0.0 : ignored)
763 for (j=0; j<iNbOfCut; j++) {
764 if (strncmp(&sCutFlag[j][0],"CUTGAM",6) == 0) fCut = fCutValue[j];
766 AliceInp << setiosflags(ios::scientific) << setprecision(5);
767 AliceInp << setw(10) << fCut; // energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
768 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
769 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
770 AliceInp << setprecision(2);
771 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
772 AliceInp << setprecision(1);
773 AliceInp << setw(10) << 1.0; // step length in assigning indices
774 AliceInp << setw(8) << "PHOT-THR";
777 } // end of if for BREM
778 } // end of loop for BREM
780 // only pair production by muons and charged hadrons is activated
783 AliceInp << "*Pair production by muons and charged hadrons is activated";
785 AliceInp << "*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)";
787 AliceInp << "*Energy threshold set by call SetCut('PPCUTM',cut) or set to 0.";
789 AliceInp << setw(10) << "PAIRBREM ";
790 AliceInp << setiosflags(ios::scientific) << setprecision(5);
791 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
792 AliceInp << setw(10) << 1.0; // pair production by muons and charged hadrons is activated
793 // direct pair production by muons
794 // G4 particles: "e-", "e+"
795 // G3 default value: 0.01 GeV
796 //gMC ->SetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons
797 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
798 AliceInp << setw(10) << 0.0; // e+, e- kinetic energy threshold (in GeV) for explicit pair production.
799 AliceInp << setw(10) << 0.0; // no explicit bremsstrahlung production is simulated
800 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
801 AliceInp << setprecision(2);
802 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
808 AliceInp << "*Pair production by electrons is activated";
810 AliceInp << "*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)";
812 AliceInp << setw(10) << "EMFCUT ";
813 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
814 AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Compton scattering (= 0.0 : ignored)
815 AliceInp << setw(10) << 0.0; // energy threshold (GeV) for Photoelectric (= 0.0 : ignored)
818 for (j=0; j<iNbOfCut; j++) {
819 if (strncmp(&sCutFlag[j][0],"CUTGAM",6) == 0) fCut = fCutValue[j];
821 AliceInp << setiosflags(ios::scientific) << setprecision(5);
822 AliceInp << setw(10) << fCut; // energy threshold (GeV) for gamma pair production (< 0.0 : resets to default, = 0.0 : ignored)
823 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
824 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
825 AliceInp << setprecision(2);
826 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
827 AliceInp << setprecision(1);
828 AliceInp << setw(10) << 1.0; // step length in assigning indices
829 AliceInp << setw(8) << "PHOT-THR";
834 } // end of if for PAIR
839 // G3 default value: 1
840 // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung,
841 // G4MuBremsstrahlung/G4IMuBremsstrahlung,
842 // G4LowEnergyBremstrahlung
843 // Particles: e-/e+; mu+/mu-
845 // flag = 0 no bremsstrahlung
846 // flag = 1 bremsstrahlung, photon processed
847 // flag = 2 bremsstrahlung, no photon stored
848 // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat
849 // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR
850 else if (strncmp(&sProcessFlag[i][0],"BREM",4) == 0) {
851 for (j=0; j<iNbOfProc; j++) {
852 if ((strncmp(&sProcessFlag[j][0],"PAIR",4) == 0) && iProcessValue[j] == 1) goto NOBREM;
854 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
857 AliceInp << "*Bremsstrahlung by muons and charged hadrons is activated";
859 AliceInp << "*Generated from call: SetProcess('BREM',1) or SetProcess('BREM',2)";
861 AliceInp << "*Energy threshold set by call SetCut('BCUTM',cut) or set to 0.";
863 AliceInp << setw(10) << "PAIRBREM ";
864 AliceInp << setiosflags(ios::scientific) << setprecision(5);
865 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
866 AliceInp << setw(10) << 2.0; // bremsstrahlung by muons and charged hadrons is activated
867 AliceInp << setw(10) << 0.0; // no meaning
868 // muon and hadron bremsstrahlung
869 // G4 particles: "gamma"
870 // G3 default value: CUTGAM=0.001 GeV
871 //gMC ->SetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung
873 for (j=0; j<iNbOfCut; j++) {
874 if (strncmp(&sCutFlag[j][0],"BCUTM",5) == 0) fCut = fCutValue[j];
876 AliceInp << setw(10) << fCut; // photon energy threshold (GeV) for explicit bremsstrahlung production
877 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
878 AliceInp << setw(10) << setprecision(2);
879 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
885 AliceInp << "*Kinetic energy threshold (GeV) for e+/e- bremsstrahlung - resets to default=0.";
887 AliceInp << "*Generated from call: SetProcess('BREM',1);";
889 AliceInp << setw(10) << "EMFCUT ";
890 AliceInp << setiosflags(ios::scientific) << setprecision(5);
891 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
892 AliceInp << setw(10) << -1.0; // kinetic energy threshold (GeV) for e+/e- bremsstrahlung (resets to default=0)
893 AliceInp << setw(10) << 0.0; // not used
894 AliceInp << setw(10) << 0.0; // not used
895 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
896 AliceInp << setw(10) << setprecision(2);
897 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
898 AliceInp << setprecision(1);
899 AliceInp << setw(10) << 1.0; // step length in assigning indices
900 AliceInp << setw(8) << "ELPO-THR";
903 else if (iProcessValue[i] == 0) {
906 AliceInp << "*No bremsstrahlung - no FLUKA card generated";
908 AliceInp << "*Generated from call: SetProcess('BREM',0)";
914 AliceInp << "*Illegal flag value in SetProcess('BREM',?) call.";
916 AliceInp << "*No FLUKA card generated";
921 } // end of else if (strncmp(&sProcessFlag[i][0],"BREM",4) == 0)
924 // Cerenkov photon generation
925 // G3 default value: 0
926 // G4 process: G4Cerenkov
928 // Particles: charged
930 // flag = 0 no Cerenkov photon generation
931 // flag = 1 Cerenkov photon generation
932 // flag = 2 Cerenkov photon generation with primary stopped at each step
933 //xx gMC ->SetProcess("CKOV",1); // ??? Cerenkov photon generation
934 else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0) {
935 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
938 AliceInp << "*Cerenkov photon generation";
940 AliceInp << "*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)";
942 AliceInp << setw(10) << "OPT-PROD ";
943 AliceInp << setiosflags(ios::scientific) << setprecision(5);
944 AliceInp << setw(10) << 2.07e-9 ; // minimum Cerenkov photon emission energy (in GeV!). Default: 2.07E-9 GeV (corresponding to 600 nm)
945 AliceInp << setw(10) << 4.96e-9; // maximum Cerenkov photon emission energy (in GeV!). Default: 4.96E-9 GeV (corresponding to 250 nm)
946 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
947 AliceInp << setw(10) << 0.0; // not used
948 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
949 AliceInp << setprecision(2);
950 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
951 AliceInp << setprecision(1);
952 AliceInp << setw(10) << 1.0; // step length in assigning indices
953 AliceInp << setw(8) << "CERENKOV";
956 else if (iProcessValue[i] == 0) {
959 AliceInp << "*No Cerenkov photon generation";
961 AliceInp << "*Generated from call: SetProcess('CKOV',0)";
963 AliceInp << setw(10) << "OPT-PROD ";
964 AliceInp << setiosflags(ios::scientific) << setprecision(5);
965 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
966 AliceInp << setw(10) << 0.0; // not used
967 AliceInp << setw(10) << 0.0; // not used
968 AliceInp << setw(10) << 0.0; // not used
969 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
970 AliceInp << setprecision(2);
971 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
972 AliceInp << setprecision(1);
973 AliceInp << setw(10) << 1.0; // step length in assigning indices
974 AliceInp << setw(8) << "CERE-OFF";
980 AliceInp << "*Illegal flag value in SetProcess('CKOV',?) call.";
982 AliceInp << "*No FLUKA card generated";
985 } // end of else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0)
988 // Compton scattering
989 // G3 default value: 1
990 // G4 processes: G4ComptonScattering,
991 // G4LowEnergyCompton,
992 // G4PolarizedComptonScattering
995 // flag = 0 no Compton scattering
996 // flag = 1 Compton scattering, electron processed
997 // flag = 2 Compton scattering, no electron stored
998 // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR
999 else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0) {
1000 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
1003 AliceInp << "*Energy threshold (GeV) for Compton scattering - resets to default=0.";
1005 AliceInp << "*Generated from call: SetProcess('COMP',1);";
1007 AliceInp << setw(10) << "EMFCUT ";
1008 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1009 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1010 AliceInp << setw(10) << -1.0; // energy threshold (GeV) for Compton scattering - resets to default=0.
1011 AliceInp << setw(10) << 0.0; // not used
1012 AliceInp << setw(10) << 0.0; // not used
1013 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1014 AliceInp << setprecision(2);
1015 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1016 AliceInp << setprecision(1);
1017 AliceInp << setw(10) << 1.0; // step length in assigning indices
1018 AliceInp << setw(8) << "PHOT-THR";
1021 else if (iProcessValue[i] == 0) {
1024 AliceInp << "*No Compton scattering - no FLUKA card generated";
1026 AliceInp << "*Generated from call: SetProcess('COMP',0)";
1032 AliceInp << "*Illegal flag value in SetProcess('COMP',?) call.";
1034 AliceInp << "*No FLUKA card generated";
1037 } // end of else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0)
1040 // G3 default value: 1
1041 // G4 process: G4Decay
1043 // Particles: all which decay is applicable for
1045 // flag = 0 no decays
1046 // flag = 1 decays, secondaries processed
1047 // flag = 2 decays, no secondaries stored
1048 //gMC ->SetProcess("DCAY",1); // not available
1049 else if ((strncmp(&sProcessFlag[i][0],"DCAY",4) == 0) && iProcessValue[i] == 1)
1050 cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not avaliable!" << endl;
1053 // G3 default value: 2
1054 // !! G4 treats delta rays in different way
1055 // G4 processes: G4eIonisation/G4IeIonization,
1056 // G4MuIonisation/G4IMuIonization,
1057 // G4hIonisation/G4IhIonisation
1058 // Particles: charged
1060 // flag = 0 no energy loss
1061 // flag = 1 restricted energy loss fluctuations
1062 // flag = 2 complete energy loss fluctuations
1063 // flag = 3 same as 1
1064 // flag = 4 no energy loss fluctuations
1065 // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0.
1066 else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0) {
1067 if (iProcessValue[i] == 0 || iProcessValue[i] == 4) {
1070 AliceInp << "*Kinetic energy threshold (GeV) for delta ray production";
1072 AliceInp << "*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)";
1074 AliceInp << "*No delta ray production by muons - threshold set artificially high";
1076 AliceInp << setw(10) << "DELTARAY ";
1077 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1078 AliceInp << setw(10) << 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
1079 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1080 AliceInp << setw(10) << 0.0; // ignored
1081 AliceInp << setw(10) << 0.0; // ignored
1082 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1083 AliceInp << setw(10) << setprecision(2);
1084 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1085 AliceInp << setprecision(1);
1086 AliceInp << setw(10) << 1.0; // step length in assigning indices
1089 else if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
1092 AliceInp << "*Kinetic energy threshold (GeV) for delta ray production";
1094 AliceInp << "*Generated from call: SetProcess('DRAY',flag), flag=1,2,3";
1096 AliceInp << "*Delta ray production by muons switched on";
1098 AliceInp << "*Energy threshold set by call SetCut('DCUTM',cut) or set to 0.";
1100 AliceInp << setw(10) << "DELTARAY ";
1101 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1103 for (j=0; j<iNbOfCut; j++) {
1104 if (strncmp(&sCutFlag[j][0],"DCUTM",5) == 0) fCut = fCutValue[j];
1106 AliceInp << setw(10) << fCut; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer)
1107 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1108 AliceInp << setw(10) << 0.0; // ignored
1109 AliceInp << setw(10) << 0.0; // ignored
1110 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1111 AliceInp << setw(10) << setprecision(2);
1112 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1113 AliceInp << setprecision(1);
1114 AliceInp << setw(10) << 1.0; // step length in assigning indices
1120 AliceInp << "*Illegal flag value in SetProcess('DRAY',?) call.";
1122 AliceInp << "*No FLUKA card generated";
1125 } // end of else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0)
1128 // G3 default value: 1
1129 // G4 processes: all defined by TG4PhysicsConstructorHadron
1131 // Particles: hadrons
1133 // flag = 0 no multiple scattering
1134 // flag = 1 hadronic interactions, secondaries processed
1135 // flag = 2 hadronic interactions, no secondaries stored
1136 // gMC ->SetProcess("HADR",1); // ??? hadronic process
1137 //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ?????
1138 else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0) {
1139 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
1142 AliceInp << "*Hadronic interaction is ON by default in FLUKA";
1144 AliceInp << "*No FLUKA card generated";
1147 else if (iProcessValue[i] == 0) {
1150 AliceInp << "*Hadronic interaction is set OFF";
1152 AliceInp << "*Generated from call: SetProcess('HADR',0);";
1154 AliceInp << setw(10) << "MULSOPT ";
1155 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1156 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1157 AliceInp << setw(10) << 0.0; // ignored
1158 AliceInp << setw(10) << 3.0; // multiple scattering for hadrons and muons is completely suppressed
1159 AliceInp << setw(10) << 0.0; // no spin-relativistic corrections
1160 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1161 AliceInp << setprecision(2);
1162 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1169 AliceInp << "*Illegal flag value in SetProcess('HADR',?) call.";
1171 AliceInp << "*No FLUKA card generated";
1174 } // end of else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0)
1178 // G3 default value: 2
1179 // G4 processes: G4eIonisation/G4IeIonization,
1180 // G4MuIonisation/G4IMuIonization,
1181 // G4hIonisation/G4IhIonisation
1183 // Particles: charged
1185 // flag=0 no energy loss
1186 // flag=1 restricted energy loss fluctuations
1187 // flag=2 complete energy loss fluctuations
1189 // flag=4 no energy loss fluctuations
1190 // If the value ILOSS is changed, then (in G3) cross-sections and energy
1191 // loss tables must be recomputed via the command 'PHYSI'
1192 // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss
1193 else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0) {
1194 if (iProcessValue[i] == 2) { // complete energy loss fluctuations
1197 AliceInp << "*Complete energy loss fluctuations do not exist in FLUKA";
1199 AliceInp << "*Generated from call: SetProcess('LOSS',2);";
1201 AliceInp << "*flag=2=complete energy loss fluctuations";
1203 AliceInp << "*No input card generated";
1206 else if (iProcessValue[i] == 1 || iProcessValue[i] == 3) { // restricted energy loss fluctuations
1209 AliceInp << "*Restricted energy loss fluctuations";
1211 AliceInp << "*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)";
1213 AliceInp << setw(10) << "IONFLUCT ";
1214 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1215 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1216 AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations (for hadrons and muons) switched on
1217 AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations (for e+ and e-) switched on
1218 AliceInp << setw(10) << 1.0; // minimal accuracy
1219 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1220 AliceInp << setprecision(2);
1221 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1224 else if (iProcessValue[i] == 4) { // no energy loss fluctuations
1227 AliceInp << "*No energy loss fluctuations";
1229 AliceInp << "*Generated from call: SetProcess('LOSS',4)";
1231 AliceInp << setw(10) << -1.0; // restricted energy loss fluctuations (for hadrons and muons) switched off
1232 AliceInp << setw(10) << -1.0; // restricted energy loss fluctuations (for e+ and e-) switched off
1233 AliceInp << setw(10) << 1.0; // minimal accuracy
1234 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1235 AliceInp << setprecision(2);
1236 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1242 AliceInp << "*Illegal flag value in SetProcess('LOSS',?) call.";
1244 AliceInp << "*No FLUKA card generated";
1247 } // end of else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0)
1250 // multiple scattering
1251 // G3 default value: 1
1252 // G4 process: G4MultipleScattering/G4IMultipleScattering
1254 // Particles: charged
1256 // flag = 0 no multiple scattering
1257 // flag = 1 Moliere or Coulomb scattering
1258 // flag = 2 Moliere or Coulomb scattering
1259 // flag = 3 Gaussian scattering
1260 // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering
1261 else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0) {
1262 if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
1265 AliceInp << "*Multiple scattering is ON by default for e+e- and for hadrons/muons";
1267 AliceInp << "*No FLUKA card generated";
1270 else if (iProcessValue[i] == 0) {
1273 AliceInp << "*Multiple scattering is set OFF";
1275 AliceInp << "*Generated from call: SetProcess('MULS',0);";
1277 AliceInp << setw(10) << "MULSOPT ";
1278 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1279 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1280 AliceInp << setw(10) << 0.0; // ignored
1281 AliceInp << setw(10) << 3.0; // multiple scattering for hadrons and muons is completely suppressed
1282 AliceInp << setw(10) << 3.0; // multiple scattering for e+ and e- is completely suppressed
1283 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1284 AliceInp << setprecision(2);
1285 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1291 AliceInp << "*Illegal flag value in SetProcess('MULS',?) call.";
1293 AliceInp << "*No FLUKA card generated";
1296 } // end of else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0)
1299 // muon nuclear interaction
1300 // G3 default value: 0
1301 // G4 processes: G4MuNuclearInteraction,
1302 // G4MuonMinusCaptureAtRest
1306 // flag = 0 no muon-nuclear interaction
1307 // flag = 1 nuclear interaction, secondaries processed
1308 // flag = 2 nuclear interaction, secondaries not processed
1309 // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat
1310 else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0) {
1311 if (iProcessValue[i] == 1) {
1314 AliceInp << "*Muon nuclear interactions with production of secondary hadrons";
1316 AliceInp << "*Generated from call: SetProcess('MUNU',1);";
1318 AliceInp << setw(10) << "MUPHOTON ";
1319 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1320 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1321 AliceInp << setw(10) << 1.0; // full simulation of muon nuclear interactions and production of secondary hadrons
1322 AliceInp << setw(10) << 0.0; // ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
1323 AliceInp << setw(10) << 0.0; // fraction of rho-like interactions ( must be < 1) - Default = 0.75.
1324 AliceInp << setprecision(1);
1325 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1326 AliceInp << setprecision(2);
1327 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1330 else if (iProcessValue[i] == 2) {
1333 AliceInp << "*Muon nuclear interactions without production of secondary hadrons";
1335 AliceInp << "*Generated from call: SetProcess('MUNU',2);";
1337 AliceInp << setw(10) << "MUPHOTON ";
1338 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1339 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1340 AliceInp << setw(10) << 2.0; // full simulation of muon nuclear interactions and production of secondary hadrons
1341 AliceInp << setw(10) << 0.0; // ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25.
1342 AliceInp << setw(10) << 0.0; // fraction of rho-like interactions ( must be < 1) - Default = 0.75.
1343 AliceInp << setprecision(1);
1344 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1345 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1348 else if (iProcessValue[i] == 0) {
1351 AliceInp << "*No muon nuclear interaction - no FLUKA card generated";
1353 AliceInp << "*Generated from call: SetProcess('MUNU',0)";
1359 AliceInp << "*Illegal flag value in SetProcess('MUNU',?) call.";
1361 AliceInp << "*No FLUKA card generated";
1364 } // end of else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0)
1368 // G3 default value: 0
1373 // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0.
1374 // flag = 0 no photon fission
1375 // flag = 1 photon fission, secondaries processed
1376 // flag = 2 photon fission, no secondaries stored
1377 else if (strncmp(&sProcessFlag[i][0],"PFIS",4) == 0) {
1378 if (iProcessValue[i] == 0) {
1381 AliceInp << "*No photonuclear interactions";
1383 AliceInp << "*Generated from call: SetProcess('PFIS',0);";
1385 AliceInp << setw(10) << "PHOTONUC ";
1386 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1387 AliceInp << setw(10) << -1.0; // no photonuclear interactions
1388 AliceInp << setw(10) << 0.0; // not used
1389 AliceInp << setw(10) << 0.0; // not used
1390 AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply
1391 AliceInp << setprecision(2);
1392 AliceInp << setw(10) << fLastMaterial;
1393 AliceInp << setprecision(1); // upper bound of the material indices in which the respective thresholds apply
1394 AliceInp << setprecision(1);
1395 AliceInp << setw(10) << 1.0; // step length in assigning indices
1398 else if (iProcessValue[i] == 1) {
1401 AliceInp << "*Photon nuclear interactions are activated at all energies";
1403 AliceInp << "*Generated from call: SetProcess('PFIS',1);";
1405 AliceInp << setw(10) << "PHOTONUC ";
1406 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1407 AliceInp << setw(10) << 1.0; // photonuclear interactions are activated at all energies
1408 AliceInp << setw(10) << 0.0; // not used
1409 AliceInp << setw(10) << 0.0; // not used
1410 AliceInp << setprecision(2);
1411 AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply
1412 AliceInp << setw(10) << fLastMaterial;
1413 AliceInp << setprecision(1); // upper bound of the material indices in which the respective thresholds apply
1414 AliceInp << setprecision(1);
1415 AliceInp << setw(10) << 1.0; // step length in assigning indices
1418 else if (iProcessValue[i] == 0) {
1421 AliceInp << "*No photofission - no FLUKA card generated";
1423 AliceInp << "*Generated from call: SetProcess('PFIS',0)";
1429 AliceInp << "*Illegal flag value in SetProcess('PFIS',?) call.";
1431 AliceInp << "*No FLUKA card generated";
1437 // photo electric effect
1438 // G3 default value: 1
1439 // G4 processes: G4PhotoElectricEffect
1440 // G4LowEnergyPhotoElectric
1443 // flag = 0 no photo electric effect
1444 // flag = 1 photo electric effect, electron processed
1445 // flag = 2 photo electric effect, no electron stored
1446 // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR
1447 else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0) {
1448 if (iProcessValue[i] == 1 || iProcessValue[i] == 2) {
1451 AliceInp << "*Photo electric effect is activated";
1453 AliceInp << "*Generated from call: SetProcess('PHOT',1);";
1455 AliceInp << setw(10) << "EMFCUT ";
1456 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1457 AliceInp << setw(10) << 0.0; // ignored
1458 AliceInp << setw(10) << -1.0; // resets to default=0.
1459 AliceInp << setw(10) << 0.0; // ignored
1460 AliceInp << setw(10) << 3.0; // upper bound of the material indices in which the respective thresholds apply
1461 AliceInp << setprecision(2);
1462 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1463 AliceInp << setprecision(1);
1464 AliceInp << setw(10) << 1.0; // step length in assigning indices
1465 AliceInp << setw(8) << "PHOT-THR";
1468 else if (iProcessValue[i] == 0) {
1471 AliceInp << "*No photo electric effect - no FLUKA card generated";
1473 AliceInp << "*Generated from call: SetProcess('PHOT',0)";
1479 AliceInp << "*Illegal flag value in SetProcess('PHOT',?) call.";
1481 AliceInp << "*No FLUKA card generated";
1484 } // else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0)
1487 // Rayleigh scattering
1488 // G3 default value: 0
1489 // G4 process: G4OpRayleigh
1491 // Particles: optical photon
1493 // flag = 0 Rayleigh scattering off
1494 // flag = 1 Rayleigh scattering on
1495 //xx gMC ->SetProcess("RAYL",1);
1496 else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0) {
1497 if (iProcessValue[i] == 1) {
1500 AliceInp << "*Rayleigh scattering is ON by default in FLUKA";
1502 AliceInp << "*No FLUKA card generated";
1505 else if (iProcessValue[i] == 0) {
1508 AliceInp << "*Rayleigh scattering is set OFF";
1510 AliceInp << "*Generated from call: SetProcess('RAYL',0);";
1512 AliceInp << setw(10) << "EMFRAY ";
1513 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1514 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1515 AliceInp << setw(10) << -1.0; // no Rayleigh scattering and no binding corrections for Compton
1516 AliceInp << setw(10) << 3.0; // lower bound of the material indices in which the respective thresholds apply
1517 AliceInp << setprecision(2);
1518 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1524 AliceInp << "*Illegal flag value in SetProcess('RAYL',?) call.";
1526 AliceInp << "*No FLUKA card generated";
1529 } // end of else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0)
1532 // synchrotron radiation in magnetic field
1533 // G3 default value: 0
1534 // G4 process: G4SynchrotronRadiation
1538 // flag = 0 no synchrotron radiation
1539 // flag = 1 synchrotron radiation
1540 //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation
1541 else if (strncmp(&sProcessFlag[i][0],"SYNC",4) == 0) {
1544 AliceInp << "*Synchrotron radiation generation is NOT implemented in FLUKA";
1546 AliceInp << "*No FLUKA card generated";
1551 // Automatic calculation of tracking medium parameters
1552 // flag = 0 no automatic calculation
1553 // flag = 1 automatic calculation
1554 //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters
1555 else if (strncmp(&sProcessFlag[i][0],"AUTO",4) == 0) {
1558 AliceInp << "*Automatic calculation of tracking medium parameters is always ON in FLUKA";
1560 AliceInp << "*No FLUKA card generated";
1565 // To control energy loss fluctuation model
1566 // flag = 0 Urban model
1567 // flag = 1 PAI model
1568 // flag = 2 PAI+ASHO model (not active at the moment)
1569 //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model
1570 else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0) {
1571 if (iProcessValue[i] == 0 || iProcessValue[i] == 2 || iProcessValue[i] == 3) {
1574 AliceInp << "*Ionization energy losses calculation is activated";
1576 AliceInp << "*Generated from call: SetProcess('STRA',n);, n=0,1,2";
1578 AliceInp << setw(10) << "IONFLUCT ";
1579 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1580 AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations
1581 // (for hadrons and muons) switched on
1582 AliceInp << setw(10) << 1.0; // restricted energy loss fluctuations
1583 // (for e+ and e-) switched on
1584 AliceInp << setw(10) << 1.0; // minimal accuracy
1585 AliceInp << setw(10) << 3.0; // upper bound of the material indices in
1586 // which the respective thresholds apply
1587 AliceInp << setprecision(2);
1588 AliceInp << setw(10) << fLastMaterial; // upper bound of the material indices in which the respective thresholds apply
1589 AliceInp << setprecision(1);
1590 AliceInp << setw(10) << 1.0; // step length in assigning indices
1596 AliceInp << "*Illegal flag value in SetProcess('STRA',?) call.";
1598 AliceInp << "*No FLUKA card generated";
1601 } // else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0)
1606 else { // processes not yet treated
1608 // light photon absorption (Cerenkov photons)
1609 // it is turned on when Cerenkov process is turned on
1610 // G3 default value: 0
1611 // G4 process: G4OpAbsorption, G4OpBoundaryProcess
1613 // Particles: optical photon
1615 // flag = 0 no absorption of Cerenkov photons
1616 // flag = 1 absorption of Cerenkov photons
1617 // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption
1621 cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not yet implemented!" << endl;
1623 } //end of loop number of SetProcess calls
1626 // Loop over number of SetCut calls
1627 for (Int_t i=0; i<iNbOfCut; i++) {
1629 // cuts used in SetProcess calls
1630 if (strncmp(&sCutFlag[i][0],"BCUTM",5) == 0) continue;
1631 else if (strncmp(&sCutFlag[i][0],"BCUTE",5) == 0) continue;
1632 else if (strncmp(&sCutFlag[i][0],"DCUTM",5) == 0) continue;
1633 else if (strncmp(&sCutFlag[i][0],"PPCUTM",6) == 0) continue;
1636 // G4 particles: "gamma"
1637 // G3 default value: 0.001 GeV
1638 //gMC ->SetCut("CUTGAM",cut); // cut for gammas
1639 else if (strncmp(&sCutFlag[i][0],"CUTGAM",6) == 0) {
1642 AliceInp << "*Cut for gamma";
1644 AliceInp << "*Generated from call: SetCut('CUTGAM',cut);";
1646 AliceInp << setw(10) << "PART-THR ";
1647 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1648 AliceInp << setw(10) << -fCutValue[i];
1649 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1650 AliceInp << setw(10) << 7.0;
1655 // G4 particles: "e-"
1657 // G3 default value: 0.001 GeV
1658 //gMC ->SetCut("CUTELE",cut); // cut for e+,e-
1659 else if (strncmp(&sCutFlag[i][0],"CUTELE",6) == 0) {
1662 AliceInp << "*Cut for electrons";
1664 AliceInp << "*Generated from call: SetCut('CUTELE',cut);";
1666 AliceInp << setw(10) << "PART-THR ";
1667 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1668 AliceInp << setw(10) << -fCutValue[i];
1669 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1670 AliceInp << setw(10) << 3.0;
1671 AliceInp << setw(10) << 4.0;
1672 AliceInp << setw(10) << 1.0;
1677 // G4 particles: of type "baryon", "meson", "nucleus" with zero charge
1678 // G3 default value: 0.01 GeV
1679 //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons
1680 else if (strncmp(&sCutFlag[i][0],"CUTNEU",6) == 0) {
1683 AliceInp << "*Cut for neutral hadrons";
1685 AliceInp << "*Generated from call: SetCut('CUTNEU',cut);";
1687 AliceInp << setw(10) << "PART-THR ";
1688 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1689 AliceInp << setw(10) << -fCutValue[i];
1690 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1691 AliceInp << setw(10) << 8.0; // Neutron
1692 AliceInp << setw(10) << 9.0; // Antineutron
1694 AliceInp << setw(10) << "PART-THR ";
1695 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1696 AliceInp << setw(10) << -fCutValue[i];
1697 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1698 AliceInp << setw(10) << 12.0; // Kaon zero long
1699 AliceInp << setw(10) << 12.0; // Kaon zero long
1701 AliceInp << setw(10) << "PART-THR ";
1702 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1703 AliceInp << setw(10) << -fCutValue[i];
1704 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1705 AliceInp << setw(10) << 17.0; // Lambda, 18=Antilambda
1706 AliceInp << setw(10) << 19.0; // Kaon zero short
1708 AliceInp << setw(10) << "PART-THR ";
1709 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1710 AliceInp << setw(10) << -fCutValue[i];
1711 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1712 AliceInp << setw(10) << 22.0; // Sigma zero, Pion zero, Kaon zero
1713 AliceInp << setw(10) << 25.0; // Antikaon zero
1715 AliceInp << setw(10) << "PART-THR ";
1716 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1717 AliceInp << setw(10) << -fCutValue[i];
1718 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1719 AliceInp << setw(10) << 32.0; // Antisigma zero
1720 AliceInp << setw(10) << 32.0; // Antisigma zero
1722 AliceInp << setw(10) << "PART-THR ";
1723 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1724 AliceInp << setw(10) << -fCutValue[i];
1725 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1726 AliceInp << setw(10) << 34.0; // Xi zero
1727 AliceInp << setw(10) << 35.0; // AntiXi zero
1729 AliceInp << setw(10) << "PART-THR ";
1730 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1731 AliceInp << setw(10) << -fCutValue[i];
1732 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1733 AliceInp << setw(10) << 47.0; // D zero
1734 AliceInp << setw(10) << 48.0; // AntiD zero
1736 AliceInp << setw(10) << "PART-THR ";
1737 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1738 AliceInp << setw(10) << -fCutValue[i];
1739 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1740 AliceInp << setw(10) << 53.0; // Xi_c zero
1741 AliceInp << setw(10) << 53.0; // Xi_c zero
1743 AliceInp << setw(10) << "PART-THR ";
1744 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1745 AliceInp << setw(10) << -fCutValue[i];
1746 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1747 AliceInp << setw(10) << 55.0; // Xi'_c zero
1748 AliceInp << setw(10) << 56.0; // Omega_c zero
1750 AliceInp << setw(10) << "PART-THR ";
1751 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1752 AliceInp << setw(10) << -fCutValue[i];
1753 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1754 AliceInp << setw(10) << 59.0; // AntiXi_c zero
1755 AliceInp << setw(10) << 59.0; // AntiXi_c zero
1757 AliceInp << setw(10) << "PART-THR ";
1758 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1759 AliceInp << setw(10) << -fCutValue[i];
1760 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1761 AliceInp << setw(10) << 61.0; // AntiXi'_c zero
1762 AliceInp << setw(10) << 62.0; // AntiOmega_c zero
1767 // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge
1768 // G3 default value: 0.01 GeV
1769 //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons
1770 else if (strncmp(&sCutFlag[i][0],"CUTHAD",6) == 0) {
1773 AliceInp << "*Cut for charged hadrons";
1775 AliceInp << "*Generated from call: SetCut('CUTHAD',cut);";
1777 AliceInp << setw(10) << "PART-THR ";
1778 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1779 AliceInp << setw(10) << -fCutValue[i];
1780 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1781 AliceInp << setw(10) << 1.0; // Proton
1782 AliceInp << setw(10) << 2.0; // Antiproton
1784 AliceInp << setw(10) << "PART-THR ";
1785 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1786 AliceInp << setw(10) << -fCutValue[i];
1787 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1788 AliceInp << setw(10) << 13.0; // Positive Pion, Negative Pion, Positive Kaon
1789 AliceInp << setw(10) << 16.0; // Negative Kaon
1791 AliceInp << setw(10) << "PART-THR ";
1792 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1793 AliceInp << setw(10) << -fCutValue[i];
1794 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1795 AliceInp << setw(10) << 20.0; // Negative Sigma
1796 AliceInp << setw(10) << 16.0; // Positive Sigma
1798 AliceInp << setw(10) << "PART-THR ";
1799 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1800 AliceInp << setw(10) << -fCutValue[i];
1801 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1802 AliceInp << setw(10) << 31.0; // Antisigma minus
1803 AliceInp << setw(10) << 33.0; // Antisigma plus
1804 AliceInp << setprecision(1);
1805 AliceInp << setw(10) << 2.0; // step length
1807 AliceInp << setw(10) << "PART-THR ";
1808 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1809 AliceInp << setw(10) << -fCutValue[i];
1810 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1811 AliceInp << setw(10) << 36.0; // Negative Xi, Positive Xi, Omega minus
1812 AliceInp << setw(10) << 39.0; // Antiomega
1814 AliceInp << setw(10) << "PART-THR ";
1815 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1816 AliceInp << setw(10) << -fCutValue[i];
1817 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1818 AliceInp << setw(10) << 45.0; // D plus
1819 AliceInp << setw(10) << 46.0; // D minus
1821 AliceInp << setw(10) << "PART-THR ";
1822 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1823 AliceInp << setw(10) << -fCutValue[i];
1824 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1825 AliceInp << setw(10) << 49.0; // D_s plus, D_s minus, Lambda_c plus
1826 AliceInp << setw(10) << 52.0; // Xi_c plus
1828 AliceInp << setw(10) << "PART-THR ";
1829 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1830 AliceInp << setw(10) << -fCutValue[i];
1831 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1832 AliceInp << setw(10) << 54.0; // Xi'_c plus
1833 AliceInp << setw(10) << 60.0; // AntiXi'_c minus
1834 AliceInp << setprecision(1);
1835 AliceInp << setw(10) << 6.0; // step length
1837 AliceInp << setw(10) << "PART-THR ";
1838 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1839 AliceInp << setw(10) << -fCutValue[i];
1840 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(2);
1841 AliceInp << setw(10) << 57.0; // Antilambda_c minus
1842 AliceInp << setw(10) << 58.0; // AntiXi_c minus
1847 // G4 particles: "mu+", "mu-"
1848 // G3 default value: 0.01 GeV
1849 //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu-
1850 else if (strncmp(&sCutFlag[i][0],"CUTMUO",6) == 0) {
1853 AliceInp << "*Cut for muons";
1855 AliceInp << "*Generated from call: SetCut('CUTMUO',cut);";
1857 AliceInp << setw(10) << "PART-THR ";
1858 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1859 AliceInp << setw(10) << -fCutValue[i];
1860 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1861 AliceInp << setprecision(2);
1862 AliceInp << setw(10) << 10.0;
1863 AliceInp << setw(10) << 11.0;
1866 // delta-rays by electrons
1867 // G4 particles: "e-"
1868 // G3 default value: 10**4 GeV
1869 // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons ???????????????
1870 else if (strncmp(&sCutFlag[i][0],"DCUTE",5) == 0) {
1873 AliceInp << "*Cut for delta rays by electrons ????????????";
1875 AliceInp << "*Generated from call: SetCut('DCUTE',cut);";
1877 AliceInp << setw(10) << "EMFCUT ";
1878 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1879 AliceInp << setw(10) << -fCutValue[i];
1880 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1881 AliceInp << setw(10) << 0.0;
1882 AliceInp << setw(10) << 0.0;
1883 AliceInp << setw(10) << 3.0;
1884 AliceInp << setprecision(2);
1885 AliceInp << setw(10) << fLastMaterial;
1886 AliceInp << setprecision(1);
1887 AliceInp << setw(10) << 1.0;
1892 // time of flight cut in seconds
1893 // G4 particles: all
1894 // G3 default value: 0.01 GeV
1895 //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds
1896 else if (strncmp(&sCutFlag[i][0],"TOFMAX",6) == 0) {
1899 AliceInp << "*Time of flight cuts in seconds";
1901 AliceInp << "*Generated from call: SetCut('TOFMAX',tofmax);";
1903 AliceInp << setw(10) << "TIME-CUT ";
1904 AliceInp << setiosflags(ios::scientific) << setprecision(5);
1905 AliceInp << setw(10) << fCutValue[i]*1.e9;
1906 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint) << setprecision(1);
1907 AliceInp << setw(10) << 0.0;
1908 AliceInp << setw(10) << 0.0;
1909 AliceInp << setw(10) << -6.0; // lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
1910 AliceInp << setprecision(2);
1911 AliceInp << setw(10) << 64.0; // upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied
1912 AliceInp << setprecision(1);
1913 AliceInp << setw(10) << 1.0; // step length in assigning numbers
1918 cout << "SetCut for flag=" << &sCutFlag[i][0] << " value=" << fCutValue[i] << " not yet implemented!" << endl;
1920 } //end of loop over SeCut calls
1922 // Add START and STOP card
1923 AliceInp << setw(10) << "START ";
1924 AliceInp << setiosflags(ios::fixed) << setiosflags(ios::showpoint);
1925 AliceInp << setw(10) << fEventsPerRun;
1927 AliceInp << setw(10) << "STOP ";
1933 void TFluka::SetMaxStep(Double_t)
1935 // SetMaxStep is dummy procedure in TFluka !
1936 if (fVerbosityLevel >=3)
1937 cout << "SetMaxStep is dummy procedure in TFluka !" << endl;
1940 void TFluka::SetMaxNStep(Int_t)
1942 // SetMaxNStep is dummy procedure in TFluka !
1943 if (fVerbosityLevel >=3)
1944 cout << "SetMaxNStep is dummy procedure in TFluka !" << endl;
1947 void TFluka::SetUserDecay(Int_t)
1949 // SetUserDecay is dummy procedure in TFluka !
1950 if (fVerbosityLevel >=3)
1951 cout << "SetUserDecay is dummy procedure in TFluka !" << endl;
1955 // dynamic properties
1957 void TFluka::TrackPosition(TLorentzVector& position) const
1959 // Return the current position in the master reference frame of the
1960 // track being transported
1961 // TRACKR.atrack = age of the particle
1962 // TRACKR.xtrack = x-position of the last point
1963 // TRACKR.ytrack = y-position of the last point
1964 // TRACKR.ztrack = z-position of the last point
1965 Int_t caller = GetCaller();
1966 if (caller == 1 || caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw
1967 position.SetX(GetXsco());
1968 position.SetY(GetYsco());
1969 position.SetZ(GetZsco());
1970 position.SetT(TRACKR.atrack);
1972 else if (caller == 4) { // mgdraw
1973 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
1974 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
1975 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
1976 position.SetT(TRACKR.atrack);
1978 else if (caller == 5) { // sodraw
1979 position.SetX(TRACKR.xtrack[TRACKR.ntrack]);
1980 position.SetY(TRACKR.ytrack[TRACKR.ntrack]);
1981 position.SetZ(TRACKR.ztrack[TRACKR.ntrack]);
1985 Warning("TrackPosition","position not available");
1989 void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const
1991 // Return the current position in the master reference frame of the
1992 // track being transported
1993 // TRACKR.atrack = age of the particle
1994 // TRACKR.xtrack = x-position of the last point
1995 // TRACKR.ytrack = y-position of the last point
1996 // TRACKR.ztrack = z-position of the last point
1997 Int_t caller = GetCaller();
1998 if (caller == 1 || caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw
2003 else if (caller == 4) { // mgdraw
2004 x = TRACKR.xtrack[TRACKR.ntrack];
2005 y = TRACKR.ytrack[TRACKR.ntrack];
2006 z = TRACKR.ztrack[TRACKR.ntrack];
2008 else if (caller == 5) { // sodraw
2009 x = TRACKR.xtrack[TRACKR.ntrack];
2010 y = TRACKR.ytrack[TRACKR.ntrack];
2011 z = TRACKR.ztrack[TRACKR.ntrack];
2014 Warning("TrackPosition","position not available");
2017 void TFluka::TrackMomentum(TLorentzVector& momentum) const
2019 // Return the direction and the momentum (GeV/c) of the track
2020 // currently being transported
2021 // TRACKR.ptrack = momentum of the particle (not always defined, if
2022 // < 0 must be obtained from etrack)
2023 // TRACKR.cx,y,ztrck = direction cosines of the current particle
2024 // TRACKR.etrack = total energy of the particle
2025 // TRACKR.jtrack = identity number of the particle
2026 // PAPROP.am[TRACKR.jtrack] = particle mass in gev
2027 Int_t caller = GetCaller();
2028 if (caller != 2) { // not eedraw
2029 if (TRACKR.ptrack >= 0) {
2030 momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck);
2031 momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck);
2032 momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck);
2033 momentum.SetE(TRACKR.etrack);
2037 Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]);
2038 momentum.SetPx(p*TRACKR.cxtrck);
2039 momentum.SetPy(p*TRACKR.cytrck);
2040 momentum.SetPz(p*TRACKR.cztrck);
2041 momentum.SetE(TRACKR.etrack);
2046 Warning("TrackMomentum","momentum not available");
2049 void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const
2051 // Return the direction and the momentum (GeV/c) of the track
2052 // currently being transported
2053 // TRACKR.ptrack = momentum of the particle (not always defined, if
2054 // < 0 must be obtained from etrack)
2055 // TRACKR.cx,y,ztrck = direction cosines of the current particle
2056 // TRACKR.etrack = total energy of the particle
2057 // TRACKR.jtrack = identity number of the particle
2058 // PAPROP.am[TRACKR.jtrack] = particle mass in gev
2059 Int_t caller = GetCaller();
2060 if (caller != 2) { // not eedraw
2061 if (TRACKR.ptrack >= 0) {
2062 px = TRACKR.ptrack*TRACKR.cxtrck;
2063 py = TRACKR.ptrack*TRACKR.cytrck;
2064 pz = TRACKR.ptrack*TRACKR.cztrck;
2069 Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]);
2070 px = p*TRACKR.cxtrck;
2071 py = p*TRACKR.cytrck;
2072 pz = p*TRACKR.cztrck;
2078 Warning("TrackMomentum","momentum not available");
2081 Double_t TFluka::TrackStep() const
2083 // Return the length in centimeters of the current step
2084 // TRACKR.ctrack = total curved path
2085 Int_t caller = GetCaller();
2086 if (caller == 1 || caller == 3 || caller == 6) //bxdraw,endraw,usdraw
2088 else if (caller == 4) //mgdraw
2089 return TRACKR.ctrack;
2094 Double_t TFluka::TrackLength() const
2096 // TRACKR.cmtrck = cumulative curved path since particle birth
2097 Int_t caller = GetCaller();
2098 if (caller == 1 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw
2099 return TRACKR.cmtrck;
2104 Double_t TFluka::TrackTime() const
2106 // Return the current time of flight of the track being transported
2107 // TRACKR.atrack = age of the particle
2108 Int_t caller = GetCaller();
2109 if (caller == 1 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw
2110 return TRACKR.atrack;
2115 Double_t TFluka::Edep() const
2117 // Energy deposition
2118 // if TRACKR.ntrack = 0, TRACKR.mtrack = 0:
2119 // -->local energy deposition (the value and the point are not recorded in TRACKR)
2120 // but in the variable "rull" of the procedure "endraw.cxx"
2121 // if TRACKR.ntrack > 0, TRACKR.mtrack = 0:
2122 // -->no energy loss along the track
2123 // if TRACKR.ntrack > 0, TRACKR.mtrack > 0:
2124 // -->energy loss distributed along the track
2125 // TRACKR.dtrack = energy deposition of the jth deposition even
2127 for ( Int_t j=0;j<TRACKR.mtrack;j++) {
2128 sum +=TRACKR.dtrack[j];
2130 if (TRACKR.ntrack == 0 && TRACKR.mtrack == 0)
2137 Int_t TFluka::TrackPid() const
2139 // Return the id of the particle transported
2140 // TRACKR.jtrack = identity number of the particle
2141 Int_t caller = GetCaller();
2142 if (caller != 2) // not eedraw
2143 return PDGFromId(TRACKR.jtrack);
2148 Double_t TFluka::TrackCharge() const
2150 // Return charge of the track currently transported
2151 // PAPROP.ichrge = electric charge of the particle
2152 // TRACKR.jtrack = identity number of the particle
2153 Int_t caller = GetCaller();
2154 if (caller != 2) // not eedraw
2155 return PAPROP.ichrge[TRACKR.jtrack+6];
2160 Double_t TFluka::TrackMass() const
2162 // PAPROP.am = particle mass in GeV
2163 // TRACKR.jtrack = identity number of the particle
2164 Int_t caller = GetCaller();
2165 if (caller != 2) // not eedraw
2166 return PAPROP.am[TRACKR.jtrack+6];
2171 Double_t TFluka::Etot() const
2173 // TRACKR.etrack = total energy of the particle
2174 Int_t caller = GetCaller();
2175 if (caller != 2) // not eedraw
2176 return TRACKR.etrack;
2184 Bool_t TFluka::IsNewTrack() const
2186 // True if the track has positive cummulative length
2187 Int_t caller = GetCaller();
2188 if (caller != 2) { // not eedraw
2189 if (TRACKR.cmtrck > 0.0)
2198 Bool_t TFluka::IsTrackInside() const
2200 // True if the track is not at the boundary of the current volume
2201 // In Fluka a step is always inside one kind of material
2202 // If the step would go behind the region of one material,
2203 // it will be shortened to reach only the boundary.
2204 // Therefore IsTrackInside() is always true.
2205 Int_t caller = GetCaller();
2206 if (caller == 1) // bxdraw
2212 Bool_t TFluka::IsTrackEntering() const
2214 // True if this is the first step of the track in the current volume
2216 Int_t caller = GetCaller();
2217 if (caller == 11) // bxdraw entering
2222 Bool_t TFluka::IsTrackExiting() const
2224 Int_t caller = GetCaller();
2225 if (caller == 12) // bxdraw exiting
2230 Bool_t TFluka::IsTrackOut() const
2232 // True if the track is out of the setup
2234 // Icode = 14: escape - call from Kaskad
2235 // Icode = 23: escape - call from Emfsco
2236 // Icode = 32: escape - call from Kasneu
2237 // Icode = 40: escape - call from Kashea
2238 // Icode = 51: escape - call from Kasoph
2243 fIcode == 51) return 1;
2247 Bool_t TFluka::IsTrackDisappeared() const
2249 // means all inelastic interactions and decays
2250 // fIcode from usdraw
2251 if (fIcode == 101 || // inelastic interaction
2252 fIcode == 102 || // particle decay
2253 fIcode == 214 || // in-flight annihilation
2254 fIcode == 215 || // annihilation at rest
2255 fIcode == 217 || // pair production
2256 fIcode == 221) return 1;
2260 Bool_t TFluka::IsTrackStop() const
2262 // True if the track energy has fallen below the threshold
2263 // means stopped by signal or below energy threshold
2264 // Icode = 12: stopping particle - call from Kaskad
2265 // Icode = 15: time kill - call from Kaskad
2266 // Icode = 21: below threshold, iarg=1 - call from Emfsco
2267 // Icode = 22: below threshold, iarg=2 - call from Emfsco
2268 // Icode = 24: time kill - call from Emfsco
2269 // Icode = 31: below threshold - call from Kasneu
2270 // Icode = 33: time kill - call from Kasneu
2271 // Icode = 41: time kill - call from Kashea
2272 // Icode = 52: time kill - call from Kasoph
2281 fIcode == 52) return 1;
2285 Bool_t TFluka::IsTrackAlive() const
2287 // means not disappeared or not out
2288 if (IsTrackDisappeared() || IsTrackOut() ) return 0;
2296 Int_t TFluka::NSecondaries() const
2297 // Number of secondary particles generated in the current step
2298 // FINUC.np = number of secondaries except light and heavy ions
2299 // FHEAVY.npheav = number of secondaries for light and heavy secondary ions
2301 Int_t caller = GetCaller();
2302 if (caller == 6) // valid only after usdraw
2303 return FINUC.np + FHEAVY.npheav;
2306 } // end of NSecondaries
2308 void TFluka::GetSecondary(Int_t isec, Int_t& particleId,
2309 TLorentzVector& position, TLorentzVector& momentum)
2311 Int_t caller = GetCaller();
2312 if (caller == 6) { // valid only after usdraw
2313 if (isec >= 0 && isec < FINUC.np) {
2314 particleId = PDGFromId(FINUC.kpart[isec]);
2315 position.SetX(fXsco);
2316 position.SetY(fYsco);
2317 position.SetZ(fZsco);
2318 position.SetT(TRACKR.atrack);
2319 // position.SetT(TRACKR.atrack+FINUC.agesec[isec]); //not yet implem.
2320 momentum.SetPx(FINUC.plr[isec]*FINUC.cxr[isec]);
2321 momentum.SetPy(FINUC.plr[isec]*FINUC.cyr[isec]);
2322 momentum.SetPz(FINUC.plr[isec]*FINUC.czr[isec]);
2323 momentum.SetE(FINUC.tki[isec] + PAPROP.am[FINUC.kpart[isec]+6]);
2325 else if (isec >= FINUC.np && isec < FINUC.np + FHEAVY.npheav) {
2326 Int_t jsec = isec - FINUC.np;
2327 particleId = FHEAVY.kheavy[jsec]; // this is Fluka id !!!
2328 position.SetX(fXsco);
2329 position.SetY(fYsco);
2330 position.SetZ(fZsco);
2331 position.SetT(TRACKR.atrack);
2332 // position.SetT(TRACKR.atrack+FHEAVY.agheav[jsec]); //not yet implem.
2333 momentum.SetPx(FHEAVY.pheavy[jsec]*FHEAVY.cxheav[jsec]);
2334 momentum.SetPy(FHEAVY.pheavy[jsec]*FHEAVY.cyheav[jsec]);
2335 momentum.SetPz(FHEAVY.pheavy[jsec]*FHEAVY.czheav[jsec]);
2336 if (FHEAVY.tkheav[jsec] >= 3 && FHEAVY.tkheav[jsec] <= 6)
2337 momentum.SetE(FHEAVY.tkheav[jsec] + PAPROP.am[jsec+6]);
2338 else if (FHEAVY.tkheav[jsec] > 6)
2339 momentum.SetE(FHEAVY.tkheav[jsec] + FHEAVY.amnhea[jsec]); // to be checked !!!
2342 Warning("GetSecondary","isec out of range");
2345 Warning("GetSecondary","no secondaries available");
2346 } // end of GetSecondary
2348 TMCProcess TFluka::ProdProcess(Int_t) const
2349 // Name of the process that has produced the secondary particles
2350 // in the current step
2352 const TMCProcess kIpNoProc = kPNoProcess;
2353 const TMCProcess kIpPDecay = kPDecay;
2354 const TMCProcess kIpPPair = kPPair;
2355 // const TMCProcess kIpPPairFromPhoton = kPPairFromPhoton;
2356 // const TMCProcess kIpPPairFromVirtualPhoton = kPPairFromVirtualPhoton;
2357 const TMCProcess kIpPCompton = kPCompton;
2358 const TMCProcess kIpPPhotoelectric = kPPhotoelectric;
2359 const TMCProcess kIpPBrem = kPBrem;
2360 // const TMCProcess kIpPBremFromHeavy = kPBremFromHeavy;
2361 // const TMCProcess kIpPBremFromElectronOrPositron = kPBremFromElectronOrPositron;
2362 const TMCProcess kIpPDeltaRay = kPDeltaRay;
2363 // const TMCProcess kIpPMoller = kPMoller;
2364 // const TMCProcess kIpPBhabha = kPBhabha;
2365 const TMCProcess kIpPAnnihilation = kPAnnihilation;
2366 // const TMCProcess kIpPAnnihilInFlight = kPAnnihilInFlight;
2367 // const TMCProcess kIpPAnnihilAtRest = kPAnnihilAtRest;
2368 const TMCProcess kIpPHadronic = kPHadronic;
2369 const TMCProcess kIpPMuonNuclear = kPMuonNuclear;
2370 const TMCProcess kIpPPhotoFission = kPPhotoFission;
2371 const TMCProcess kIpPRayleigh = kPRayleigh;
2372 // const TMCProcess kIpPCerenkov = kPCerenkov;
2373 // const TMCProcess kIpPSynchrotron = kPSynchrotron;
2375 Int_t mugamma = TRACKR.jtrack == 7 || TRACKR.jtrack == 10 || TRACKR.jtrack == 11;
2376 if (fIcode == 102) return kIpPDecay;
2377 else if (fIcode == 104 || fIcode == 217) return kIpPPair;
2378 // else if (fIcode == 104) return kIpPairFromPhoton;
2379 // else if (fIcode == 217) return kIpPPairFromVirtualPhoton;
2380 else if (fIcode == 219) return kIpPCompton;
2381 else if (fIcode == 221) return kIpPPhotoelectric;
2382 else if (fIcode == 105 || fIcode == 208) return kIpPBrem;
2383 // else if (fIcode == 105) return kIpPBremFromHeavy;
2384 // else if (fIcode == 208) return kPBremFromElectronOrPositron;
2385 else if (fIcode == 103 || fIcode == 400) return kIpPDeltaRay;
2386 else if (fIcode == 210 || fIcode == 212) return kIpPDeltaRay;
2387 // else if (fIcode == 210) return kIpPMoller;
2388 // else if (fIcode == 212) return kIpPBhabha;
2389 else if (fIcode == 214 || fIcode == 215) return kIpPAnnihilation;
2390 // else if (fIcode == 214) return kIpPAnnihilInFlight;
2391 // else if (fIcode == 215) return kIpPAnnihilAtRest;
2392 else if (fIcode == 101) return kIpPHadronic;
2393 else if (fIcode == 101) {
2394 if (!mugamma) return kIpPHadronic;
2395 else if (TRACKR.jtrack == 7) return kIpPPhotoFission;
2396 else return kIpPMuonNuclear;
2398 else if (fIcode == 225) return kIpPRayleigh;
2399 // Fluka codes 100, 300 and 400 still to be investigasted
2400 else return kIpNoProc;
2403 //Int_t StepProcesses(TArrayI &proc) const
2404 // Return processes active in the current step
2406 //ck = total energy of the particl ????????????????
2410 Int_t TFluka::VolId2Mate(Int_t id) const
2413 // Returns the material number for a given volume ID
2415 if (fVerbosityLevel >= 3)
2416 printf("VolId2Mate %d %d\n", id, fMediaByRegion[id-1]);
2417 return fMediaByRegion[id-1];
2420 const char* TFluka::VolName(Int_t id) const
2423 // Returns the volume name for a given volume ID
2425 FlukaVolume* vol = dynamic_cast<FlukaVolume*>((*fVolumeMediaMap)[id-1]);
2426 const char* name = vol->GetName();
2427 if (fVerbosityLevel >= 3)
2428 printf("VolName %d %s \n", id, name);
2432 Int_t TFluka::VolId(const Text_t* volName) const
2435 // Converts from volume name to volume ID.
2436 // Time consuming. (Only used during set-up)
2437 // Could be replaced by hash-table
2441 for (i = 0; i < fNVolumes; i++)
2443 FlukaVolume* vol = dynamic_cast<FlukaVolume*>((*fVolumeMediaMap)[i]);
2444 TString name = vol->GetName();
2445 strcpy(tmp, name.Data());
2447 if (!strcmp(tmp, volName)) break;
2455 Int_t TFluka::CurrentVolID(Int_t& copyNo) const
2458 // Return the logical id and copy number corresponding to the current fluka region
2460 int ir = fCurrentFlukaRegion;
2461 int id = (FGeometryInit::GetInstance())->CurrentVolID(ir, copyNo);
2463 if (fVerbosityLevel >= 3)
2464 printf("CurrentVolID: %d %d %d \n", ir, id, copyNo);
2468 Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const
2471 // Return the logical id and copy number of off'th mother
2472 // corresponding to the current fluka region
2475 return CurrentVolID(copyNo);
2477 int ir = fCurrentFlukaRegion;
2478 int id = (FGeometryInit::GetInstance())->CurrentVolOffID(ir, off, copyNo);
2480 if (fVerbosityLevel >= 3)
2481 printf("CurrentVolOffID: %d %d %d \n", ir, id, copyNo);
2483 if (fVerbosityLevel >= 0)
2484 printf("CurrentVolOffID: Warning Mother not found !!!\n");
2489 const char* TFluka::CurrentVolName() const
2492 // Return the current volume name
2495 Int_t id = TFluka::CurrentVolID(copy);
2496 const char* name = TFluka::VolName(id);
2497 if (fVerbosityLevel >= 3)
2498 printf("CurrentVolumeName: %d %s \n", fCurrentFlukaRegion, name);
2502 const char* TFluka::CurrentVolOffName(Int_t off) const
2505 // Return the volume name of the off'th mother of the current volume
2508 Int_t id = TFluka::CurrentVolOffID(off, copy);
2509 const char* name = TFluka::VolName(id);
2510 if (fVerbosityLevel >= 3)
2511 printf("CurrentVolumeOffName: %d %s \n", fCurrentFlukaRegion, name);
2515 Int_t TFluka::CurrentMaterial(Float_t &a, Float_t &z,
2516 Float_t &dens, Float_t &radl, Float_t &absl) const
2519 // Return the current medium number
2522 Int_t id = TFluka::CurrentVolID(copy);
2523 Int_t med = TFluka::VolId2Mate(id);
2524 if (fVerbosityLevel >= 3)
2525 printf("CurrentMaterial: %d %d \n", fCurrentFlukaRegion, med);
2529 void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag)
2531 // Transforms a position from the world reference frame
2532 // to the current volume reference frame.
2534 // Geant3 desription:
2535 // ==================
2536 // Computes coordinates XD (in DRS)
2537 // from known coordinates XM in MRS
2538 // The local reference system can be initialized by
2539 // - the tracking routines and GMTOD used in GUSTEP
2540 // - a call to GMEDIA(XM,NUMED)
2541 // - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
2542 // (inverse routine is GDTOM)
2544 // If IFLAG=1 convert coordinates
2545 // IFLAG=2 convert direction cosinus
2548 Double_t xmD[3], xdD[3];
2549 xmD[0] = xm[0]; xmD[1] = xm[1]; xmD[2] = xm[2];
2550 (FGeometryInit::GetInstance())->Gmtod(xmD, xdD, iflag);
2551 xd[0] = xdD[0]; xd[1] = xdD[1]; xd[2] = xdD[2];
2555 void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag)
2557 // Transforms a position from the world reference frame
2558 // to the current volume reference frame.
2560 // Geant3 desription:
2561 // ==================
2562 // Computes coordinates XD (in DRS)
2563 // from known coordinates XM in MRS
2564 // The local reference system can be initialized by
2565 // - the tracking routines and GMTOD used in GUSTEP
2566 // - a call to GMEDIA(XM,NUMED)
2567 // - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER)
2568 // (inverse routine is GDTOM)
2570 // If IFLAG=1 convert coordinates
2571 // IFLAG=2 convert direction cosinus
2574 (FGeometryInit::GetInstance())->Gmtod(xm, xd, iflag);
2577 void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag)
2579 // Transforms a position from the current volume reference frame
2580 // to the world reference frame.
2582 // Geant3 desription:
2583 // ==================
2584 // Computes coordinates XM (Master Reference System
2585 // knowing the coordinates XD (Detector Ref System)
2586 // The local reference system can be initialized by
2587 // - the tracking routines and GDTOM used in GUSTEP
2588 // - a call to GSCMED(NLEVEL,NAMES,NUMBER)
2589 // (inverse routine is GMTOD)
2591 // If IFLAG=1 convert coordinates
2592 // IFLAG=2 convert direction cosinus
2595 Double_t xmD[3], xdD[3];
2596 xdD[0] = xd[0]; xdD[1] = xd[1]; xdD[2] = xd[2];
2597 (FGeometryInit::GetInstance())->Gdtom(xdD, xmD, iflag);
2598 xm[0] = xmD[0]; xm[1] = xmD[1]; xm[2] = xmD[2];
2600 void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag)
2602 // Transforms a position from the current volume reference frame
2603 // to the world reference frame.
2605 // Geant3 desription:
2606 // ==================
2607 // Computes coordinates XM (Master Reference System
2608 // knowing the coordinates XD (Detector Ref System)
2609 // The local reference system can be initialized by
2610 // - the tracking routines and GDTOM used in GUSTEP
2611 // - a call to GSCMED(NLEVEL,NAMES,NUMBER)
2612 // (inverse routine is GMTOD)
2614 // If IFLAG=1 convert coordinates
2615 // IFLAG=2 convert direction cosinus
2619 (FGeometryInit::GetInstance())->Gdtom(xd, xm, iflag);
2622 // ===============================================================
2623 void TFluka::FutoTest()
2625 Int_t icode, mreg, newreg, particleId;
2626 Double_t rull, xsco, ysco, zsco;
2627 TLorentzVector position, momentum;
2630 if (fVerbosityLevel >=3)
2631 cout << " icode=" << icode << endl;
2632 } else if (icode > 0 && icode <= 5) {
2635 if (fVerbosityLevel >=3)
2636 cout << " icode=" << icode
2639 TrackPosition(position);
2640 TrackMomentum(momentum);
2641 if (fVerbosityLevel >=3) {
2642 cout << "TLorentzVector positionX=" << position.X()
2643 << "positionY=" << position.Y()
2644 << "positionZ=" << position.Z()
2645 << "timeT=" << position.T() << endl;
2646 cout << "TLorentzVector momentumX=" << momentum.X()
2647 << "momentumY=" << momentum.Y()
2648 << "momentumZ=" << momentum.Z()
2649 << "energyE=" << momentum.E() << endl;
2650 cout << "TrackStep=" << TrackStep() << endl;
2651 cout << "TrackLength=" << TrackLength() << endl;
2652 cout << "TrackTime=" << TrackTime() << endl;
2653 cout << "Edep=" << Edep() << endl;
2654 cout << "TrackPid=" << TrackPid() << endl;
2655 cout << "TrackCharge=" << TrackCharge() << endl;
2656 cout << "TrackMass=" << TrackMass() << endl;
2657 cout << "Etot=" << Etot() << endl;
2658 cout << "IsNewTrack=" << IsNewTrack() << endl;
2659 cout << "IsTrackInside=" << IsTrackInside() << endl;
2660 cout << "IsTrackEntering=" << IsTrackEntering() << endl;
2661 cout << "IsTrackExiting=" << IsTrackExiting() << endl;
2662 cout << "IsTrackOut=" << IsTrackOut() << endl;
2663 cout << "IsTrackDisappeared=" << IsTrackDisappeared() << endl;
2664 cout << "IsTrackAlive=" << IsTrackAlive() << endl;
2667 Float_t x = position.X();
2668 Float_t y = position.Y();
2669 Float_t z = position.Z();
2672 xm[0] = x; xm[1] = y; xm[2] = z;
2673 if (fVerbosityLevel >= 3)
2674 printf("Global trackPosition: %f %f %f \n", x, y, z);
2676 if (fVerbosityLevel >= 3)
2677 printf("Local trackPosition: %f %f %f \n", xd[0], xd[1], xd[2]);
2679 if (fVerbosityLevel >= 3)
2680 printf("New trackPosition: %f %f %f \n", xm[0], xm[1], xm[2]);
2681 } else if((icode >= 10 && icode <= 15) ||
2682 (icode >= 20 && icode <= 24) ||
2683 (icode >= 30 && icode <= 33) ||
2684 (icode >= 40 && icode <= 41) ||
2685 (icode >= 50 && icode <= 52)) {
2693 if (fVerbosityLevel >=3) {
2694 cout << " icode=" << icode
2699 << " zsco=" << zsco << endl;
2701 TrackPosition(position);
2702 TrackMomentum(momentum);
2703 if (fVerbosityLevel >=3) {
2704 cout << "Edep=" << Edep() << endl;
2705 cout << "Etot=" << Etot() << endl;
2706 cout << "TrackPid=" << TrackPid() << endl;
2707 cout << "TrackCharge=" << TrackCharge() << endl;
2708 cout << "TrackMass=" << TrackMass() << endl;
2709 cout << "IsTrackOut=" << IsTrackOut() << endl;
2710 cout << "IsTrackDisappeared=" << IsTrackDisappeared() << endl;
2711 cout << "IsTrackStop=" << IsTrackStop() << endl;
2712 cout << "IsTrackAlive=" << IsTrackAlive() << endl;
2714 } else if((icode >= 100 && icode <= 105) ||
2718 (icode >= 214 && icode <= 215) ||
2731 if (fVerbosityLevel >=3) {
2732 cout << " icode=" << icode
2736 << " zsco=" << zsco << endl;
2737 cout << "TrackPid=" << TrackPid() << endl;
2738 cout << "NSecondaries=" << NSecondaries() << endl;
2741 for (Int_t isec=0; isec< NSecondaries(); isec++) {
2742 TFluka::GetSecondary(isec, particleId, position, momentum);
2743 if (fVerbosityLevel >=3) {
2744 cout << "TLorentzVector positionX=" << position.X()
2745 << "positionY=" << position.Y()
2746 << "positionZ=" << position.Z()
2747 << "timeT=" << position.T() << endl;
2748 cout << "TLorentzVector momentumX=" << momentum.X()
2749 << "momentumY=" << momentum.Y()
2750 << "momentumZ=" << momentum.Z()
2751 << "energyE=" << momentum.E() << endl;
2752 cout << "TrackPid=" << particleId << endl;
2755 } else if((icode == 19) ||
2761 newreg = GetNewreg();
2765 if (fVerbosityLevel >=3) {
2766 cout << " icode=" << icode
2768 << " newreg=" << newreg
2771 << " zsco=" << zsco << endl;
2774 } // end of FutoTest