7 #include "Fdblprc.h" //(DBLPRC) fluka common
8 #include "Fdimpar.h" //(DIMPAR) fluka parameters
9 #include "Fepisor.h" //(EPISOR) fluka common
10 #include "Fstack.h" //(STACK) fluka common
11 #include "Fstars.h" //(STARS) fluka common
12 #include "Fbeam.h" //(BEAM) fluka common
13 #include "Fpaprop.h" //(PAPROP) fluka common
14 #include "Fltclcm.h" //(LTCLCM) fluka common
15 //#include "Fcaslim.h" //(CASLIM) fluka common
19 #include "TVirtualMCStack.h"
20 #include "TVirtualMCApplication.h"
21 #include "TParticle.h"
25 #include <Riostream.h>
28 # define source source_
29 # define geocrs geocrs_
30 # define georeg georeg_
31 # define geohsm geohsm_
32 # define soevsv soevsv_
34 # define source SOURCE
35 # define geocrs GEOCRS
36 # define georeg GEOREG
37 # define geohsm GEOHSM
38 # define soevsv SOEVSV
43 // Prototypes for FLUKA functions
45 void type_of_call geocrs(Double_t &, Double_t &, Double_t &);
46 void type_of_call georeg(Double_t &, Double_t &, Double_t &,
48 void type_of_call geohsm(Int_t &, Int_t &, Int_t &, Int_t &);
49 void type_of_call soevsv();
51 *----------------------------------------------------------------------*
53 * Created on 07 january 1990 by Alfredo Ferrari & Paola Sala *
56 * Last change on 21-jun-98 by Alfredo Ferrari *
58 * C++ version on 27-sep-02 by Isidro Gonzalez *
60 * This is just an example of a possible user written source routine. *
61 * note that the beam card still has some meaning - in the scoring the *
62 * maximum momentum used in deciding the binning is taken from the *
63 * beam momentum. Other beam card parameters are obsolete. *
65 *----------------------------------------------------------------------*/
67 void source(Int_t& nomore) {
69 cout << "==> source(" << nomore << ")" << endl;
72 cout << "\t* EPISOR.lsouit = " << (EPISOR.lsouit?'T':'F') << endl;
74 static Bool_t lfirst = true;
75 static Bool_t particleIsPrimary = true;
76 static Bool_t lastParticleWasPrimary = true;
78 /* +-------------------------------------------------------------------*
79 * First call initializations for FLUKA: */
83 // Get the pointer to the VMC
84 TVirtualMC* fluka = TFluka::GetMC();
86 TVirtualMCStack* cppstack = fluka->GetStack();
89 Int_t nprim = cppstack->GetNprimary();
90 // Get the next particle from the stack
91 particle = cppstack->PopNextTrack(itrack);
93 // Is this a secondary not handled by Fluka, i.e. a particle added by user action ?
94 lastParticleWasPrimary = particleIsPrimary;
96 if (itrack >= nprim) {
97 particleIsPrimary = kFALSE;
99 particleIsPrimary = kTRUE;
102 // printf("--->Got Particle %d %d %d\n", itrack, particleIsPrimary, lastParticleWasPrimary);
105 EPISOR.tkesum = zerzer;
107 EPISOR.lussrc = true;
110 // Post-track actions for primary track
112 if (particleIsPrimary) {
113 TVirtualMCApplication::Instance()->PostTrack();
114 TVirtualMCApplication::Instance()->FinishPrimary();
118 //Exit if itrack is negative (-1). Set lsouit to false to mark last track for
123 EPISOR.lsouit = false;
124 cout << "\t* EPISOR.lsouit = " << (EPISOR.lsouit?'T':'F') << endl;
125 cout << "\t* No more particles. Exiting..." << endl;
127 cout << "<== source(" << nomore << ")" << endl;
132 //Get some info about the particle and print it
135 Int_t pdg = particle->GetPdgCode();
137 TVector3 polarisation;
138 particle->GetPolarisation(polarisation);
139 cout << "\t* Particle " << itrack << " retrieved..." << endl;
140 cout << "\t\t+ Name = " << particle->GetName() << endl;
141 cout << "\t\t+ PDG/Fluka code = " << pdg
142 << " / " << fluka->IdFromPDG(pdg) << endl;
143 cout << "\t\t+ P = ("
144 << particle->Px() << " , "
145 << particle->Py() << " , "
146 << particle->Pz() << " ) --> "
147 << particle->P() << " GeV" << endl;
148 /* Lstack is the stack counter: of course any time source is called it
154 /* Wt is the weight of the particle*/
155 STACK.wt[STACK.lstack] = oneone;
156 STARS.weipri += STACK.wt[STACK.lstack];
158 /* Particle type (1=proton.....). Ijbeam is the type set by the BEAM
162 //STACK.ilo[STACK.lstack] = BEAM.ijbeam;
163 if (pdg == 50000050 || pdg == 50000051) {
164 STACK.ilo[STACK.lstack] = fluka-> IdFromPDG(22);
166 STACK.ilo[STACK.lstack] = fluka-> IdFromPDG(pdg);
172 /* From this point .....
173 * Particle generation (1 for primaries)
175 STACK.lo[STACK.lstack] = 1;
177 /* User dependent flag:*/
178 STACK.louse[STACK.lstack] = 0;
180 /* User dependent spare variables:*/
182 for (ispr = 0; ispr < mkbmx1; ispr++)
183 STACK.sparek[STACK.lstack][ispr] = zerzer;
185 /* User dependent spare flags:*/
186 for (ispr = 0; ispr < mkbmx2; ispr++)
187 STACK.ispark[STACK.lstack][ispr] = 0;
189 /* Save the track number of the stack particle:*/
190 STACK.ispark[STACK.lstack][mkbmx2-1] = itrack;
192 STACK.numpar[STACK.lstack] = STACK.nparma;
193 STACK.nevent[STACK.lstack] = 0;
194 STACK.dfnear[STACK.lstack] = +zerzer;
196 /* Particle age (s)*/
197 STACK.agestk[STACK.lstack] = +zerzer;
198 STACK.aknshr[STACK.lstack] = -twotwo;
200 /* Group number for "low" energy neutrons, set to 0 anyway*/
201 STACK.igroup[STACK.lstack] = 0;
204 if (pdg == 50000050 || pdg == 50000051) {
206 // Special case for optical photons
207 STACK.tke[STACK.lstack] = particle->Energy();
209 STACK.tke[STACK.lstack] = particle->Energy() - particle->GetMass();
213 /* Particle momentum*/
214 STACK.pmom [STACK.lstack] = particle->P();
216 /* Cosines (tx,ty,tz)*/
217 Double_t cosx = particle->Px()/particle->P();
218 Double_t cosy = particle->Py()/particle->P();
219 Double_t cosz = TMath::Sqrt(oneone - cosx*cosx - cosy*cosy);
220 if (particle->Pz() < 0.) cosz = -cosz;
221 STACK.tx [STACK.lstack] = cosx;
222 STACK.ty [STACK.lstack] = cosy;
223 STACK.tz [STACK.lstack] = cosz;
225 /* Polarization cosines:*/
226 if (polarisation.Mag()) {
227 Double_t cospolx = polarisation.Px()/polarisation.Mag();
228 Double_t cospoly = polarisation.Py()/polarisation.Mag();
229 Double_t cospolz = sqrt(oneone - cospolx*cospolx - cospoly*cospoly);
230 STACK.tx [STACK.lstack] = cospolx;
231 STACK.ty [STACK.lstack] = cospoly;
232 STACK.tz [STACK.lstack] = cospolz;
235 STACK.txpol [STACK.lstack] = -twotwo;
236 STACK.typol [STACK.lstack] = +zerzer;
237 STACK.tzpol [STACK.lstack] = +zerzer;
240 /* Particle coordinates*/
241 // Vertext coordinates;
242 STACK.xa [STACK.lstack] = particle->Vx();
243 STACK.ya [STACK.lstack] = particle->Vy();
244 STACK.za [STACK.lstack] = particle->Vz();
246 /* Calculate the total kinetic energy of the primaries: don't change*/
247 Int_t st_ilo = STACK.ilo[STACK.lstack];
250 ((STACK.tke[STACK.lstack] + PAPROP.amdisc[st_ilo+6])
251 * STACK.wt[STACK.lstack]);
253 EPISOR.tkesum += (STACK.tke[STACK.lstack] * STACK.wt[STACK.lstack]);
255 /* Here we ask for the region number of the hitting point.
256 * NREG (LSTACK) = ...
257 * The following line makes the starting region search much more
258 * robust if particles are starting very close to a boundary:
260 geocrs( STACK.tx[STACK.lstack],
261 STACK.ty[STACK.lstack],
262 STACK.tz[STACK.lstack] );
266 georeg ( STACK.xa[STACK.lstack],
267 STACK.ya[STACK.lstack],
268 STACK.za[STACK.lstack],
269 STACK.nreg[STACK.lstack],
270 idisc);//<-- dummy return variable not used
271 /* Do not change these cards:*/
273 Int_t igeohsm2 = -11;
274 geohsm ( STACK.nhspnt[STACK.lstack], igeohsm1, igeohsm2, LTCLCM.mlattc );
275 STACK.nlattc[STACK.lstack] = LTCLCM.mlattc;
278 // Pre-track actions at for primary tracks
280 if (particleIsPrimary) {
281 TVirtualMCApplication::Instance()->BeginPrimary();
282 TVirtualMCApplication::Instance()->PreTrack();
288 cout << "<== source(" << nomore << ")" << endl;