7 #include "Fdblprc.h" //(DBLPRC) fluka common
8 #include "Fdimpar.h" //(DIMPAR) fluka parameters
9 #include "Fepisor.h" //(EPISOR) fluka common
10 #include "Fstack.h" //(STACK) fluka common
11 #include "Fstars.h" //(STARS) fluka common
12 #include "Fbeam.h" //(BEAM) fluka common
13 #include "Fpaprop.h" //(PAPROP) fluka common
14 #include "Fltclcm.h" //(LTCLCM) fluka common
15 //#include "Fcaslim.h" //(CASLIM) fluka common
19 #include "TVirtualMCStack.h"
20 #include "TParticle.h"
24 #include <Riostream.h>
27 # define source source_
28 # define geocrs geocrs_
29 # define georeg georeg_
30 # define geohsm geohsm_
31 # define soevsv soevsv_
33 # define source SOURCE
34 # define geocrs GEOCRS
35 # define georeg GEOREG
36 # define geohsm GEOHSM
37 # define soevsv SOEVSV
43 // Prototypes for FLUKA functions
45 void type_of_call geocrs(Double_t &, Double_t &, Double_t &);
46 void type_of_call georeg(Double_t &, Double_t &, Double_t &,
48 void type_of_call geohsm(Int_t &, Int_t &, Int_t &, Int_t &);
49 void type_of_call soevsv();
51 *----------------------------------------------------------------------*
53 * Created on 07 january 1990 by Alfredo Ferrari & Paola Sala *
56 * Last change on 21-jun-98 by Alfredo Ferrari *
58 * C++ version on 27-sep-02 by Isidro Gonzalez *
60 * This is just an example of a possible user written source routine. *
61 * note that the beam card still has some meaning - in the scoring the *
62 * maximum momentum used in deciding the binning is taken from the *
63 * beam momentum. Other beam card parameters are obsolete. *
65 *----------------------------------------------------------------------*/
67 void source(Int_t& nomore) {
69 cout << "==> source(" << nomore << ")" << endl;
72 cout << "\t* EPISOR.lsouit = " << (EPISOR.lsouit?'T':'F') << endl;
74 static Bool_t lfirst = true;
75 /*======================================================================*
79 *======================================================================*/
81 /* +-------------------------------------------------------------------*
82 * | First call initializations:*/
85 /*| *** The following 3 cards are mandatory ***/
87 EPISOR.tkesum = zerzer;
90 /*| *** User initialization ***/
93 * +-------------------------------------------------------------------*
94 * Push one source particle to the stack. Note that you could as well
95 * push many but this way we reserve a maximum amount of space in the
96 * stack for the secondaries to be generated
99 // Get the pointer to the VMC
100 TVirtualMC* fluka = TFluka::GetMC();
101 // Get the stack produced from the generator
102 TVirtualMCStack* cppstack = fluka->GetStack();
105 TParticle* particle = cppstack->GetNextTrack(itrack);
107 //Exit if itrack is negative (-1). Set lsouit to false to mark last track for
111 EPISOR.lsouit = false;
112 cout << "\t* EPISOR.lsouit = " << (EPISOR.lsouit?'T':'F') << endl;
113 cout << "\t* No more particles. Exiting..." << endl;
115 cout << "<== source(" << nomore << ")" << endl;
120 //Get some info about the particle and print it
121 TVector3 polarisation;
122 particle->GetPolarisation(polarisation);
123 cout << "\t* Particle " << itrack << " retrieved..." << endl;
124 cout << "\t\t+ Name = " << particle->GetName() << endl;
125 cout << "\t\t+ PDG/Fluka code = " << particle->GetPdgCode()
126 << " / " << fluka->IdFromPDG(particle->GetPdgCode()) << endl;
127 cout << "\t\t+ E = " << particle->Energy() << " GeV" << endl;
128 cout << "\t\t+ P = ("
129 << particle->Px() << " , "
130 << particle->Py() << " , "
131 << particle->Pz() << " ) --> "
132 << particle->P() << " GeV" << endl;
133 cout << "\t\t+ M = " << particle->GetMass() << " GeV" << endl;
134 cout << "\t\t+ Initial point = ( "
135 << particle->Vx() << " , "
136 << particle->Vy() << " , "
137 << particle->Vz() << " )"
139 cout << "\t\t+ Polarisation = ( "
140 << polarisation.Px() << " , "
141 << polarisation.Py() << " , "
142 << polarisation.Pz() << " )"
144 /* Lstack is the stack counter: of course any time source is called it
148 cout << "\t* Storing particle parameters in the stack, lstack = "
149 << STACK.lstack << endl;
150 /* Wt is the weight of the particle*/
151 STACK.wt[STACK.lstack] = oneone;
152 STARS.weipri += STACK.wt[STACK.lstack];
153 /* Particle type (1=proton.....). Ijbeam is the type set by the BEAM
156 //STACK.ilo[STACK.lstack] = BEAM.ijbeam;
157 STACK.ilo[STACK.lstack] = fluka-> IdFromPDG(particle->GetPdgCode());
158 /* From this point .....
159 * Particle generation (1 for primaries)
161 STACK.lo[STACK.lstack] = 1;
162 /* User dependent flag:*/
163 STACK.louse[STACK.lstack] = 0;
164 /* User dependent spare variables:*/
165 for (Int_t ispr = 0; ispr < mkbmx1; ispr++)
166 STACK.sparek[STACK.lstack][ispr] = zerzer;
167 /* User dependent spare flags:*/
168 for (Int_t ispr = 0; ispr < mkbmx2; ispr++)
169 STACK.ispark[STACK.lstack][ispr] = 0;
170 /* Save the track number of the stack particle:*/
171 STACK.ispark[STACK.lstack][mkbmx2-1] = STACK.lstack;
173 STACK.numpar[STACK.lstack] = STACK.nparma;
174 STACK.nevent[STACK.lstack] = 0;
175 STACK.dfnear[STACK.lstack] = +zerzer;
176 /* ... to this point: don't change anything
179 STACK.agestk[STACK.lstack] = +zerzer;
180 STACK.aknshr[STACK.lstack] = -twotwo;
181 /* Group number for "low" energy neutrons, set to 0 anyway*/
182 STACK.igroup[STACK.lstack] = 0;
183 /* Kinetic energy of the particle (GeV)*/
184 //STACK.tke[STACK.lstack] =
185 //sqrt( BEAM.pbeam*BEAM.pbeam +
186 // PAPROP.am[BEAM.ijbeam+6]*PAPROP.am[BEAM.ijbeam+6] )
187 //- PAPROP.am[BEAM.ijbeam+6];
188 STACK.tke[STACK.lstack] = particle->Energy() - particle->GetMass();
190 /* Particle momentum*/
191 //STACK.pmom [STACK.lstack] = BEAM.pbeam;
192 STACK.pmom [STACK.lstack] = particle->P();
194 /* PMOM (lstack) = SQRT ( TKE (stack) * ( TKE (lstack) + TWOTWO
195 * & * AM (ILO(lstack)) ) )
198 //STACK.tx [STACK.lstack] = BEAM.tinx;
199 //STACK.ty [STACK.lstack] = BEAM.tiny;
200 //STACK.tz [STACK.lstack] = BEAM.tinz;
201 Double_t cosx = particle->Px()/particle->P();
202 Double_t cosy = particle->Py()/particle->P();
203 Double_t cosz = sqrt(oneone - cosx*cosx - cosy*cosy);
204 STACK.tx [STACK.lstack] = cosx;
205 STACK.ty [STACK.lstack] = cosy;
206 STACK.tz [STACK.lstack] = cosz;
208 /* Polarization cosines:
210 //STACK.txpol [STACK.lstack] = -twotwo;
211 //STACK.typol [STACK.lstack] = +zerzer;
212 //STACK.tzpol [STACK.lstack] = +zerzer;
213 if (polarisation.Mag()) {
214 Double_t cospolx = polarisation.Px()/polarisation.Mag();
215 Double_t cospoly = polarisation.Py()/polarisation.Mag();
216 Double_t cospolz = sqrt(oneone - cospolx*cospolx - cospoly*cospoly);
217 STACK.tx [STACK.lstack] = cospolx;
218 STACK.ty [STACK.lstack] = cospoly;
219 STACK.tz [STACK.lstack] = cospolz;
222 STACK.txpol [STACK.lstack] = -twotwo;
223 STACK.typol [STACK.lstack] = +zerzer;
224 STACK.tzpol [STACK.lstack] = +zerzer;
227 /* Particle coordinates*/
228 //STACK.xa [STACK.lstack] = BEAM.xina;
229 //STACK.ya [STACK.lstack] = BEAM.yina;
230 //STACK.za [STACK.lstack] = BEAM.zina
231 //Vertext coordinates;
232 STACK.xa [STACK.lstack] = particle->Vx();
233 STACK.ya [STACK.lstack] = particle->Vy();
234 STACK.za [STACK.lstack] = particle->Vz();
237 cout << "\t* Particle information transfered to stack..." << endl;
239 /* Calculate the total kinetic energy of the primaries: don't change*/
240 Int_t st_ilo = STACK.ilo[STACK.lstack];
243 ((STACK.tke[STACK.lstack] + PAPROP.amdisc[st_ilo+6])
244 * STACK.wt[STACK.lstack]);
246 EPISOR.tkesum += (STACK.tke[STACK.lstack] * STACK.wt[STACK.lstack]);
248 /* Here we ask for the region number of the hitting point.
249 * NREG (LSTACK) = ...
250 * The following line makes the starting region search much more
251 * robust if particles are starting very close to a boundary:
253 geocrs( STACK.tx[STACK.lstack],
254 STACK.ty[STACK.lstack],
255 STACK.tz[STACK.lstack] );
257 georeg ( STACK.xa[STACK.lstack],
258 STACK.ya[STACK.lstack],
259 STACK.za[STACK.lstack],
260 STACK.nreg[STACK.lstack],
261 idisc);//<-- dummy return variable not used
263 /* Do not change these cards:*/
265 Int_t igeohsm2 = -11;
266 geohsm ( STACK.nhspnt[STACK.lstack], igeohsm1, igeohsm2, LTCLCM.mlattc );
267 STACK.nlattc[STACK.lstack] = LTCLCM.mlattc;
270 cout << "\t* EPISOR.lsouit = " << (EPISOR.lsouit?'T':'F') << endl;
271 cout << "\t* " << STACK.lstack << " particles in the event" << endl;
274 cout << "<== source(" << nomore << ")" << endl;