]> git.uio.no Git - u/mrichter/AliRoot.git/blob - TFluka/source_pp.cxx
Stand-alone library for ESD. Possibility to use only root and lidESD.so for analysis...
[u/mrichter/AliRoot.git] / TFluka / source_pp.cxx
1 #define METHODDEBUG
2
3 // Fortran 
4 #include "TCallf77.h"
5
6 // Fluka commons
7 #include "Fdblprc.h"  //(DBLPRC) fluka common
8 #include "Fdimpar.h"  //(DIMPAR) fluka parameters
9 #include "Fepisor.h"  //(EPISOR) fluka common
10 #include "Fstack.h"   //(STACK)  fluka common
11 #include "Fstars.h"   //(STARS)  fluka common
12 #include "Fbeam.h"    //(BEAM)   fluka common
13 #include "Fpaprop.h"  //(PAPROP) fluka common
14 #include "Fltclcm.h"  //(LTCLCM) fluka common
15 #include "Fpart.h"  
16 //#include "Fcaslim.h"  //(CASLIM) fluka common
17
18 //Virutal MC
19 #include "AliGenerator.h"
20 #include "AliStack.h"
21 #include "../PYTHIA6/AliGenPythia.h"
22
23 #include "TVirtualMCStack.h"
24 #include "TParticle.h"
25 #include "TVector3.h"
26
27 //Other
28 #include <Riostream.h>
29
30 #ifndef WIN32
31 # define source source_
32 # define geocrs geocrs_
33 # define georeg georeg_
34 # define geohsm geohsm_
35 # define soevsv soevsv_
36 # define mcihad mcihad_
37 # define source_pp source_pp__
38 #else
39 # define source SOURCE
40 # define geocrs GEOCRS
41 # define georeg GEOREG
42 # define geohsm GEOHSM
43 # define soevsv SOEVSV
44 # define mcihad MCIHAD
45 # define source_pp SOURCE_PP
46 #endif
47
48 extern "C" {
49   //
50   // Prototypes for FLUKA functions
51   //
52   void type_of_call geocrs(Double_t &, Double_t &, Double_t &);
53   void type_of_call georeg(Double_t &, Double_t &, Double_t &, 
54                            Int_t &, Int_t &);
55   void type_of_call geohsm(Int_t &, Int_t &, Int_t &, Int_t &);
56   void type_of_call soevsv();
57   int  type_of_call mcihad(const int&);
58  /*
59    *----------------------------------------------------------------------*
60    *                                                                      *
61    *     Created on 07 january 1990   by    Alfredo Ferrari & Paola Sala  *
62    *                                                   Infn - Milan       *
63    *                                                                      *
64    *     Last change on 21-jun-98     by    Alfredo Ferrari               *
65    *                                                                      *
66    *     C++ version on 27-sep-02     by    Isidro Gonzalez               *
67    *                                                                      *
68    *  This is just an example of a possible user written source routine.  *
69    *  note that the beam card still has some meaning - in the scoring the *
70    *  maximum momentum used in deciding the binning is taken from the     *
71    *  beam momentum.  Other beam card parameters are obsolete.            *
72    *                                                                      *
73    *----------------------------------------------------------------------*/
74
75   void source_pp(Int_t& nomore) {
76
77       static Bool_t lfirst       = true;
78       static AliGenPythia* gener = 0;
79       static AliStack* stack     = 0;   
80
81       nomore = 0;
82       TParticle* particle;
83       Int_t itrack = -1;
84       if (lfirst) {
85           EPISOR.tkesum = zerzer;
86           lfirst = false;
87           EPISOR.lussrc = true;
88           gener  = new AliGenPythia(1);
89           gener->SetEnergyCMS(14000.);
90           gener->SetProcess(kPyMb);
91           stack = new AliStack(1000);
92           gener->SetStack(stack);
93           gener->Init();
94
95       } else {
96           //
97           // Generate event
98           stack->Reset();
99           gener->Generate();
100           Int_t npart = stack->GetNprimary();
101           for (Int_t part=0; part<npart; part++) {
102               particle = stack->Particle(part);
103               Int_t st = particle->GetStatusCode();
104               if (st != 1) continue;
105               Int_t pdg = particle->GetPdgCode();
106               Int_t intfluka = mcihad(pdg);
107               Int_t ifl = GetFlukaKPTOIP(intfluka);
108               TVector3 polarisation;
109               particle->GetPolarisation(polarisation);
110
111               STACK.lstack++;
112
113               printf("Particle %5d %5d %5d %10s %10.3f %10.3f %10.3f \n", STACK.lstack, pdg, ifl, 
114                      particle->GetName(), particle->Px(), particle->Py(), particle->Pz());
115               
116
117               
118               /* Wt is the weight of the particle*/
119               STACK.wt[STACK.lstack] = oneone;
120               STARS.weipri += STACK.wt[STACK.lstack];
121               
122               STACK.ilo[STACK.lstack] = ifl;
123               /* From this point .....
124                * Particle generation (1 for primaries)
125                */
126               STACK.lo[STACK.lstack] = 1;
127               
128               /* User dependent flag:*/
129               STACK.louse[STACK.lstack] = 0;
130               
131               /* User dependent spare variables:*/
132               Int_t ispr = 0;
133               for (ispr = 0; ispr < mkbmx1; ispr++)
134                   STACK.sparek[STACK.lstack][ispr] = zerzer;
135               
136               /* User dependent spare flags:*/
137               for (ispr = 0; ispr < mkbmx2; ispr++)
138                   STACK.ispark[STACK.lstack][ispr] = 0;
139               
140               /* Save the track number of the stack particle:*/
141               STACK.ispark[STACK.lstack][mkbmx2-1] = itrack;
142               STACK.nparma++;
143               STACK.numpar[STACK.lstack] = STACK.nparma;
144               STACK.nevent[STACK.lstack] = 0;
145               STACK.dfnear[STACK.lstack] = +zerzer;
146               
147               /* Particle age (s)*/
148               STACK.agestk[STACK.lstack] = +zerzer;
149               STACK.aknshr[STACK.lstack] = -twotwo;
150               
151               /* Group number for "low" energy neutrons, set to 0 anyway*/
152               STACK.igroup[STACK.lstack] = 0;
153               
154               /* Kinetic energy */
155               STACK.tke[STACK.lstack] = particle->Energy() - particle->GetMass();
156               
157               
158               /* Particle momentum*/
159               STACK.pmom [STACK.lstack] = particle->P();
160               
161               /* Cosines (tx,ty,tz)*/
162               Double_t cosx = particle->Px()/particle->P();
163               Double_t cosy = particle->Py()/particle->P();
164               Double_t cosz = TMath::Sqrt(oneone - cosx*cosx - cosy*cosy);
165               if (particle->Pz() < 0.) cosz = -cosz;
166               STACK.tx [STACK.lstack] = cosx;
167               STACK.ty [STACK.lstack] = cosy;
168               STACK.tz [STACK.lstack] = cosz;
169               
170               /* Polarization cosines:*/
171               if (polarisation.Mag()) {
172                   Double_t cospolx = polarisation.Px()/polarisation.Mag();
173                   Double_t cospoly = polarisation.Py()/polarisation.Mag();
174                   Double_t cospolz = sqrt(oneone - cospolx*cospolx - cospoly*cospoly);
175                   STACK.tx [STACK.lstack] = cospolx;
176                   STACK.ty [STACK.lstack] = cospoly;
177                   STACK.tz [STACK.lstack] = cospolz;
178               }
179               else {
180                   STACK.txpol [STACK.lstack] = -twotwo;
181                   STACK.typol [STACK.lstack] = +zerzer;
182                   STACK.tzpol [STACK.lstack] = +zerzer;
183               }
184               
185               /* Particle coordinates*/
186               // Vertext coordinates;
187               STACK.xa [STACK.lstack] = particle->Vx();
188               STACK.ya [STACK.lstack] = particle->Vy();
189               STACK.za [STACK.lstack] = particle->Vz();
190               
191               /*  Calculate the total kinetic energy of the primaries: don't change*/
192               Int_t st_ilo =  STACK.ilo[STACK.lstack];
193               if ( st_ilo != 0 )
194                   EPISOR.tkesum += 
195                       ((STACK.tke[STACK.lstack] + PAPROP.amdisc[st_ilo+6])
196                        * STACK.wt[STACK.lstack]);
197               else
198                   EPISOR.tkesum += (STACK.tke[STACK.lstack] * STACK.wt[STACK.lstack]);
199               
200               /*  Here we ask for the region number of the hitting point.
201                *     NREG (LSTACK) = ...
202                *  The following line makes the starting region search much more
203                *  robust if particles are starting very close to a boundary:
204                */
205               geocrs( STACK.tx[STACK.lstack], 
206                       STACK.ty[STACK.lstack], 
207                       STACK.tz[STACK.lstack] );
208               
209               Int_t idisc;
210               
211               georeg ( STACK.xa[STACK.lstack], 
212                        STACK.ya[STACK.lstack], 
213                        STACK.za[STACK.lstack],
214                        STACK.nreg[STACK.lstack], 
215                        idisc);//<-- dummy return variable not used
216               /*  Do not change these cards:*/
217               Int_t igeohsm1 = 1;
218               Int_t igeohsm2 = -11;
219               geohsm ( STACK.nhspnt[STACK.lstack], igeohsm1, igeohsm2, LTCLCM.mlattc );
220               STACK.nlattc[STACK.lstack] = LTCLCM.mlattc;
221               soevsv();
222 //
223 //  Pre-track actions at for primary tracks
224 //
225           }
226       }
227   }
228 }
229
230