1 /**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
16 //_________________________________________________________________________
17 // Manager class for TOF reconstruction.
20 //-- Authors: Bologna-ITEP-Salerno Group
22 // Description: Manager class for TOF reconstruction (derived from TTask)
23 // Summary of the main methods:
24 // - extraction of the TPC (assumed to be) reconstructed tracks
25 // comment: it has to me moved as soon as possible into a separate
26 // class AliTOFTrackReader (K. Safarik suggestion)
27 // - geometrical propagation of the above tracks till TOF detector
28 // - matching of the tracks with the TOF signals
30 // Remark: the GEANT3.21 geometry is used during the geometrical propagation
31 // of the tracks in order to know the current volume reached by the track.
33 //////////////////////////////////////////////////////////////////////////////
38 #include "AliTOFConstants.h"
39 #include "AliTOFHitMap.h"
40 #include "AliTOFSDigit.h"
41 #include "AliTOFhit.h"
42 #include "AliTOFRecHit.h"
43 #include "AliTOFPad.h"
44 #include "AliTOFTrack.h"
48 #include "AliTOFv2FHoles.h"
51 #include "AliTOFv4T0.h"
52 #include "AliTOFReconstructioner.h"
53 // this line has to be commented till TPC will provide fPx fPy fPz and fL in
54 // AliTPChit class or somewhere
55 // #include "../TPC/AliTPC.h"
57 #include "AliDetector.h"
61 #include "TBenchmark.h"
65 #include "TParticle.h"
66 #include <TClonesArray.h>
68 #include "TVirtualMC.h"
78 ClassImp(AliTOFReconstructioner)
80 //____________________________________________________________________________
81 AliTOFReconstructioner::AliTOFReconstructioner():TTask("AliTOFReconstructioner","")
91 //____________________________________________________________________________
92 AliTOFReconstructioner::AliTOFReconstructioner(char* headerFile, Option_t* opt, char *RecFile ):TTask("AliTOFReconstructioner","")
97 fNevents = 0 ; // Number of events to reconstruct, 0 means all evens in current file
105 // create output file
107 foutputfile= new TFile(RecFile,"RECREATE","root file for matching");
109 char outFileName[100];
110 strcpy(outFileName,"match");
111 strcat(outFileName,headerFile);
112 foutputfile= new TFile(outFileName,"RECREATE","root file for matching");
115 // initialize the ALIROOT geometry
121 // add Task to //root/Tasks folder
122 TTask * roottasks = (TTask*)gROOT->GetRootFolder()->FindObject("Tasks") ;
123 roottasks->Add(this) ;
125 //____________________________________________________________________________
126 void AliTOFReconstructioner::Init(Option_t* opt)
128 // Initialize the AliTOFReconstructioner setting parameters for
130 // Option values: Pb-Pb for Pb-Pb events
133 // set common parameters
138 fTimeResolution =0.120;
139 fpadefficiency =0.99 ;
146 fEffCenter = fpadefficiency;
148 fEff2Boundary = 0.90;
149 fEff3Boundary = 0.08;
153 fTimeWalkCenter = 0. ;
154 fTimeWalkBoundary=0. ;
155 fTimeWalkSlope = 0. ;
157 fPulseHeightSlope=2.0 ;
158 fTimeDelaySlope =0.060;
159 // was fMinimumCharge = TMath::Exp(fPulseHeightSlope*fKparameter/2.);
160 fMinimumCharge = TMath::Exp(-fPulseHeightSlope*fHparameter);
161 fChargeSmearing=0.0 ;
162 fLogChargeSmearing=0.13;
163 fTimeSmearing =0.022;
165 fChargeFactorForMatching=1;
166 fTrackingEfficiency=1.0; // 100% TPC tracking efficiency assumed
174 // fRadLenTPC : 0.2 includes TRD / 0.03 TPC only
175 fRadLenTPC=0.06 ; // last value
178 fRadiusvtxBound=50. ; // expressed in [cm]
179 fStep = 0.1 ; // expressed in [cm] step during propagation of the
180 // track inside TOF volumes
182 /* previous values default
184 fMaxAllTracks=70000 ;
188 fMaxAllTracks=500000 ;
192 fPBound =0.0 ; // bending effect: P_t=0.3*z*B*R , z particle charge
194 // set parameters as specified in opt
196 if(strstr(opt,"pp")){
199 fNoiseMeanTof= 26.4 ; // to check
202 if(strstr(opt,"Pb-Pb")){
205 fNoiseMeanTof= 26.4 ;
209 //____________________________________________________________________________
210 AliTOFReconstructioner::~AliTOFReconstructioner()
223 delete foutputntuple;
240 //____________________________________________________________________________
241 void AliTOFReconstructioner::CreateNTuple()
244 // Create a Ntuple where information about reconstructed charged particles
245 // (both primaries and secondaries) are stored
246 // Variables: event ipart imam xvtx yvtx zvtx pxvtx pyvtx pzvtx time leng matc text mext
248 // event - event number (0, 1, ...)
249 // ipart - PDG code of particles
250 // imam - PDG code for the parent
251 // =0 for primary particle
252 // xvtx - x-coordinate of the vertex (cm)
253 // yvtx - y-coordinate of the vertex (cm)
254 // zvtx - z-coordinate of the vertex (cm)
255 // pxvtx - x-coordinate of the momentum in the vertex (GeV)
256 // pyvtx - y-coordinate of the momentum in the vertex (GeV)
257 // pzvtx - z-coordinate of the momentum in the vertex (GeV)
258 // time - time of flight from TOF for given track (ps) - TOF time for the
259 // first TOF hit of the track
260 // leng - track length to the TOF pixel (cm), evaluate as a sum of the
261 // track length from the track vertex to TPC and the average
262 // length of the extrapolated track from TPC to TOF.
263 // for the track without TOF hits leng=-abs(leng)
264 // matc - index of the (TPC track) - (TOF pixel) matching
265 // =0 for tracks which are not tracks for matching, i.e.
266 // there is not hit on the TPC or Rvxt>200 cm
267 // >0 for tracks with positive matching procedure:
268 // =1 or 2 for non-identified tracks:
269 // =1, if the corresponding pixel is not fired,
270 // =2, if the corresponding pixel is also matched to the
272 // =3 or 4 for identified tracks:
273 // =3, if identified with true time,
274 // =4, if identified with wrong time.
275 // <0 for tracks with negative mathing procedure:
276 // =-1, if track do not reach the pixel plate (curved in the
278 // =-2, if track is out of z-size of the TOF,
279 // =-3, if track is or into the RICH hole, or into the PHOS hole, or in the space between the plates,
280 // =-4, if track is into the dead space of the TOF.
281 // text - time of fligth from the matching procedure = time of the
282 // pixel corresponding to the track (ps)
283 // =0 for the tracks with matc<=1
284 // mext - mass of the track from the matching procedure
285 // =p*sqrt(900*(text/leng)**2-1), if 900*(text/leng)**2-1>=0
286 // =-p*sqrt(abs(900*(text/leng)**2-1)), if 900*(text/leng)**2-1<0
288 foutputntuple= new TNtuple("Ntuple","matching","event:ipart:imam:xvtx:yvtx:zvtx:pxvtx:pyvtx:pzvtx:time:leng:matc:text:mext",2000000); // buffersize set for 25 Pb-Pb events
291 //__________________________________________________________________
292 Double_t TimeWithTailR(Double_t* x, Double_t* par)
294 // sigma - par[0], alpha - par[1], part - par[2]
295 // at x<part*sigma - gauss
296 // at x>part*sigma - TMath::Exp(-x/alpha)
299 if(xx<par[0]*par[2]) {
300 f = TMath::Exp(-xx*xx/(2*par[0]*par[0]));
302 f = TMath::Exp(-(xx-par[0]*par[2])/par[1]-0.5*par[2]*par[2]);
307 //____________________________________________________________________________
308 void AliTOFReconstructioner::Exec(const char* datafile, Option_t *option)
311 // Performs reconstruction for TOF detector
313 gBenchmark->Start("TOFReconstruction");
315 TFile *file = TFile::Open(datafile);
317 // Get AliRun object from file or create it if not on file
318 gAlice = (AliRun*)file->Get("gAlice");
320 AliTOF* TOF = (AliTOF *) gAlice->GetDetector ("TOF");
321 AliDetector* TPC = gAlice->GetDetector("TPC");
324 Error("AliTOFReconstructioner","TOF not found");
328 Error("AliTOFReconstructioner","TPC Detector not found");
332 if (fEdgeTails) ftail = new TF1("tail",TimeWithTailR,-2,2,3);
334 if (fNevents == 0) fNevents = (Int_t) gAlice->TreeE()->GetEntries();
335 // You have to set the number of event with the ad hoc setter
338 for (Int_t ievent = 0; ievent < fNevents; ievent++) { // start loop on events
340 Int_t nparticles=gAlice->GetEvent(ievent);
341 if (nparticles <= 0) return;
343 TClonesArray* tofhits=0;
344 TClonesArray* tpchits=0;
346 if (TOF) tofhits = TOF->Hits();
347 if (TPC) tpchits = TPC->Hits();
349 TTree *TH = gAlice->TreeH();
351 Int_t ntracks = (Int_t) (TH->GetEntries()); // primary tracks
352 cout << "number of primary tracked tracks in current event " << ntracks << endl; // number of primary tracked tracks
353 // array declaration and initialization
355 // Int_t mapPixels[AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates][AliTOFConstants::fgkNStripC][AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX];
357 Int_t *** mapPixels = new Int_t**[AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates];
358 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) mapPixels[i] = new Int_t*[AliTOFConstants::fgkNStripC];
359 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) {
360 for (Int_t j=0; j<AliTOFConstants::fgkNStripC; j++) {
361 mapPixels[i][j]= new Int_t[AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX];
366 // initializing the previous array
367 for (Int_t i=0;i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates;i++) {
368 for (Int_t j=0;j<AliTOFConstants::fgkNStripC;j++) {
369 for (Int_t l=0;l<AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkNpadX;l++) {
370 mapPixels[i][j][l]=0;
375 Float_t * toftime = new Float_t[fMaxAllTracks];
376 InitArray(toftime, fMaxAllTracks);
377 AliTOFPad* pixelArray = new AliTOFPad[fMaxPixels];
378 Int_t* iTOFpixel = new Int_t[fMaxAllTracks];
379 InitArray(iTOFpixel , fMaxAllTracks);
380 Int_t* kTOFhitFirst = new Int_t[fMaxAllTracks];
381 InitArray(kTOFhitFirst, fMaxAllTracks);
382 AliTOFRecHit* hitArray = new AliTOFRecHit[fMaxTOFHits];
383 Int_t isHitOnFiredPad=0; // index used to fill hitArray (array used to store informations
384 // about pads that contains an hit)
385 Int_t ntotFiredPads=0; // index used to fill array -> total number of fired pads (at least one time)
388 AliTOFTrack* trackArray = new AliTOFTrack[fMaxTracks];
389 Int_t * iparticle = new Int_t[fMaxAllTracks];
390 InitArray(iparticle,fMaxAllTracks);
391 Int_t * iTrackPt = new Int_t[fMaxTracks];
392 InitArray(iTrackPt, fMaxTracks); // array
393 Float_t * ptTrack = new Float_t[fMaxTracks];
394 InitArray( ptTrack, fMaxTracks); // array for selected track pt
395 Int_t ntotTPCtracks=0; // total number of selected TPC tracks
399 if(TOF) ReadTOFHits(ntracks, TH, tofhits, mapPixels, kTOFhitFirst, pixelArray, iTOFpixel, toftime, hitArray,isHitOnFiredPad,ntotFiredPads);
400 cout << "isHitOnFiredPad " << isHitOnFiredPad << " for event " << ievent << endl;
402 // start debug for adding noise
404 Int_t nHitsNoNoise=isHitOnFiredPad;
407 if(fNoise) AddNoiseFromOuter(option,mapPixels,pixelArray,hitArray,isHitOnFiredPad,ntotFiredPads);
408 cout << "ntotFiredPads after adding noise " << ntotFiredPads << " for event " << ievent << endl;
409 // set the hitArray distance to nearest hit
410 SetMinDistance(hitArray,nHitsNoNoise);
412 // these lines has to be commented till TPC will provide fPx fPy fPz
413 // and fL in AliTPChit class
416 if(TPC) ReadTPCHits(ntracks, TH, tpchits, iTrackPt, iparticle, ptTrack, trackArray,ntotTPCtracks);
419 // geometrical matching
420 if(TOF && TPC) Matching(trackArray,hitArray,mapPixels,pixelArray,kTOFhitFirst,ntotFiredPads,iTrackPt,iTOFpixel,ntotTPCtracks);
422 // fill ntuple with reconstructed particles from current event
423 FillNtuple(ntracks,trackArray,hitArray,pixelArray,iTOFpixel,iparticle,toftime,ntotFiredPads,ntotTPCtracks);
428 delete [] pixelArray;
430 delete [] kTOFhitFirst;
432 delete [] trackArray;
437 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) {
438 for (Int_t j=0; j<AliTOFConstants::fgkNStripC; j++) {
439 delete [] mapPixels[i][j];
442 for (Int_t i=0; i<AliTOFConstants::fgkNSectors*AliTOFConstants::fgkNPlates; i++) delete [] mapPixels[i];
448 // free used memory for ftail
455 // writing ntuple on output file
457 //foutputntuple->Write(0,TObject::kOverwrite);
458 foutputntuple->Write();
459 foutputfile->Write();
460 foutputfile->Close();
462 gBenchmark->Stop("TOFReconstruction");
463 cout << "AliTOFReconstructioner:" << endl ;
464 cout << " took " << gBenchmark->GetCpuTime("TOFReconstruction") << " seconds in order to make the reconstruction for " << fNevents << " events " << endl;
465 cout << gBenchmark->GetCpuTime("TOFReconstruction")/fNevents << " seconds per event " << endl ;
470 //__________________________________________________________________
471 void AliTOFReconstructioner::SetRecFile(char * file )
474 // Set the file name for reconstruction output
476 if(!fRecFile.IsNull())
477 cout << "Changing destination file for TOF reconstruction from " <<(char *)fRecFile.Data() << " to " << file << endl ;
480 //__________________________________________________________________
481 void AliTOFReconstructioner::Print(Option_t* option)const
484 // Print reconstruction output file name
486 cout << "------------------- "<< GetName() << " -------------" << endl ;
487 if(fRecFile.IsNull())
488 cout << " Writing reconstructed particles to file galice.root "<< endl ;
490 cout << " Writing reconstructed particle to file " << (char*) fRecFile.Data() << endl ;
494 //__________________________________________________________________
495 void AliTOFReconstructioner::PrintParameters()const
498 // Print parameters used for reconstruction
500 cout << " ------------------- "<< GetName() << " -------------" << endl ;
501 cout << " Parameters used for TOF reconstruction " << endl ;
502 // Printing the parameters
504 cout << " Number of events: " << fNevents << endl;
505 cout << " Recostruction from event "<< fFirstEvent << " to event "<< fLastEvent << endl;
506 cout << " TOF geometry parameters " << endl;
507 cout << " Min. radius of the TOF (cm) "<< AliTOFConstants::fgkrmin << endl;
508 cout << " Max. radius of the TOF (cm) "<< AliTOFConstants::fgkrmax << endl;
509 cout << " Number of TOF geom. levels "<< AliTOFConstants::fgkmaxtoftree<< endl;
510 cout << " Number of TOF sectors "<< AliTOFConstants::fgkNSectors << endl;
511 cout << " Number of TOF modules "<< AliTOFConstants::fgkNPlates << endl;
512 cout << " Max. Number of strips in a module "<< AliTOFConstants::fgkNStripC << endl;
513 cout << " Number of pads per strip "<< AliTOFConstants::fgkNpadX*AliTOFConstants::fgkNpadZ << endl;
514 cout << " Number of strips in central module "<< AliTOFConstants::fgkNStripA << endl;
515 cout << " Number of strips in intermediate modules "<< AliTOFConstants::fgkNStripB << endl;
516 cout << " Number of strips in outer modules "<< AliTOFConstants::fgkNStripC << endl;
517 cout << " Number of MRPC in x strip direction "<< AliTOFConstants::fgkNpadX<< endl;
518 cout << " Size of MRPC (cm) along X "<< AliTOFConstants::fgkXPad<< endl;
519 cout << " Number of MRPC in z strip direction "<< AliTOFConstants::fgkNpadZ<<endl;
520 cout << " Size of MRPC (cm) along Z "<< AliTOFConstants::fgkZPad<<endl;
521 cout << " Module Lengths (cm)" << endl;
522 cout << " A Module: "<< AliTOFConstants::fgkzlenA<< " B Modules: "<< AliTOFConstants::fgkzlenB<< " C Modules: "<< AliTOFConstants::fgkzlenC<< endl;
523 cout << " Inner radius of the TOF detector (cm): "<<AliTOFConstants::fgkrmin << endl;
524 cout << " Outer radius of the TOF detector (cm): "<<AliTOFConstants::fgkrmax << endl;
525 cout << " Max. half z-size of TOF (cm) : "<<AliTOFConstants::fgkMaxhZtof << endl;
526 cout << " TOF Pad parameters " << endl;
527 cout << " Time Resolution (ns) "<< fTimeResolution <<" Pad Efficiency: "<< fpadefficiency << endl;
528 cout << " Edge Effect option: "<< fEdgeEffect<< endl;
530 cout << " Boundary Effect Simulation Parameters " << endl;
531 cout << " Hparameter: "<< fHparameter<<" H2parameter:"<< fH2parameter <<" Kparameter:"<< fKparameter<<" K2parameter: "<< fK2parameter << endl;
532 cout << " Efficiency in the central region of the pad: "<< fEffCenter << endl;
533 cout << " Efficiency at the boundary region of the pad: "<< fEffBoundary << endl;
534 cout << " Efficiency value at H2parameter "<< fEff2Boundary << endl;
535 cout << " Efficiency value at K2parameter "<< fEff3Boundary << endl;
536 cout << " Resolution (ps) in the central region of the pad: "<< fResCenter << endl;
537 cout << " Resolution (ps) at the boundary of the pad : "<< fResBoundary << endl;
538 cout << " Slope (ps/K) for neighbouring pad : "<< fResSlope <<endl;
539 cout << " Time walk (ps) in the central region of the pad : "<< fTimeWalkCenter << endl;
540 cout << " Time walk (ps) at the boundary of the pad : "<< fTimeWalkBoundary<< endl;
541 cout << " Slope (ps/K) for neighbouring pad : "<< fTimeWalkSlope<<endl;
542 cout << " Pulse Heigth Simulation Parameters " << endl;
543 cout << " Flag for delay due to the PulseHeightEffect: "<< fTimeDelayFlag <<endl;
544 cout << " Pulse Height Slope : "<< fPulseHeightSlope<<endl;
545 cout << " Time Delay Slope : "<< fTimeDelaySlope<<endl;
546 cout << " Minimum charge amount which could be induced : "<< fMinimumCharge<<endl;
547 cout << " Smearing in charge in (q1/q2) vs x plot : "<< fChargeSmearing<<endl;
548 cout << " Smearing in log of charge ratio : "<< fLogChargeSmearing<<endl;
549 cout << " Smearing in time in time vs log(q1/q2) plot : "<< fTimeSmearing<<endl;
550 cout << " Flag for average time : "<< fAverageTimeFlag<<endl;
551 cout << " Charge factor flag for matching : "<< fChargeFactorForMatching<<endl;
552 cout << " Edge tails option : "<< fEdgeTails << endl;
553 cout << " TPC tracking parameters " << endl;
554 cout << " TPC tracking efficiency : "<< fTrackingEfficiency<< endl;
555 cout << " Sigma vs momentum dependency flag : "<< fSigmavsp << endl;
556 cout << " Space uncertainties (cm). sigma(z) (cm): "<< fSigmaZ << " sigma(R(phi)) (cm): "<< fSigmarphi << endl;
557 cout << " Momentum uncertainties. sigma(delta(P)/P): "<< fSigmap <<" sigma(phi) (rad): "<< fSigmaPhi <<" sigma(theta) (rad): "<< fSigmaTheta << endl;
558 cout << " Parameters for additional noise hits " << endl;
559 cout << " Number of noise hits : " << fNoise <<" Slope parameter (ns) in the time distribution: " << fNoiseSlope << endl;
560 cout << " Mean TOF for noise from outer regions (ns)" << fNoiseMeanTof << endl;
561 cout << " Physical parameters " << endl;
562 cout << " Magnetic Field (tesla) : "<< fField <<endl;
563 cout << " Radiation length of the outer wall of TPC: "<< fRadLenTPC << endl;
564 cout << " (TPC tracks)-(TOF pads) matching parameters " << endl;
565 cout << " TRD Correction flag : "<< fCorrectionTRD <<endl;
566 cout << " Number of the last TPC row: "<< fLastTPCRow <<" Vertex radius (cm) for selected tracks: "<<fRadiusvtxBound<<endl;
567 cout << " Max. number of test tracks: "<<fMaxTestTracks << endl;
568 cout << " Space step (cm) : "<< fStep <<endl;
569 cout << " Matching style option : "<< fMatchingStyle <<endl;
570 cout << " Array parameters " << endl;
571 cout << " Max.number of pads involved in the matching procedure: "<< fMaxPixels << endl;
572 cout << " Max.number of TOF hits per event : "<< fMaxTOFHits<< endl;
573 cout << " Max.number of tracks selected for matching : "<< fMaxTracks << endl;
574 cout << " Max.number of all tracks including the neutral ones : "<< fMaxAllTracks<< endl;
575 cout << " Debug Flag : "<< fdbg << endl;
576 cout << " Cut on momentum for selecting tracks : "<< fPBound << endl;
580 //__________________________________________________________________
581 void AliTOFReconstructioner::IsInsideThePad(TVirtualMC *vmc, Float_t x, Float_t y, Float_t z, Int_t *nGeom, Float_t& zPad, Float_t& xPad)
583 // input: x,y,z - coordinates of a hit
584 // output: array nGeom[]
585 // nGeom[0] - the TOF sector number, 1,2,...,18 along azimuthal direction starting from -90 deg.!!!
586 // nGeom[1] - the TOF module number, 1,2,3,4,5=C,B,A,B,C along z-direction
587 // nGeom[2] - the TOF strip number, 1,2,... along z-direction
588 // nGeom[3] - the TOF padz number, 1,2=NPZ across a strip
589 // nGeom[4] - the TOF padx number, 1,2,...,48=NPX along a strip
590 // zPad, xPad - coordinates of the hit in the pad frame
591 // numbering is adopted for the version 3.05 of AliRoot
593 // from Hits: sec,pla,str,padz,padx=4,2,14,2,35
594 // Vol. n.0: ALIC, copy number 1
595 // Vol. n.1: B077, copy number 1
596 // Vol. n.2: B074, copy number 5
597 // Vol. n.3: BTO2, copy number 1
598 // Vol. n.4: FTOB, copy number 2
599 // Vol. n.5: FLTB, copy number 0
600 // Vol. n.6: FSTR, copy number 14
601 // Vol. n.7: FSEN, copy number 0
602 // Vol. n.8: FSEZ, copy number 2
603 // Vol. n.9: FSEX, copy number 35
604 // Vol. n.10: FPAD, copy number 0
608 Int_t sector=0,module=0,strip=0,padz=0,padx=0;
609 Int_t i,numed,nLevel,copyNumber;
614 for (i=0; i<AliTOFConstants::fgkmaxtoftree; i++) nGeom[i]=0;
622 TGeant3 * g3 = (TGeant3*) vmc;
624 g3->Gmedia(xTOF, numed);
626 nLevel=gcvolu->nlevel;
628 for (Int_t i=0; i<nLevel; i++) {
629 strncpy(name,(char*) (&gcvolu->names[i]),4);
630 cout<<"Vol. n."<<i<<": "<<name<<", copy number "<<gcvolu->number[i]<<endl;
634 // sector type name: B071(1,2,...,10),B074(1,2,3,4,5-PHOS),B075(1,2,3-RICH)
635 strncpy(name,(char*) (&gcvolu->names[2]),4);
636 // volume copy: 1,2,...,10 for B071, 1,2,3,4,5 for B074, 1,2,3 for B075
637 copyNumber=gcvolu->number[2];
638 if(!strcmp(name,"B071")) {
639 if (copyNumber>=6 && copyNumber<=8) {
640 sector=copyNumber+10;
641 } else if (copyNumber>=1 && copyNumber<=5){
646 } else if(!strcmp(name,"B075")) {
647 sector=copyNumber+12;
648 } else if(!strcmp(name,"B074")) {
649 if (copyNumber>=1 && copyNumber<=3){
659 // we'll use the module value in z-direction:
661 // the module order in z-direction: FTOC,FTOB,FTOA,FTOB,FTOC
662 // the module copy: 2 2 0 1 1
663 // module type name: FTOA, FTOB, FTOC
664 strncpy(name,(char*) (&gcvolu->names[4]),4);
666 copyNumber=gcvolu->number[4];
667 if(!strcmp(name,"FTOC")) {
673 } else if(!strcmp(name,"FTOB")) {
679 } else if(!strcmp(name,"FTOA")) {
688 // strip type name: FSTR
689 strncpy(name,(char*) (&gcvolu->names[6]),4);
691 copyNumber=gcvolu->number[6];
692 if(!strcmp(name,"FSTR")) strip=copyNumber;
699 // padz type name: FSEZ
700 strncpy(name,(char*) (&gcvolu->names[8]),4);
702 copyNumber=gcvolu->number[8];
703 if(!strcmp(name,"FSEZ")) padz=copyNumber;
709 // padx type name: FSEX
710 strncpy(name,(char*) (&gcvolu->names[9]),4);
712 copyNumber=gcvolu->number[9];
713 if(!strcmp(name,"FSEX")) padx=copyNumber;
719 zPad=gcvolu->glx[2]; // check here
720 xPad=gcvolu->glx[0]; // check here
723 // printf(" nGeom[0,1,2,3,4]=%i,%i,%i,%i,%i\n",nGeom[0],nGeom[1],nGeom[2],nGeom[3],nGeom[4]);
726 //__________________________________________________________________
727 void AliTOFReconstructioner::EpMulScatt(Float_t& px, Float_t& py, Float_t& pz, Float_t& p, Float_t& theta)
729 // Momentum p - before mult.scat.
730 // Momentum p2 - after mult.scat.
731 // THE0 - r.m.s. of deviation angle in plane
732 // (see RPP'96: Phys.Rev.D54 (1996) 134)
734 Float_t pt,thex,they,tantx,tanty,p2px,p2py,p2pz,costhe,sinthe,cospsi,sinpsi,p2x,p2y,p2z,p2,g;
736 pt=TMath::Sqrt(px*px+py*py);
737 // angles for p in the ' frame with Z'along p
738 if(fMatchingStyle==1) {
739 thex=theta*gRandom->Gaus();
740 they=theta*gRandom->Gaus();
742 thex=3*(-theta+2*theta*gRandom->Rndm());
743 they=3*(-theta+2*theta*gRandom->Rndm());
745 tantx=TMath::Tan(thex);
746 tanty=TMath::Tan(they);
748 // p2p - p2 in the ' frame
749 p2pz=p/TMath::Sqrt(1.+tantx*tantx+tanty*tanty);
752 // choose X'so that PHI=0 (see Il'in, Pozdnyak Analiticheskaya geometriya, 1968, c.88
753 // for Euler angles PSI, THETA (PHI=0)
759 g=p2py*costhe-p2pz*sinthe;
760 p2x=p2px*cospsi-g*sinpsi;
761 p2y=p2px*sinpsi+g*cospsi;
762 p2z=p2py*sinthe+p2pz*costhe;
763 p2=TMath::Sqrt(p2x*p2x+p2y*p2y+p2z*p2z);
766 g=(px*p2x+py*p2y+pz*p2z)/(p*p2);
768 theta=TMath::ACos(g);
776 // std border effect algorithm
777 //__________________________________________________________________
778 void AliTOFReconstructioner::BorderEffect(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
780 // Input: z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
781 // geantTime - time generated by Geant, ns
782 // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
783 // nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
784 // qInduced[iPad]- charge induced on pad, arb. units
785 // this array is initialized at zero by the caller
786 // tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
787 // this array is initialized at zero by the caller
788 // averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
789 // The weight is given by the qInduced[iPad]/qCenterPad
790 // this variable is initialized at zero by the caller
791 // nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
792 // this variable is initialized at zero by the caller
794 // Description of used variables:
795 // eff[iPad] - efficiency of the pad
796 // res[iPad] - resolution of the pad, ns
797 // timeWalk[iPad] - time walk of the pad, ns
798 // timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
799 // PadId[iPad] - Pad Identifier
800 // E | F --> PadId[iPad] = 5 | 6
801 // A | B --> PadId[iPad] = 1 | 2
802 // C | D --> PadId[iPad] = 3 | 4
803 // nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
804 // qCenterPad - charge extimated for each pad, arb. units
805 // weightsSum - sum of weights extimated for each pad fired, arb. units
807 const Float_t kSigmaForTail[2] = {AliTOFConstants::fgkSigmaForTail1,AliTOFConstants::fgkSigmaForTail2}; //for tail
808 Int_t iz = 0, ix = 0;
809 Float_t dX = 0., dZ = 0., x = 0., z = 0.;
810 Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
811 Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
812 Float_t logOfqInd = 0.;
813 Float_t weightsSum = 0.;
814 Int_t nTail[4] = {0,0,0,0};
815 Int_t padId[4] = {0,0,0,0};
816 Float_t eff[4] = {0.,0.,0.,0.};
817 Float_t res[4] = {0.,0.,0.,0.};
818 // Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
819 Float_t qCenterPad = 1.;
820 Float_t timeWalk[4] = {0.,0.,0.,0.};
821 Float_t timeDelay[4] = {0.,0.,0.,0.};
826 (z0 <= 0) ? iz = 0 : iz = 1;
827 dZ = z0 + (0.5 * AliTOFConstants::fgkNpadZ - iz - 0.5) * AliTOFConstants::fgkZPad; // hit position in the pad frame, (0,0) - center of the pad
828 z = 0.5 * AliTOFConstants::fgkZPad - TMath::Abs(dZ); // variable for eff., res. and timeWalk. functions
829 iz++; // z row: 1, ..., AliTOFConstants::fgkNpadZ = 2
830 ix = (Int_t)((x0 + 0.5 * AliTOFConstants::fgkNpadX * AliTOFConstants::fgkXPad) / AliTOFConstants::fgkXPad);
831 dX = x0 + (0.5 * AliTOFConstants::fgkNpadX - ix - 0.5) * AliTOFConstants::fgkXPad; // hit position in the pad frame, (0,0) - center of the pad
832 x = 0.5 * AliTOFConstants::fgkXPad - TMath::Abs(dX); // variable for eff., res. and timeWalk. functions;
833 ix++; // x row: 1, ..., AliTOFConstants::fgkNpadX = 48
837 nPlace[nActivatedPads-1] = (iz - 1) * AliTOFConstants::fgkNpadX + ix;
838 qInduced[nActivatedPads-1] = qCenterPad;
839 padId[nActivatedPads-1] = 1;
841 if (fEdgeEffect == 0) {
842 eff[nActivatedPads-1] = fEffCenter;
843 if (gRandom->Rndm() < eff[nActivatedPads-1]) {
845 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + fResCenter * fResCenter); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns;
846 isFired[nActivatedPads-1] = kTRUE;
847 tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
848 averageTime = tofTime[nActivatedPads-1];
854 effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
856 effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
858 resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
859 timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
860 nTail[nActivatedPads-1] = 1;
864 timeWalkZ = fTimeWalkCenter;
869 effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
871 effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
873 resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
874 timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
875 nTail[nActivatedPads-1] = 1;
879 timeWalkX = fTimeWalkCenter;
882 (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
883 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
884 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
889 effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
891 effZ = fEff3Boundary * (k - z) / (k - k2);
893 resZ = fResBoundary + fResSlope * z / k;
894 timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
897 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
899 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX;
900 eff[nActivatedPads-1] = effZ;
901 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
902 timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
903 nTail[nActivatedPads-1] = 2;
904 if (fTimeDelayFlag) {
905 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
906 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
907 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
908 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
909 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
911 timeDelay[nActivatedPads-1] = 0.;
913 padId[nActivatedPads-1] = 2;
918 ////// Pad C, D, E, F:
920 effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
922 effX = fEff3Boundary * (k - x) / (k - k2);
924 resX = fResBoundary + fResSlope*x/k;
925 timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
929 if(ix > 1 && dX < 0) {
931 nPlace[nActivatedPads-1] = nPlace[0] - 1;
932 eff[nActivatedPads-1] = effX;
933 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
934 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
935 nTail[nActivatedPads-1] = 2;
936 if (fTimeDelayFlag) {
937 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
938 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
939 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
940 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
941 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
943 timeDelay[nActivatedPads-1] = 0.;
945 padId[nActivatedPads-1] = 3;
949 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
951 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX - 1;
952 eff[nActivatedPads-1] = effX * effZ;
953 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
954 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
956 nTail[nActivatedPads-1] = 2;
957 if (fTimeDelayFlag) {
958 if (TMath::Abs(x) < TMath::Abs(z)) {
959 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
960 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
961 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
962 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
964 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
965 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
966 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
967 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
969 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
971 timeDelay[nActivatedPads-1] = 0.;
973 padId[nActivatedPads-1] = 4;
979 if(ix < AliTOFConstants::fgkNpadX && dX > 0) {
981 nPlace[nActivatedPads-1] = nPlace[0] + 1;
982 eff[nActivatedPads-1] = effX;
983 res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(10400 + resX * resX)); // ns
984 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
985 nTail[nActivatedPads-1] = 2;
986 if (fTimeDelayFlag) {
987 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
988 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
989 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
990 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
991 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
993 timeDelay[nActivatedPads-1] = 0.;
995 padId[nActivatedPads-1] = 5;
1000 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1002 nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX + 1;
1003 eff[nActivatedPads - 1] = effX * effZ;
1004 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1005 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
1006 nTail[nActivatedPads-1] = 2;
1007 if (fTimeDelayFlag) {
1008 if (TMath::Abs(x) < TMath::Abs(z)) {
1009 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1010 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1011 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * z);
1012 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1014 // qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1015 // qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1016 qInduced[nActivatedPads-1] = TMath::Exp(-fPulseHeightSlope * x);
1017 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1019 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1021 timeDelay[nActivatedPads-1] = 0.;
1023 padId[nActivatedPads-1] = 6;
1030 for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
1031 if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
1032 if(gRandom->Rndm() < eff[iPad]) {
1033 isFired[iPad] = kTRUE;
1036 if(nTail[iPad] == 0) {
1037 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1039 ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
1040 Double_t timeAB = ftail->GetRandom();
1041 tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
1044 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1046 if (fAverageTimeFlag) {
1047 averageTime += tofTime[iPad] * qInduced[iPad];
1048 weightsSum += qInduced[iPad];
1050 averageTime += tofTime[iPad];
1055 if (weightsSum!=0) averageTime /= weightsSum;
1056 } // end else (fEdgeEffect != 0)
1060 /* new algorithm (to be checked)
1061 //__________________________________________________________________
1062 void AliTOFReconstructioner::BorderEffect(Float_t z0, Float_t x0, Float_t geantTime, Int_t& nActivatedPads, Int_t& nFiredPads, Bool_t* isFired, Int_t* nPlace, Float_t* qInduced, Float_t* tofTime, Float_t& averageTime)
1064 // Input: z0, x0 - hit position in the strip system (0,0 - center of the strip), cm
1065 // geantTime - time generated by Geant, ns
1066 // Output: nActivatedPads - the number of pads activated by the hit (1 || 2 || 4)
1067 // nFiredPads - the number of pads fired (really activated) by the hit (nFiredPads <= nActivatedPads)
1068 // qInduced[iPad]- charge induced on pad, arb. units
1069 // this array is initialized at zero by the caller
1070 // tofAfterSimul[iPad] - time calculated with edge effect algorithm, ns
1071 // this array is initialized at zero by the caller
1072 // averageTime - time given by pad hited by the Geant track taking into account the times (weighted) given by the pads fired for edge effect also.
1073 // The weight is given by the qInduced[iPad]/qCenterPad
1074 // this variable is initialized at zero by the caller
1075 // nPlace[iPad] - the number of the pad place, iPad = 0, 1, 2, 3
1076 // this variable is initialized at zero by the caller
1078 // Description of used variables:
1079 // eff[iPad] - efficiency of the pad
1080 // res[iPad] - resolution of the pad, ns
1081 // timeWalk[iPad] - time walk of the pad, ns
1082 // timeDelay[iPad] - time delay for neighbouring pad to hited pad, ns
1083 // PadId[iPad] - Pad Identifier
1084 // E | F --> PadId[iPad] = 5 | 6
1085 // A | B --> PadId[iPad] = 1 | 2
1086 // C | D --> PadId[iPad] = 3 | 4
1087 // nTail[iPad] - the tail number, = 1 for tailA, = 2 for tailB
1088 // qCenterPad - charge extimated for each pad, arb. units
1089 // weightsSum - sum of weights extimated for each pad fired, arb. units
1091 const Float_t kSigmaForTail[2] = {AliTOFConstants::fgkSigmaForTail1,AliTOFConstants::fgkSigmaForTail2}; //for tail
1092 Int_t iz = 0, ix = 0;
1093 Float_t dX = 0., dZ = 0., x = 0., z = 0.;
1094 Float_t h = fHparameter, h2 = fH2parameter, k = fKparameter, k2 = fK2parameter;
1095 Float_t effX = 0., effZ = 0., resX = 0., resZ = 0., timeWalkX = 0., timeWalkZ = 0.;
1096 Float_t logOfqInd = 0.;
1097 Float_t weightsSum = 0.;
1098 Int_t nTail[4] = {0,0,0,0};
1099 Int_t padId[4] = {0,0,0,0};
1100 Float_t eff[4] = {0.,0.,0.,0.};
1101 Float_t res[4] = {0.,0.,0.,0.};
1102 Float_t qCenterPad = fMinimumCharge * fMinimumCharge;
1103 Float_t timeWalk[4] = {0.,0.,0.,0.};
1104 Float_t timeDelay[4] = {0.,0.,0.,0.};
1109 (z0 <= 0) ? iz = 0 : iz = 1;
1110 dZ = z0 + (0.5 * AliTOFConstants::fgkNpadZ - iz - 0.5) * AliTOFConstants::fgkZPad; // hit position in the pad frame, (0,0) - center of the pad
1111 z = 0.5 * AliTOFConstants::fgkZPad - TMath::Abs(dZ); // variable for eff., res. and timeWalk. functions
1112 iz++; // z row: 1, ..., AliTOFConstants::fgkNpadZ = 2
1113 ix = (Int_t)((x0 + 0.5 * AliTOFConstants::fgkNpadX * AliTOFConstants::fgkXPad) / AliTOFConstants::fgkXPad);
1114 dX = x0 + (0.5 * AliTOFConstants::fgkNpadX - ix - 0.5) * AliTOFConstants::fgkXPad; // hit position in the pad frame, (0,0) - center of the pad
1115 x = 0.5 * AliTOFConstants::fgkXPad - TMath::Abs(dX); // variable for eff., res. and timeWalk. functions;
1116 ix++; // x row: 1, ..., AliTOFConstants::fgkNpadX = 48
1120 nPlace[nActivatedPads-1] = (iz - 1) * AliTOFConstants::fgkNpadX + ix;
1121 qInduced[nActivatedPads-1] = qCenterPad;
1122 padId[nActivatedPads-1] = 1;
1124 if (fEdgeEffect == 0) {
1125 eff[nActivatedPads-1] = fEffCenter;
1126 if (gRandom->Rndm() < eff[nActivatedPads-1]) {
1128 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + fResCenter * fResCenter); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns;
1129 isFired[nActivatedPads-1] = kTRUE;
1130 tofTime[nActivatedPads-1] = gRandom->Gaus(geantTime + fTimeWalkCenter, res[0]);
1131 averageTime = tofTime[nActivatedPads-1];
1137 effZ = fEffBoundary + (fEff2Boundary - fEffBoundary) * z / h2;
1139 effZ = fEff2Boundary + (fEffCenter - fEff2Boundary) * (z - h2) / (h - h2);
1141 resZ = fResBoundary + (fResCenter - fResBoundary) * z / h;
1142 timeWalkZ = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * z / h;
1143 nTail[nActivatedPads-1] = 1;
1147 timeWalkZ = fTimeWalkCenter;
1152 effX = fEffBoundary + (fEff2Boundary - fEffBoundary) * x / h2;
1154 effX = fEff2Boundary + (fEffCenter - fEff2Boundary) * (x - h2) / (h - h2);
1156 resX = fResBoundary + (fResCenter - fResBoundary) * x / h;
1157 timeWalkX = fTimeWalkBoundary + (fTimeWalkCenter - fTimeWalkBoundary) * x / h;
1158 nTail[nActivatedPads-1] = 1;
1162 timeWalkX = fTimeWalkCenter;
1165 (effZ<effX) ? eff[nActivatedPads-1] = effZ : eff[nActivatedPads-1] = effX;
1166 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1167 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1172 effZ = fEffBoundary - (fEffBoundary - fEff3Boundary) * (z / k2);
1174 effZ = fEff3Boundary * (k - z) / (k - k2);
1176 resZ = fResBoundary + fResSlope * z / k;
1177 timeWalkZ = fTimeWalkBoundary + fTimeWalkSlope * z / k;
1179 if(z < k && z > 0) {
1180 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1182 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX;
1183 eff[nActivatedPads-1] = effZ;
1184 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1185 timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ; // ns
1186 nTail[nActivatedPads-1] = 2;
1187 if (fTimeDelayFlag) {
1188 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1189 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1190 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1191 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1193 timeDelay[nActivatedPads-1] = 0.;
1195 padId[nActivatedPads-1] = 2;
1200 ////// Pad C, D, E, F:
1202 effX = fEffBoundary - (fEffBoundary - fEff3Boundary) * (x / k2);
1204 effX = fEff3Boundary * (k - x) / (k - k2);
1206 resX = fResBoundary + fResSlope*x/k;
1207 timeWalkX = fTimeWalkBoundary + fTimeWalkSlope*x/k;
1209 if(x < k && x > 0) {
1211 if(ix > 1 && dX < 0) {
1213 nPlace[nActivatedPads-1] = nPlace[0] - 1;
1214 eff[nActivatedPads-1] = effX;
1215 res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1216 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1217 nTail[nActivatedPads-1] = 2;
1218 if (fTimeDelayFlag) {
1219 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1220 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1221 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1222 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1224 timeDelay[nActivatedPads-1] = 0.;
1226 padId[nActivatedPads-1] = 3;
1229 if(z < k && z > 0) {
1230 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1232 nPlace[nActivatedPads-1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX - 1;
1233 eff[nActivatedPads-1] = effX * effZ;
1234 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1235 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1237 nTail[nActivatedPads-1] = 2;
1238 if (fTimeDelayFlag) {
1239 if (TMath::Abs(x) < TMath::Abs(z)) {
1240 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1241 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1242 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1244 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1245 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1246 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1248 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1250 timeDelay[nActivatedPads-1] = 0.;
1252 padId[nActivatedPads-1] = 4;
1258 if(ix < AliTOFConstants::fgkNpadX && dX > 0) {
1260 nPlace[nActivatedPads-1] = nPlace[0] + 1;
1261 eff[nActivatedPads-1] = effX;
1262 res[nActivatedPads-1] = 0.001 * (TMath::Sqrt(10400 + resX * resX)); // ns
1263 timeWalk[nActivatedPads-1] = 0.001 * timeWalkX; // ns
1264 nTail[nActivatedPads-1] = 2;
1265 if (fTimeDelayFlag) {
1266 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1267 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1268 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1269 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1271 timeDelay[nActivatedPads-1] = 0.;
1273 padId[nActivatedPads-1] = 5;
1277 if(z < k && z > 0) {
1278 if( (iz == 1 && dZ > 0) || (iz == 2 && dZ < 0) ) {
1280 nPlace[nActivatedPads - 1] = nPlace[0] + (3 - 2 * iz) * AliTOFConstants::fgkNpadX + 1;
1281 eff[nActivatedPads - 1] = effX * effZ;
1282 (resZ<resX) ? res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resX * resX) : res[nActivatedPads-1] = 0.001 * TMath::Sqrt(10400 + resZ * resZ); // 10400=30^2+20^2+40^2+50^2+50^2+50^2 ns
1283 (timeWalkZ<timeWalkX) ? timeWalk[nActivatedPads-1] = 0.001 * timeWalkZ : timeWalk[nActivatedPads-1] = 0.001*timeWalkX; // ns
1284 nTail[nActivatedPads-1] = 2;
1285 if (fTimeDelayFlag) {
1286 if (TMath::Abs(x) < TMath::Abs(z)) {
1287 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * z / 2.);
1288 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * z / 2.);
1289 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * z, fLogChargeSmearing);
1291 qInduced[0] = fMinimumCharge * TMath::Exp(fPulseHeightSlope * x / 2.);
1292 qInduced[nActivatedPads-1] = fMinimumCharge * TMath::Exp(-fPulseHeightSlope * x / 2.);
1293 logOfqInd = gRandom->Gaus(-fPulseHeightSlope * x, fLogChargeSmearing);
1295 timeDelay[nActivatedPads-1] = gRandom->Gaus(-fTimeDelaySlope * logOfqInd, fTimeSmearing);
1297 timeDelay[nActivatedPads-1] = 0.;
1299 padId[nActivatedPads-1] = 6;
1306 for (Int_t iPad = 0; iPad < nActivatedPads; iPad++) {
1307 if (res[iPad] < fTimeResolution) res[iPad] = fTimeResolution;
1308 if(gRandom->Rndm() < eff[iPad]) {
1309 isFired[iPad] = kTRUE;
1312 if(nTail[iPad] == 0) {
1313 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1315 ftail->SetParameters(res[iPad], 2. * res[iPad], kSigmaForTail[nTail[iPad]-1]);
1316 Double_t timeAB = ftail->GetRandom();
1317 tofTime[iPad] = geantTime + timeWalk[iPad] + timeDelay[iPad] + timeAB;
1320 tofTime[iPad] = gRandom->Gaus(geantTime + timeWalk[iPad] + timeDelay[iPad], res[iPad]);
1322 if (fAverageTimeFlag) {
1323 averageTime += tofTime[iPad] * qInduced[iPad];
1324 weightsSum += qInduced[iPad];
1326 averageTime += tofTime[iPad];
1331 if (weightsSum!=0) averageTime /= weightsSum;
1333 } // end else (fEdgeEffect != 0)
1335 //cout << "timedelay " << timeDelay[0] << endl;
1336 //cout << "timedelay " << timeDelay[1] << endl;
1337 //cout << "timedelay " << timeDelay[2] << endl;
1338 //cout << "timedelay " << timeDelay[3] << endl;
1344 //__________________________________________________________________
1345 Int_t AliTOFReconstructioner::PDGtoGeantCode(Int_t pdgcode)
1348 // Gives the GEANT code from KF code of LUND JETSET
1350 Int_t geantCode=0; // default value
1353 geantCode=1; // GAMMA
1365 geantCode=4; // NUMU
1383 geantCode=10; // K_L0
1398 geantCode=15; // P~-
1401 geantCode=16; // K_S0
1404 geantCode=17; // ETA
1407 geantCode=18; // LAMBDA0
1410 geantCode=19; // SIGMA+
1413 geantCode=20; // SIGMA0
1416 geantCode=21; // SIGMA-
1419 geantCode=22; // XI0
1422 geantCode=23; // XI-
1425 geantCode=24; // OMEGA-
1428 geantCode=25; // N~0
1431 geantCode=26; // LAMBDA~0
1434 geantCode=27; // SIGMA~+
1437 geantCode=28; // SIGMA~0
1440 geantCode=29; // SIGMA~-
1443 geantCode=30; // XI~0
1446 geantCode=31; // XI~+
1449 geantCode=32; // OMEGA~+
1452 geantCode=33; // OMEGA(782)
1455 geantCode=34; // PHI(1020)
1467 geantCode=38; // D~0
1470 geantCode=39; // D_S+
1473 geantCode=40; // D_S~-
1476 geantCode=41; // LAMBDA_C+
1479 geantCode=42; // RHP(770)+
1482 geantCode=43; // RHO(770)-
1485 geantCode=44; // RHO(770)0
1495 //__________________________________________________________________
1496 Bool_t AliTOFReconstructioner::operator==( AliTOFReconstructioner const & tofrec)const
1499 // Reconstructioners are equal if their parameters are equal
1501 // split the member variables in analogous categories
1503 // time resolution and edge effect parameters
1504 Bool_t dummy0=(fTimeResolution==tofrec.fTimeResolution)&&(fpadefficiency==tofrec.fpadefficiency)&&(fEdgeEffect==tofrec.fEdgeEffect)&&(fEdgeTails==tofrec.fEdgeTails)&&(fHparameter==tofrec.fHparameter)&&(fH2parameter==tofrec.fH2parameter)&&(fKparameter==t
1505 ofrec.fKparameter)&&(fK2parameter==tofrec.fK2parameter);
1507 // pad efficiency parameters
1508 Bool_t dummy1=(fEffCenter==tofrec.fEffCenter)&&(fEffBoundary==tofrec.fEffBoundary)&&(fEff2Boundary==tofrec.fEff2Boundary)&&(fEff3Boundary==tofrec.fEff3Boundary)&&(fResCenter==tofrec.fResCenter)&&(fResBoundary==tofrec.fResBoundary)&&(fResSlope==tofrec.fR
1511 // time walk parameters
1512 Bool_t dummy2=(fTimeWalkCenter==tofrec.fTimeWalkCenter)&&(fTimeWalkBoundary==tofrec.fTimeWalkBoundary)&&(fTimeWalkSlope==tofrec.fTimeWalkSlope)&&(fTimeDelayFlag==tofrec.fTimeDelayFlag)&&(fPulseHeightSlope==tofrec.fPulseHeightSlope)&&(fTimeDelaySlope==to
1513 frec.fTimeDelaySlope);
1515 // ADC-TDC correlation parameters
1516 Bool_t dummy3=(fMinimumCharge==tofrec.fMinimumCharge)&&(fChargeSmearing==tofrec.fChargeSmearing )&&(fLogChargeSmearing==tofrec.fLogChargeSmearing )&&(fTimeSmearing==tofrec.fTimeSmearing )&&(fAverageTimeFlag==tofrec.fAverageTimeFlag)&&(fChargeFactorForMa
1517 tching==tofrec.fChargeFactorForMatching)&&(fMatchingStyle==tofrec.fMatchingStyle);
1519 Bool_t dummy4=(fTrackingEfficiency==tofrec.fTrackingEfficiency)&&(fSigmavsp==tofrec.fSigmavsp)&&(fSigmaZ==tofrec.fSigmaZ)&&(fSigmarphi==tofrec.fSigmarphi)&&(fSigmap==tofrec.fSigmap)&&(fSigmaPhi==tofrec.fSigmaPhi)&&(fSigmaTheta==tofrec.fSigmaTheta)&&(fNo
1520 ise==tofrec.fNoise)&&(fNoiseSlope==tofrec.fNoiseSlope)&&(fField==tofrec.fField)&&(fRadLenTPC==tofrec.fRadLenTPC)&&(fCorrectionTRD==tofrec.fCorrectionTRD)&&(fLastTPCRow==tofrec.fLastTPCRow)&&(fRadiusvtxBound==tofrec.fRadiusvtxBound)&&(fMaxTestTracks==tofre
1521 c.fMaxTestTracks)&&(fStep==tofrec.fStep)&&(fMaxPixels==tofrec.fMaxPixels)&&(fMaxAllTracks==tofrec.fMaxAllTracks)&&(fMaxTracks==tofrec.fMaxTracks)&&(fMaxTOFHits==tofrec.fMaxTOFHits)&&(fPBound==tofrec.fPBound);
1523 if( dummy0 && dummy1 && dummy2 && dummy3 && dummy4)
1529 //____________________________________________________________________________
1530 void AliTOFReconstructioner::UseHitsFrom(const char * filename)
1532 SetTitle(filename) ;
1535 //____________________________________________________________________________
1536 void AliTOFReconstructioner::InitArray(Float_t array[], Int_t nlocations)
1539 // Initialize the array of Float_t
1541 for (Int_t i = 0; i < nlocations; i++) {
1547 //____________________________________________________________________________
1548 void AliTOFReconstructioner::InitArray(Int_t array[], Int_t nlocations)
1551 // Initialize the array of Int_t
1553 for (Int_t i = 0; i < nlocations; i++) {
1560 //____________________________________________________________________________
1561 void AliTOFReconstructioner::ReadTOFHits(Int_t ntracks, TTree* treehits, TClonesArray* tofhits, Int_t ***MapPixels, Int_t* kTOFhitFirst, AliTOFPad* pixelArray , Int_t* iTOFpixel, Float_t* toftime, AliTOFRecHit* hitArray, Int_t& isHitOnFiredPad, Int_t& ipi
1565 // Read TOF hits for the current event and fill arrays
1567 // Start loop on primary tracks in the hits containers
1569 // Noise meaning in ReadTOFHits: we use the word 'noise' in the
1571 // - signals produced by secondary particles
1572 // - signals produced by the next hits (out of the first) of a given track
1573 // (both primary and secondary)
1574 // - signals produced by edge effect
1577 TParticle *particle;
1578 Int_t nHitOutofTofVolumes; // number of hits out of TOF GEANT volumes (it happens in very
1580 Int_t * npixel = new Int_t[AliTOFConstants::fgkmaxtoftree]; // array used by TOFRecon for check on TOF geometry
1581 Int_t npions=0; // number of pions for the current event
1582 Int_t nkaons=0; // number of kaons for the current event
1583 Int_t nprotons=0; // number of protons for the current event
1584 Int_t nelectrons=0;// number of electrons for the current event
1585 Int_t nmuons=0; // number of muons for the current event
1586 Float_t tofpos[3]; // TOF hit position and GEANT time
1589 Int_t ipart, nhits=0, nHitsFromPrimaries=0;
1590 Int_t ntotalTOFhits=0; // total number of TOF hits for the current event
1591 Int_t ipartLast=-1; // last track identifier
1592 Int_t iFirstHit; // flag to check if the current hit is the first hit on TOF for the
1594 Int_t iNoiseHit=0; // flag used to tag noise hits (the noise meaning is reported in the
1595 // header of the ReadTOFHits method)
1596 Int_t nhitWithoutNoise;// number of hits not due to noise
1597 Int_t inoise=0,inoise2=0;
1598 Int_t nMultipleSignOnSamePad=0; // number of cases where a pad is fired more than one time
1599 Int_t nPixEdge=0; // additional pads fired due to edge effect in ReadTOFHits (local var)
1600 // array used for counting different types of primary particles
1601 Int_t particleTypeGEANT[50]={0,4,4,0,5,5,0,3,3,0,
1602 2,2,0,1,1,0,0,0,0,0,
1603 0,0,0,0,0,0,0,0,0,0,
1604 0,0,0,0,0,0,0,0,0,0,
1605 0,0,0,0,0,0,0,0,0,0};
1606 Int_t particleType,particleInTOFtype[6][3];
1607 for (Int_t i=0;i<6;i++) {
1608 for (Int_t j=0;j<3;j++) {
1609 particleInTOFtype[i][j]=0;
1613 // speed-up the code
1614 treehits->SetBranchStatus("*",0); // switch off all branches
1615 treehits->SetBranchStatus("TOF*",1); // switch on only TOF
1617 for (Int_t track=0; track<ntracks;track++) { // starting loop on primary tracks for the current event
1619 gAlice->ResetHits();
1620 nbytes += treehits->GetEvent(track);
1621 nhits = tofhits->GetEntriesFast();
1623 ntotalTOFhits+=nhits;
1625 // Start loop on hits connected to the current primary tracked particle
1626 // (including hits produced by secondary particles generaterd by the
1627 // current ptimary tracked particle)
1628 for (Int_t hit=0;hit<nhits;hit++) {
1629 AliTOFhit* tofHit = (AliTOFhit*)tofhits->UncheckedAt(hit);
1630 ipart = tofHit->GetTrack();
1631 if(ipart>=fMaxAllTracks) break;
1632 Float_t geantTime= tofHit->GetTof(); // it is given in [s]
1633 particle = (TParticle*)gAlice->Particle(ipart);
1635 Int_t pdgCode=particle->GetPdgCode();
1636 // Only high momentum tracks (see fPBound value)
1637 // momentum components at vertex
1638 Float_t pxvtx = particle->Px();
1639 Float_t pyvtx = particle->Py();
1640 Float_t pzvtx = particle->Pz();
1641 Float_t pvtx = TMath::Sqrt(pxvtx*pxvtx+pyvtx*pyvtx+pzvtx*pzvtx);
1644 if(particle->GetFirstMother() < 0) nHitsFromPrimaries++; // count primaries
1646 // x and y coordinates of the particle production vertex
1647 Float_t vx = particle->Vx();
1648 Float_t vy = particle->Vy();
1649 Float_t vr = TMath::Sqrt(vx*vx+vy*vy); // cylindrical radius of the particle production vertex
1651 Float_t x = tofHit->X(); tofpos[0]=x;
1652 Float_t y = tofHit->Y(); tofpos[1]=y;
1653 Float_t z = tofHit->Z(); tofpos[2]=z;
1655 Float_t tofradius = TMath::Sqrt(x*x+y*y); // radius cilindrical coordinate of the TOF hit
1657 // momentum components (cosine) when striking the TOF
1658 Float_t pxtof = tofHit->GetPx();
1659 Float_t pytof = tofHit->GetPy();
1660 Float_t pztof = tofHit->GetPz();
1661 // scalar product indicating the direction of the particle when striking the TOF
1663 // (>0 for outgoing particles)
1664 Float_t isGoingOut = (x*pxtof+y*pytof+z*pztof)/TMath::Sqrt(x*x+y*y+z*z);
1666 Float_t momtof = tofHit->GetMom();
1667 // now momentum components when striking the TOF
1671 particleType=particleTypeGEANT[PDGtoGeantCode(pdgCode)-1];
1673 particleInTOFtype[5][2]++;
1674 particleInTOFtype[particleType-1][2]++;
1677 // without noise hits
1679 if(ipart!=ipartLast) {
1681 toftime[ipart]=geantTime; //time [s]
1682 // tofMom[ipart]=momtof;
1684 if(particle->GetFirstMother() < 0) {
1685 Int_t abspdgCode=TMath::Abs(pdgCode);
1686 switch (abspdgCode) {
1704 if(vr>fRadiusvtxBound) {
1706 particleInTOFtype[5][1]++;
1707 particleInTOFtype[particleType-1][1]++;
1713 particleInTOFtype[5][0]++;
1714 particleInTOFtype[particleType-1][0]++;
1720 particleInTOFtype[5][1]++;
1721 particleInTOFtype[particleType-1][1]++;
1723 } //end if(ipart!=ipartLast)
1725 IsInsideThePad(gMC,x,y,z,npixel,zPad,xPad);
1727 Int_t sec = tofHit->GetSector();
1728 Int_t pla = tofHit->GetPlate();
1729 Int_t str = tofHit->GetStrip();
1730 if(sec!=npixel[0] || pla!=npixel[1] || str!=npixel[2]){// check on volume
1731 cout << "sector" << sec << " npixel[0] " << npixel[0] << endl;
1732 cout << "plate " << pla << " npixel[1] " << npixel[1] << endl;
1733 cout << "strip " << str << " npixel[2] " << npixel[2] << endl;
1734 } // close check on volume
1736 Int_t padz = tofHit->GetPadz();
1737 Int_t padx = tofHit->GetPadx();
1738 Float_t Zpad = tofHit->GetDz();
1739 Float_t Xpad = tofHit->GetDx();
1743 IsInsideThePad(gMC,x,y,z,npixel,zPad,xPad);
1745 nHitOutofTofVolumes++;
1748 Float_t zStrip=AliTOFConstants::fgkZPad*(padz-0.5-0.5*AliTOFConstants::fgkNpadZ)+Zpad;
1749 if(padz!=npixel[3]) printf(" : Zpad=%f, padz=%i, npixel[3]=%i, zStrip=%f\n",Zpad,padz,npixel[3],zStrip);
1750 Float_t xStrip=AliTOFConstants::fgkXPad*(padx-0.5-0.5*AliTOFConstants::fgkNpadX)+Xpad;
1752 Int_t nPlace[4]={0,0,0,0};
1753 nPlace[0]=(padz-1)*AliTOFConstants::fgkNpadX+padx;
1755 Int_t nActivatedPads=0;
1757 Bool_t isFired[4]={kFALSE,kFALSE,kFALSE,kFALSE};
1758 Float_t tofAfterSimul[4]={0.,0.,0.,0.};
1759 Float_t qInduced[4]={0.,0.,0.,0.};
1760 Float_t averageTime=0.;
1763 BorderEffect(zStrip,xStrip,geantTime*1.0e+09,nActivatedPads,nFiredPads,isFired,nPlace,qInduced,tofAfterSimul,averageTime); // simulate edge effect
1767 for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
1768 if(isFired[indexOfPad]){// the pad has fired
1769 if(indexOfPad==0) {// the hit belongs to a fired pad
1771 hitArray[isHitOnFiredPad-1].SetHit(ipart,pdgCode,tofpos,momtof,vr,iFirstHit);
1774 if(vr>fRadiusvtxBound || iFirstHit==0) iNoiseHit=1;
1776 hitArray[isHitOnFiredPad-1].SetNoise(iNoiseHit);
1777 if(iFirstHit) kTOFhitFirst[ipart]=isHitOnFiredPad;
1779 }// close - the hit belongs to a fired pad
1781 Int_t iMapFirstIndex=AliTOFConstants::fgkNSectors*(npixel[1]-1)+npixel[0]-1;
1782 Int_t iMapValue=MapPixels[iMapFirstIndex][npixel[2]-1][nPlace[indexOfPad]-1];
1790 iTOFpixel[ipart]=ipixel;
1793 if(ipixel>fMaxPixels){ // check on the total number of activated pads
1794 cout << "ipixel=" << ipixel << " > fMaxPixels=" << fMaxPixels << endl;
1796 } // close check on the number of activated pads
1798 MapPixels[iMapFirstIndex][npixel[2]-1][nPlace[indexOfPad]-1]=ipixel;
1799 pixelArray[ipixel-1].SetGeom(npixel[0],npixel[1],npixel[2],nPlace[indexOfPad]);
1800 pixelArray[ipixel-1].SetTrack(ipart);
1802 pixelArray[ipixel-1].AddState(1);
1804 if(tofAfterSimul[indexOfPad]<0) cout << "Time of Flight after detector simulation is negative" << endl;
1805 pixelArray[ipixel-1].AddState(10);
1808 pixelArray[ipixel-1].SetTofChargeHit(tofAfterSimul[indexOfPad],qInduced[indexOfPad],geantTime*1.0e+09,isHitOnFiredPad);
1809 } else { //else if(iMapValue==0)
1810 if(indexOfPad==0) iTOFpixel[ipart]=iMapValue;
1811 nMultipleSignOnSamePad++;
1813 if(tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetRealTime() ) {
1814 pixelArray[iMapValue-1].SetTrack(ipart);
1815 // if(indexOfPad==0) pixelArray[iMapValue-1].SetTrack(ipart);
1816 if(indexOfPad) iNoiseHit=1;
1818 pixelArray[iMapValue-1].AddState(1);
1820 pixelArray[iMapValue-1].AddState(10);
1822 pixelArray[iMapValue-1].SetRealTime(tofAfterSimul[indexOfPad]);
1823 pixelArray[iMapValue-1].SetGeantTime(geantTime*1.0e+09);
1824 pixelArray[iMapValue-1].SetHit(isHitOnFiredPad);
1825 } // close if(tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetTime() )
1826 } //end of Pixel filling
1827 } // close if(isFired[indexOfPad])
1828 } //end loop on activated pads indexOfPad
1829 } // close if(nFiredPads)
1830 } //end of hit with npixel[3]!=0
1831 } //high momentum tracks
1833 } //end on primary tracks
1837 cout << ntotalTOFhits << " - total number of TOF hits " << nHitsFromPrimaries << " - primary " << endl;
1838 cout << inoise << " - noise hits, " << inoise2<< " - first crossing of a track with Rvtx>" << fRadiusvtxBound << endl;
1839 // cout << inoise << " - noise hits (" << 100.*inoise/ihit << " %), " << inoise2
1840 //<< " - first crossing of a track with Rvtx>" << RVTXBOUND << endl;
1841 nhitWithoutNoise=isHitOnFiredPad;
1843 cout << ipixel << " fired pixels (" << nMultipleSignOnSamePad << " multiple fired pads, " << endl;
1844 //j << " fired by noise, " << j1 << " noise+track)" << endl;
1845 printf(" %i additional pads are fired due to edge effect\n",nPixEdge);
1846 cout << npions << " primary pions reached TOF" << endl;
1847 cout << nkaons << " primary kaons reached TOF" << endl;
1848 cout << nprotons << " primary protons reached TOF" << endl;
1849 cout << nelectrons<<" primary electrons reached TOF" << endl;
1850 cout << nmuons << " primary muons reached TOF" << endl;
1851 cout << "number of TOF hits for different species: 1-p, 2-K, 3-pi, 4-e, 5-mu, 6-all" << endl;
1852 cout << " first number - track hits, second - noise ones, third - all" << endl;
1853 for (Int_t i=0;i<6;i++) cout << i+1 << " " << particleInTOFtype[i][0] << " " << particleInTOFtype[i][1] << " " << particleInTOFtype[i][2] << endl;
1855 Int_t primaryReachedTOF[6];
1856 primaryReachedTOF[0]=npions;
1857 primaryReachedTOF[1]=nkaons;
1858 primaryReachedTOF[2]=nprotons;
1859 primaryReachedTOF[3]=nelectrons;
1860 primaryReachedTOF[4]=nmuons;
1861 primaryReachedTOF[5]=npions+nkaons+nprotons+nelectrons+nmuons;
1863 cout << " Reading TOF hits done" << endl;
1869 //____________________________________________________________________________
1870 void AliTOFReconstructioner::AddNoiseFromOuter(Option_t *option, Int_t ***MapPixels, AliTOFPad* pixelArray , AliTOFRecHit* hitArray, Int_t& isHitOnFiredPad, Int_t& ipixel)
1873 // Add noise hits from outer regions (forward and backward) according
1874 // to parameterized fZNoise distribution (to be used with events
1875 // generated in the barrel region)
1877 Float_t * zLen = new Float_t[AliTOFConstants::fgkNPlates+1];
1878 Float_t * zStrips = new Float_t[AliTOFConstants::fgkNPlates];
1879 zStrips[0]=(Float_t) (AliTOFConstants::fgkNStripC);
1880 zStrips[1]=(Float_t) (AliTOFConstants::fgkNStripB);
1881 zStrips[2]=(Float_t) (AliTOFConstants::fgkNStripA);
1882 zStrips[3]=(Float_t) (AliTOFConstants::fgkNStripB);
1883 zStrips[4]=(Float_t) (AliTOFConstants::fgkNStripC);
1885 zLen[5]=AliTOFConstants::fgkzlenA*0.5+AliTOFConstants::fgkzlenB+AliTOFConstants::fgkzlenC;
1886 zLen[4]=zLen[5]-AliTOFConstants::fgkzlenC;
1887 zLen[3]=zLen[4]-AliTOFConstants::fgkzlenB;
1888 zLen[2]=zLen[3]-AliTOFConstants::fgkzlenA;
1889 zLen[1]=zLen[2]-AliTOFConstants::fgkzlenB;
1890 zLen[0]=zLen[1]-AliTOFConstants::fgkzlenC;
1893 Int_t isector; // random sector number
1894 Int_t iplate; // random plate number
1895 Int_t istrip; // random strip number in the plate
1896 Int_t ipadAlongX; // random pad number along x direction
1897 Int_t ipadAlongZ; // random pad number along z direction
1899 Int_t nPixEdge=0; // additional pads fired due to edge effect when adding noise from outer
1902 // x -> time of flight given in ns
1903 TF1 *noiseTof = new TF1("noiseTof","exp(-x/20)",0,100);
1905 if(strstr(option,"pp")){
1906 fZnoise = new TF1("fZnoise","257.8-0.178*x-0.000457*x*x",-AliTOFConstants::fgkMaxhZtof,AliTOFConstants::fgkMaxhZtof);
1908 if(strstr(option,"Pb-Pb")){
1909 fZnoise = new TF1("fZnoise","182.2-0.09179*x-0.0001931*x*x",-AliTOFConstants::fgkMaxhZtof,AliTOFConstants::fgkMaxhZtof);
1913 if(fdbg) cout << " Start adding additional noise hits from outer regions" << endl;
1915 for(Int_t i=0;i<fNoise;i++) {
1917 isector=(Int_t) (AliTOFConstants::fgkNSectors*gRandom->Rndm())+1; //the sector number
1918 // non-flat z-distribution of additional hits
1919 Float_t zNoise=fZnoise->GetRandom();
1921 // holes for PHOS and HMPID
1922 if(((AliTOF *) gAlice->GetDetector("TOF"))->IsVersion()==2) {
1923 // to be checked the holes case
1924 if(isector>12 && isector<16) { // sectors 13,14,15 - RICH
1926 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1927 } while (iplate==2 || iplate==3 || iplate==4);
1928 // } else if(isector>11 && isector<17) { // sectors 12,13,14,15,16 - PHOS
1929 } else if(isector>2 && isector<8) { // sectors 3,4,5,6,7 - PHOS
1931 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1932 } while (iplate==3);
1934 iplate=(Int_t) (AliTOFConstants::fgkNPlates*gRandom->Rndm())+1;
1940 } while(zNoise>zLen[iplate]);
1944 if(iplate<1 || iplate>5) {
1945 printf(" iplate<1 or iplate>5, iplate=%i\n",iplate);
1951 for (Int_t i=0;i<iplate-1;i++) {
1952 nStripes += zStrips[i];
1956 istrip=(Int_t)((zNoise-zLen[iplate-1])/((zLen[iplate]-zLen[iplate-1])/zStrips[iplate-1])); //the strip number in the plate
1959 ipadAlongX = (Int_t)(AliTOFConstants::fgkNpadX*gRandom->Rndm())+1;
1960 ipadAlongZ = (Int_t)(AliTOFConstants::fgkNpadZ*gRandom->Rndm())+1;
1961 ipad=(Int_t)(ipadAlongZ-1)*AliTOFConstants::fgkNpadX+ipadAlongX; //the pad number
1963 Float_t xStrip=(ipadAlongX-1)*AliTOFConstants::fgkXPad+AliTOFConstants::fgkXPad*gRandom->Rndm()-0.5*AliTOFConstants::fgkNpadX*AliTOFConstants::fgkXPad;//x-coor.in the strip frame
1964 Float_t zStrip=(ipadAlongZ-1)*AliTOFConstants::fgkZPad+AliTOFConstants::fgkZPad*gRandom->Rndm()-0.5*AliTOFConstants::fgkNpadZ*AliTOFConstants::fgkZPad;//z-coor.in the strip frame
1966 Int_t nPlace[4]={0,0,0,0};
1969 Int_t nActivatedPads=0;
1971 Bool_t isFired[4]={kFALSE,kFALSE,kFALSE,kFALSE};
1972 Float_t tofAfterSimul[4]={0.,0.,0.,0.};
1973 Float_t qInduced[4]={0.,0.,0.,0.};
1974 Float_t averageTime=0.;
1975 Float_t toffornoise=10.+noiseTof->GetRandom(); // 10 ns offset + parameterization [ns]
1977 BorderEffect(zStrip,xStrip,toffornoise,nActivatedPads,nFiredPads,isFired,nPlace,qInduced,tofAfterSimul,averageTime); // simulate edge effect
1980 for(Int_t indexOfPad=0; indexOfPad<nActivatedPads; indexOfPad++) {
1981 if(isFired[indexOfPad]){// the pad has fired
1983 if(indexOfPad==0) {// the hit belongs to a fired pad
1985 hitArray[isHitOnFiredPad-1].SetX(0.);
1986 hitArray[isHitOnFiredPad-1].SetY(0.);
1987 hitArray[isHitOnFiredPad-1].SetZ(zNoise);
1988 hitArray[isHitOnFiredPad-1].SetNoise(1);
1989 } // close if(indexOfPad==0)
1991 ipad = nPlace[indexOfPad];
1993 Int_t iMapValue=MapPixels[AliTOFConstants::fgkNSectors*(iplate-1)+isector-1][istrip-1][ipad-1];
1997 if(indexOfPad) nPixEdge++;
1998 MapPixels[AliTOFConstants::fgkNSectors*(iplate-1)+isector-1][istrip-1][ipad-1]=ipixel;
1999 pixelArray[ipixel-1].SetGeom(isector,iplate,istrip,ipad);
2000 pixelArray[ipixel-1].AddState(1);
2001 pixelArray[ipixel-1].SetRealTime(tofAfterSimul[indexOfPad]);
2002 pixelArray[ipixel-1].SetHit(isHitOnFiredPad);
2003 } else if( tofAfterSimul[indexOfPad] < pixelArray[iMapValue-1].GetRealTime() ) {
2004 pixelArray[iMapValue-1].SetTrack(-1);
2005 pixelArray[iMapValue-1].AddState(1);
2006 pixelArray[iMapValue-1].SetRealTime(tofAfterSimul[indexOfPad]);
2007 pixelArray[iMapValue-1].SetHit(isHitOnFiredPad);
2008 } //end of if(iMapValue==0)
2010 }// close if(isFired[indexOfPad])
2011 } //end loop on activated pads indexOfPad
2012 } // close if(nFiredPads)
2013 } //end of NOISE cycle
2029 Int_t nNoiseSignals=0;
2031 for(Int_t idummy=1; idummy<ipixel+1; idummy++) {
2032 if(hitArray[pixelArray[idummy-1].GetHit()-1].GetNoise()==1) {
2034 if(pixelArray[idummy-1].GetState()>10) nAll++;
2039 cout << " after adding " << fNoise << " noise hits: " << ipixel << " fired pixels (" << nNoiseSignals << " fired by noise, " << nAll << " noise+track)" << endl;
2040 printf(" %i additional pixels are fired by noise due to edge effect\n",nPixEdge);
2041 cout << " End of adding additional noise hits from outer regions" << endl;
2045 // numberOfPads for AliTOFV4 (Full coverage)
2046 // - to be upgraded checking the used TOF version -
2047 Float_t numberOfPads=AliTOFConstants::fgkPadXSector*AliTOFConstants::fgkNSectors;
2048 occupancy=100.*ipixel/numberOfPads; // percentage of fired pads
2049 printf(" Overall TOF occupancy (percentage of fired pads after adding noise) = %f\n",occupancy);
2056 //____________________________________________________________________________
2057 void AliTOFReconstructioner::SetMinDistance(AliTOFRecHit* hitArray, Int_t ilastEntry)
2060 // Set the distance to the nearest hit for hitArray
2061 // ilastEntry is the index of the last entry of hitArray
2063 // starting the setting for the distance to the nearest TOFhit (cm)
2064 for(Int_t i=0; i<ilastEntry; i++) {
2066 if(hitArray[i].GetFirst()==1 && hitArray[i].GetNoise()==0) { // select the first hit of the track
2067 // hits are not due to noise
2068 Float_t minDistance=10000.,squareDistance; // current values of the (square) distance
2069 Int_t jAtMin=0; // index of the hit nearest to the i-th hit
2070 Float_t xhit=hitArray[i].X(); // x coordinate for i-th hit
2071 Float_t yhit=hitArray[i].Y(); // y coordinate for i-th hit
2072 Float_t zhit=hitArray[i].Z(); // z coordinate for i-th hit
2073 // was for(Int_t j=0; j<isHitOnFiredPad; j++) {
2074 for(Int_t j=0; j<ilastEntry; j++) {
2076 squareDistance=(hitArray[j].X()-xhit)*(hitArray[j].X()-xhit)+
2077 (hitArray[j].Y()-yhit)*(hitArray[j].Y()-yhit)+
2078 (hitArray[j].Z()-zhit)*(hitArray[j].Z()-zhit);
2079 if(squareDistance<minDistance) {
2080 minDistance=squareDistance;
2085 minDistance=TMath::Sqrt(minDistance);
2086 hitArray[i].SetRmin(minDistance);
2087 if(minDistance==0.) printf(" Rmin=0, i=%i, j=%i, x=%f,y=%f,z=%f\n",i,jAtMin,xhit,yhit,zhit);// it cannot happen
2093 // these lines has to be commented till TPC will provide fPx fPy fPz
2094 // and fL in AliTPChit class
2095 //____________________________________________________________________________
2097 void AliTOFReconstructioner::ReadTPCHits(Int_t ntracks, TTree* treehits, TClonesArray* tpchits, Int_t* iTrackPt, Int_t* iparticle, Float_t* ptTrack, AliTOFTrack* trackArray, Int_t& itrack)
2100 // Read TPC hits for the current event
2102 TParticle *particle=0;
2103 Int_t npions=0; // number of pions for the current event
2104 Int_t nkaons=0; // number of kaons for the current event
2105 Int_t nprotons=0; // number of protons for the current event
2106 Int_t nelectrons=0;// number of electrons for the current event
2107 Int_t nmuons=0; // number of muons for the current event
2108 Int_t ntotalTPChits=0; // total number of TPC hits for the current event
2109 Int_t idummy=-1; // dummy var used to count double hit TPC cases
2110 Int_t nTpcDoubleHitsLastRow=0; // number of double TPC hits in the last pad row
2111 Int_t nTpcHitsLastRow=0; // number of TPC hits in the last pad row
2112 Float_t trdpos[2]={0.,0.};
2113 Float_t pos[3]; // TPC hit position
2114 Float_t mom[3]; // momentum components in the last TPC row
2115 Float_t pt=0., tpclen; // pt: transverse momentum in the last TPC row
2117 Int_t ipart=0, nhits=0, iprim=0;
2119 itrack=0; // itrack: total number of selected TPC tracks
2121 // speed-up the code
2122 treehits->SetBranchStatus("*",0); // switch off all branches
2123 treehits->SetBranchStatus("TPC*",1); // switch on only TPC
2125 for (Int_t track=0; track<ntracks;track++) {
2126 gAlice->ResetHits();
2127 nbytes += treehits->GetEvent(track);
2130 nhits = tpchits->GetEntriesFast();
2132 for (Int_t hit=0;hit<nhits;hit++) {
2134 AliTPChit* tpcHit = (AliTPChit*)tpchits->UncheckedAt(hit);
2135 Int_t row = tpcHit->fPadRow;
2136 ipart = tpcHit->GetTrack();
2137 if(ipart>=fMaxAllTracks) break;
2138 particle = (TParticle*)gAlice->Particle(ipart);
2139 Int_t pdgCode=particle->GetPdgCode();
2140 // only high momentum tracks
2141 // momentum components at production vertex
2142 Float_t pxvtx = particle->Px();
2143 Float_t pyvtx = particle->Py();
2144 Float_t pzvtx = particle->Pz();
2145 Float_t pvtx = TMath::Sqrt(pxvtx*pxvtx+pyvtx*pyvtx+pzvtx*pzvtx);
2146 if(pvtx>fPBound && row == fLastTPCRow) {
2147 Float_t vx = particle->Vx();
2148 Float_t vy = particle->Vy();
2149 Float_t vr = TMath::Sqrt(vx*vx+vy*vy);
2150 Float_t x = tpcHit->X();
2151 Float_t y = tpcHit->Y();
2152 Float_t z = tpcHit->Z();
2153 pos[0]=x; pos[1]=y; pos[2]=z;
2155 Float_t pxtpc = tpcHit->fPx;
2156 Float_t pytpc = tpcHit->fPy;
2157 Float_t pztpc = tpcHit->fPz;
2158 mom[0]=pxtpc; mom[1]=pytpc; mom[2]=pztpc;
2159 Float_t momtpc = TMath::Sqrt(pxtpc*pxtpc+pytpc*pytpc+pztpc*pztpc);
2161 if(x*pxtpc+y*pytpc>0) { // only tracks going out of TPC
2163 Float_t isoutgoing = x*pxtpc+y*pytpc+z*pztpc;
2164 isoutgoing /= (momtpc*TMath::Sqrt(x*x+y*y+z*z));
2165 tpclen = tpcHit->fL;
2169 if(particle->GetFirstMother() < 0) {
2170 Int_t abspdgCode=TMath::Abs(pdgCode);
2171 switch (abspdgCode) {
2188 } // close if(particle->GetFirstMother() < 0)
2189 } // close if(ipart!=idummy)
2191 if(gRandom->Rndm()<fTrackingEfficiency && vr<fRadiusvtxBound && ipart!=idummy) {
2194 if(particle->GetFirstMother() < 0) iprim++;
2196 if(itrack>fMaxTracks) {
2197 cout << "itrack=" << itrack << " > MAXTRACKS=" << fMaxTracks << endl;
2199 } // close if(itrack>fMaxTracks)
2202 iparticle[ipart]=itrack;
2204 trackArray[itrack-1].SetTrack(ipart,pvtx,pdgCode,tpclen,pos,mom,trdpos);
2206 pt=TMath::Sqrt(pxtpc*pxtpc+pytpc*pytpc); // pt: transverse momentum at TPC
2207 // Filling iTrackPt[MAXTRACKS] by itrack ordering on Pt
2209 iTrackPt[itrack-1]=itrack;
2210 ptTrack[itrack-1]=pt;
2212 for (Int_t i=0; i<itrack-1; i++) {
2214 for(Int_t j=i; j<itrack-1; j++) {
2215 Int_t k=itrack-1+i-j;
2216 iTrackPt[k]= iTrackPt[k-1];
2217 ptTrack[k] = ptTrack[k-1];
2224 iTrackPt[itrack-1]=itrack;
2225 ptTrack[itrack-1]=pt;
2231 if(vr>fRadiusvtxBound) nTpcHitsLastRow++;
2232 if(ipart==idummy) nTpcDoubleHitsLastRow++;
2234 } // close if(x*px+y*py>0)
2235 } // close if(pvtx>fPBound && row == fLastTPCRow)
2237 } // close loop on tracks
2241 cout << ntotalTPChits << " TPC hits in the last TPC row " << fLastTPCRow << endl;
2242 cout << " " << nTpcHitsLastRow << " - hits with Rvtx>fRadiusvtxBound=" << fRadiusvtxBound << endl;
2243 cout << " " << nTpcDoubleHitsLastRow << " double TPC hits" << endl;
2244 cout << itrack << " - extracted TPC tracks " << iprim << " - primary" << endl;
2245 cout << npions << " primary pions reached TPC" << endl;
2246 cout << nkaons << " primary kaons reached TPC" << endl;
2247 cout << nprotons << " primary protons reached TPC" << endl;
2248 cout << nelectrons<< " primary electrons reached TPC" << endl;
2249 cout << nmuons << " primary muons reached TPC" << endl;
2252 Int_t primaryInTPC[6]={0,0,0,0,0,0};
2253 primaryInTPC[0]=npions;
2254 primaryInTPC[1]=nkaons;
2255 primaryInTPC[2]=nprotons;
2256 primaryInTPC[3]=nelectrons;
2257 primaryInTPC[4]=nmuons;
2258 primaryInTPC[5]=npions+nkaons+nprotons+nelectrons+nmuons;
2261 printf(" contents of iTrackPt[MAXTRACKS],PtTrack[MAXTRACKS]\n");
2262 for (Int_t i=0; i<itrack; i++) {
2263 printf(" %i : iTrackPt=%i, PtTrack=%f\n",i+1,iTrackPt[i],ptTrack[i]);
2265 printf(" Check ordered transverse momentum array\n");
2266 for (Int_t i=itrack-1; i>=0; i--) {
2267 printf(" %i : iTrackPt=%i, PtTrack=%f\n",i+1,iTrackPt[i],ptTrack[i]);
2273 //____________________________________________________________________________
2274 void cylcor(Float_t& x, Float_t& y) {
2277 rho=TMath::Sqrt(x*x+y*y);
2279 if(TMath::Abs(x)>0. || TMath::Abs(y)>0.) phi=TMath::ATan2(y,x);
2280 if(phi<0.) phi=phi+2.*TMath::Pi();
2286 //____________________________________________________________________________
2287 void AliTOFReconstructioner::Matching(AliTOFTrack* trackArray, AliTOFRecHit* hitArray, Int_t ***mapPixels, AliTOFPad* pixelArray, Int_t* kTOFhitFirst, Int_t& ipixel, Int_t* iTrackPt, Int_t* iTOFpixel, Int_t ntotTpcTracks)
2289 Int_t TestTracks,iTestTrack,itest,wPixel=0,itestc;
2290 Int_t * ntest = new Int_t[fMaxTestTracks];
2291 Int_t * testPixel = new Int_t[fMaxTestTracks];
2292 Float_t wLength=0.,wRho=0.,wZ=0.;
2293 Float_t * testLength = new Float_t[fMaxTestTracks];
2294 Float_t * testRho = new Float_t[fMaxTestTracks];
2295 Float_t * testZ = new Float_t[fMaxTestTracks];
2297 Float_t * testWeight = new Float_t[fMaxTestTracks];
2298 Float_t rotationFactor,phi0,coslam,sinlam,helixRadius,xHelixCenter,yHelixCenter,zHelixCenter,helixFactor;
2299 Int_t npixel[5],iMapValue,iwork1,iwork2,iwork3,iwork4,ihit=0;
2300 Int_t charge[48]={ 0, 1,-1, 0, 1,-1, 0, 1,-1, 0,
2301 1,-1, 0, 1,-1, 0, 0, 0, 1, 0,
2302 -1, 0,-1,-1, 0, 0,-1, 0, 1, 0,
2303 1, 1, 0, 0, 1,-1, 0, 0, 1,-1,
2304 1, 1,-1, 0, 1, 1, 2, 0};
2305 Float_t theta0,gpx,gpy,gpz,gp,gpt,gtheta,gx,gy,gz,gr,gxLast,gyLast,gzLast,chargeField;
2306 Float_t sumOfTheta=0.,weightTestTracksOutTof[4];
2307 Float_t s,ds,xRespectToHelixCenter,yRespectToHelixCenter,deltaRadius,fp,xp,yp,grho;
2308 Float_t mass,energy,g;
2309 Int_t itrack=0,itr,particleCharge,istep,iplate=0,iPadAlongX=0;
2310 Int_t itra,t34=0,t32=0,t44=0,t43=0,t42=0;
2311 Int_t wstate=0,m2state=0,wPix;
2312 Int_t idelR=0,idelR1=0,idelR2=0,iRmin=0,iRmin1=0,iRmin2=0;
2313 Float_t massArray[50] = {0.0,0.00051,0.00051,0.0,0.1057,0.1057,0.135,0.1396,0.1396,0.4977,
2314 0.4936,0.4936,0.9396,0.9383,0.9383,0.4977,0.5488,1.1156,1.1894,1.1926,1.1926,
2315 1.3149,1.3213,1.6724,0.9396,1.1156,1.1894,1.1926,1.1974,1.3149,
2316 0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.};
2318 Float_t radius,area,normR,normS,cosAngl;
2319 Int_t iPlateFirst,iTestGmax=0;
2320 Int_t fstate,iPrintM1=0,iPrintM2=0;
2321 Float_t gxExtrap=0.,gyExtrap=0.,gzExtrap=0.;
2322 Float_t avSigZ=0,avSigRPHI=0,avSigP=0,avSigPHI=0,avSigTHETA=0;
2324 Float_t gxW,gyW,gzW;
2327 Int_t indexOfTestTrack;
2329 Int_t istate=0,imax=0,match,iMaxTestTracksOutTof=0,matchw;
2330 Float_t w,wmax=0.,inverseOfParticleSpeed,w2,smat[9],largestWeightTracksOutTof,sw;
2331 Float_t sumWeightTracksOutTof,sGeomWeigth;
2333 Int_t m10=0,m20=0,m22=0,m23=0;
2335 TParticle *particle;
2339 printf(" itr=%i\n",itr);
2340 for (itra=1; itra<itr+1; itra++) {
2342 Int_t itrack=iTrackPt[itra-1];
2343 if(itrack==0) printf(" iTrackPt[itra-1]=0 for itra=%i\n",itra);
2344 Int_t ipart=trackArray[itrack-1].GetTrack();
2345 Float_t pvtx=trackArray[itrack-1].GetP();
2346 Int_t pdgCode=trackArray[itrack-1].GetPdgCode();
2347 Float_t tpclength=trackArray[itrack-1].GetlTPC();
2348 Float_t x=trackArray[itrack-1].GetRxTPC();
2349 Float_t y=trackArray[itrack-1].GetRyTPC();
2350 Float_t z=trackArray[itrack-1].GetRzTPC();
2359 Float_t px=trackArray[itrack-1].GetPxTPC();
2360 Float_t py=trackArray[itrack-1].GetPyTPC();
2361 Float_t pz=trackArray[itrack-1].GetPzTPC();
2367 Float_t p = TMath::Sqrt(px*px+py*py+pz*pz);
2371 Float_t rho = TMath::Sqrt(x*x+y*y);
2373 if(TMath::Abs(x)>0. || TMath::Abs(y)>0.) phi=TMath::ATan2(y,x);
2374 if(phi<0.) phi=phi+2.*TMath::Pi();
2376 Float_t phiTPC=phi*kRaddeg;
2379 if(p==0) printf(" p=%f in g=0.022/p\n",p);
2381 avSigRPHI += g; // (cm)
2382 if(rho==0) printf(" rho=%f in phi += g*gRandom->Gaus()/rho\n",rho);
2383 phi += g*gRandom->Gaus()/rho;
2385 if(rho==0) printf(" rho=%f in phi += (SIGMARPHI*gRandom->Gaus()/rho\n",rho);
2386 phi += (fSigmarphi*gRandom->Gaus()/rho);
2388 x=rho*TMath::Cos(phi);
2389 y=rho*TMath::Sin(phi);
2394 if(p==0) printf(" p=%f in g=0.0275/p\n",p);
2396 avSigZ += g; // (cm)
2397 z += g*gRandom->Gaus();
2399 z += fSigmaZ*gRandom->Gaus();
2402 // smearing on TPC momentum
2405 Float_t pmom,phi,theta,arg;
2407 pmom=TMath::Sqrt(px*px+py*py+pz*pz);
2409 if(TMath::Abs(px)>0. || TMath::Abs(py)>0.) phi=TMath::ATan2(py,px);
2410 if(phi<0.) phi=phi+2*TMath::Pi();
2412 if(pmom>0.) arg=pz/pmom;
2414 if(TMath::Abs(arg)<=1.) theta=TMath::ACos(arg);
2417 if(pmom<=0) printf(" pmom=%f in g = TMath::Abs(TMath::Log(pmom)/TMath::Log(10)+0.5)/0.7\n",pmom);
2418 g = TMath::Abs(TMath::Log(pmom)/TMath::Log(10)+0.5)/0.7;
2419 g = 0.01*(g*g*g+1.5)*1.24;
2421 pmom *= (1+g*gRandom->Gaus());
2424 if(pmom<=0) printf(" pmom=%f in g = 1-TMath::Log(pmom)/TMath::Log(10)\n",pmom);
2425 g = 1-TMath::Log(pmom)/TMath::Log(10);
2426 g = 0.001*(g*g*g+0.3)*0.65; // (radian)
2431 phi += g*gRandom->Gaus();
2433 theta += g*gRandom->Gaus();
2436 pmom *= (1+fSigmap*gRandom->Gaus());
2437 phi += fSigmaPhi*gRandom->Gaus();
2438 theta += fSigmaTheta*gRandom->Gaus();
2444 px=pmom*TMath::Sin(theta)*TMath::Cos(phi);
2445 py=pmom*TMath::Sin(theta)*TMath::Sin(phi);
2446 pz=pmom*TMath::Cos(theta);
2456 }// if(x*px+y*py<=0)
2459 p = TMath::Sqrt(px*px+py*py+pz*pz);
2461 particleCharge=charge[PDGtoGeantCode(pdgCode)-1];
2462 mass=massArray[PDGtoGeantCode(pdgCode)-1];
2463 mass=massArray[8-1]; //we take pion mass for all tracks
2464 // mass=massArray[14-1]; //here we take proton mass for all tracks
2465 energy=TMath::Sqrt(p*p+mass*mass);
2466 chargeField=particleCharge*fField;
2468 g=fRadLenTPC/( (x*px+y*py)/(rho*p) );
2470 if(g<=0) printf(" error, g<=0: g=%f, itra=%i, x,y,px,py=%f, %f, %f, %f\n",g,itra,x,y,px,py);
2472 theta0=13.6*0.001*TMath::Sqrt(g)*(1.+0.038*TMath::Log(g))*energy/(p*p);
2475 // start Loop on test tracks
2477 for(Int_t i=0;i<4;i++) {
2478 weightTestTracksOutTof[i]=0.;
2482 for(Int_t i=0;i<fMaxTestTracks;i++) {
2498 for (indexOfTestTrack=0; indexOfTestTrack<fMaxTestTracks; indexOfTestTrack++) {
2505 if(indexOfTestTrack) {
2507 EpMulScatt(gpx,gpy,gpz,gp,gtheta);
2513 weight=TMath::Exp(-gtheta*gtheta/(2*theta0*theta0));
2514 sumOfTheta += gtheta;
2516 // ==========================================================
2517 // Calculate crossing of the track in magnetic field with cylidrical surface
2518 // of radius RTOFINNER
2519 // chargeField = qB, where q is a charge of a particle in units of e,
2520 // B is magnetic field in tesla
2521 // see 3.3.1.1. in the book "Data analysis techniques for
2522 // high-energy physics experiments", edited by M.Regler
2523 // in Russian: "Metody analiza dannykh v fizicheskom eksperimente"
2524 // Moskva, "Mir", 1993. ctr.306
2526 // Initial constants
2528 if(chargeField<0.) rotationFactor=-1.;
2529 rotationFactor=-rotationFactor;
2533 phi0 -= rotationFactor*TMath::Pi()*0.5;
2537 // helixRadius=100.*gpt/TMath::Abs(0.299792458*chargeField);
2538 helixRadius=100.*gpt/TMath::Abs(AliTOFConstants::fgkSpeedOfLight*chargeField);
2539 xHelixCenter=x-helixRadius*TMath::Cos(phi0);
2540 yHelixCenter=y-helixRadius*TMath::Sin(phi0);
2542 helixFactor=rotationFactor*coslam/helixRadius;
2544 // Solves the equation f(s)=r(s)-RTOFINNER=0 by the Newton's method:
2547 s=AliTOFConstants::fgkrmin-TMath::Sqrt(x*x+y*y);;
2550 xRespectToHelixCenter=helixRadius*TMath::Cos(phi0+s*helixFactor);
2551 yRespectToHelixCenter=helixRadius*TMath::Sin(phi0+s*helixFactor);
2552 gx=xHelixCenter+xRespectToHelixCenter;
2553 gy=yHelixCenter+yRespectToHelixCenter;
2554 gr=TMath::Sqrt(gx*gx+gy*gy);
2555 deltaRadius=gr-AliTOFConstants::fgkrmin;
2556 xp=-helixFactor*yRespectToHelixCenter;
2557 yp= helixFactor*xRespectToHelixCenter;
2558 fp=(gx*xp+gy*yp)/gr;
2565 } while (TMath::Abs(ds)>0.01);
2568 if(istep==0) goto end;
2570 // Steps along the circle till a pad
2577 gxLast=xHelixCenter+helixRadius*TMath::Cos(phi0+s*helixFactor);
2578 gyLast=yHelixCenter+helixRadius*TMath::Sin(phi0+s*helixFactor);
2579 gzLast=zHelixCenter+s*sinlam;
2585 gx=xHelixCenter+helixRadius*TMath::Cos(phi0+s*helixFactor);
2586 gy=yHelixCenter+helixRadius*TMath::Sin(phi0+s*helixFactor);
2587 gz=zHelixCenter+s*sinlam;
2588 rho=TMath::Sqrt(gx*gx+gy*gy);
2590 IsInsideThePad(gMC,gx,gy,gz,npixel,zPad,xPad);
2592 iplate += npixel[1];
2593 iPadAlongX += npixel[4];
2595 if(indexOfTestTrack==0 && iplate && iPlateFirst==0) {
2600 area=TMath::Pi()*radius*radius;
2601 normR=TMath::Sqrt(gx*gx+gy*gy);
2602 normS=TMath::Sqrt((gx-gxLast)*(gx-gxLast)+
2603 (gy-gyLast)*(gy-gyLast)+
2604 (gz-gzLast)*(gz-gzLast));
2606 cosAngl=(gx*(gx-gxLast)+gy*(gy-gyLast))/(normR*normS);
2607 if(cosAngl<0) printf(" cosAngl<0: gx=%f,gy=%f, gxLast=%f,gyLast=%f,gzLast=%f\n",gx,gy,gxLast,gyLast,gzLast);
2610 TestTracks=(Int_t) (2*area/(AliTOFConstants::fgkXPad * AliTOFConstants::fgkZPad));
2612 if(TestTracks<12) TestTracks=12;
2614 // Angles of entering into the TOF plate
2617 if(TMath::Abs(gz)>300) {
2619 } else if(TMath::Abs(gz)>200) {
2621 } else if(TMath::Abs(gz)>100) {
2623 } else if(TMath::Abs(gz)>0) {
2628 } // end of if(indexOfTestTrack==0 && iplate && iPlateFirst==0)
2636 // iwork4=npixel[3];
2637 iwork4=(npixel[3]-1)*AliTOFConstants::fgkNpadX+npixel[4];
2639 Int_t ifirstindex=AliTOFConstants::fgkNSectors*(npixel[1]-1)+npixel[0];
2640 iMapValue=mapPixels[ifirstindex-1][iwork3-1][iwork4-1];
2643 if(ipixel>fMaxPixels) {
2644 cout << "ipixel=" << ipixel << " > MAXPIXELS=" << fMaxPixels << endl;
2647 mapPixels[ifirstindex-1][iwork3-1][iwork4-1]=ipixel;
2648 pixelArray[ipixel-1].SetGeom(iwork1,iwork2,iwork3,iwork4);
2653 wLength=tpclength+s;
2657 ihit=kTOFhitFirst[ipart];
2660 if(indexOfTestTrack==0) {
2663 delR=TMath::Sqrt((gx-hitArray[ihit-1].X())*(gx-hitArray[ihit-1].X())+
2664 (gy-hitArray[ihit-1].Y())*(gy-hitArray[ihit-1].Y())+
2665 (gz-hitArray[ihit-1].Z())*(gz-hitArray[ihit-1].Z()));
2669 if(delR>hitArray[ihit-1].GetRmin()) iRmin++;
2674 delR=TMath::Sqrt((gx-gxExtrap)*(gx-gxExtrap)+
2675 (gy-gyExtrap)*(gy-gyExtrap)+
2676 (gz-gzExtrap)*(gz-gzExtrap));
2682 } //end of npixel[4]
2694 } while(rho<AliTOFConstants::fgkrmax); //end of do
2700 istep=-3; // holes in TOF
2703 if(TMath::Abs(gz)<AliTOFConstants::fgkMaxhZtof) {
2704 // if(TMath::Abs(gz)<MAXZTOF2) {
2705 istep=-2; // PHOS and RICH holes or holes in between TOF plates
2707 istep=-1; // out of TOF on z-size
2716 testPixel[itest-1]=wPixel;
2717 testLength[itest-1]=wLength;
2718 testRho[itest-1]=wRho;
2720 testWeight[itest-1]=weight;
2723 for(Int_t i=0;i<itest;i++) {
2725 if(testPixel[i]==wPixel) {
2728 testLength[i] += wLength;
2731 testWeight[i] += weight;
2738 testPixel[itest-1]=wPixel;
2739 testLength[itest-1]=wLength;
2740 testRho[itest-1]=wRho;
2742 testWeight[itest-1]=weight;
2749 if(fMatchingStyle==1) {
2750 if(istep>-4 && istep<1) weightTestTracksOutTof[-istep] ++;
2752 if(istep>-4 && istep<1) weightTestTracksOutTof[-istep] += weight;
2755 if(fMatchingStyle==2) {
2756 if(indexOfTestTrack==0 && istep==0) break;
2757 if(indexOfTestTrack+1==TestTracks) break;
2760 } //end of indexOfTestTrack
2762 snr += (Float_t) (indexOfTestTrack+1);
2764 // Search for the "hole" with the largest weigth
2765 largestWeightTracksOutTof=0.;
2766 sumWeightTracksOutTof=0.;
2767 for(Int_t i=0;i<4;i++) {
2768 w=weightTestTracksOutTof[i];
2769 sumWeightTracksOutTof += w;
2770 if(w>largestWeightTracksOutTof) {
2771 largestWeightTracksOutTof=w;
2772 iMaxTestTracksOutTof=i;
2778 for(Int_t i=0;i<itest;i++) {
2779 testLength[i] /= ntest[i];
2780 testRho[i] /= ntest[i];
2781 testZ[i] /= ntest[i];
2783 // Search for the pixel with the largest weigth
2788 for(Int_t i=0;i<itest;i++) {
2789 istate=pixelArray[testPixel[i]-1].GetState();
2795 if(fMatchingStyle==1) {
2796 sGeomWeigth += ntest[i];
2797 w=(fpadefficiency*fstate+(1.-fpadefficiency)*(1-fstate))*ntest[i];
2798 if(pixelArray[testPixel[i]-1].GetTrackMatched()>0) w *= 0.1;
2800 sGeomWeigth += testWeight[i];
2801 w=(fpadefficiency*fstate+(1.-fpadefficiency)*(1-fstate))*testWeight[i];
2802 if(pixelArray[testPixel[i]-1].GetTrackMatched()>0) w *= 0.1;
2805 // weighting according to the Pulse Height (we use the square of weight)
2806 // if (fChargeFactorForMatching) w *= (pixelArray[testPixel[i]-1].GetCharge())*(pixelArray[testPixel[i]-1].GetCharge());
2807 if (fChargeFactorForMatching && fstate==1) w *= (pixelArray[testPixel[i]-1].GetCharge())*(pixelArray[testPixel[i]-1].GetCharge());
2815 wPixel=testPixel[imax];
2816 wLength=testLength[imax];
2817 istate=pixelArray[wPixel-1].GetState();
2819 //Choose the TOF dead space
2820 // if(istate==0 && largestWeightTracksOutTof>wmax) {
2821 // if(istate==0 && largestWeightTracksOutTof>=sw) {
2822 if(istate==0 && sumWeightTracksOutTof>sGeomWeigth) {
2830 // Set for MyTrack: Pixel
2831 trackArray[itrack-1].SetPixel(wPixel);
2833 istate=pixelArray[wPixel-1].GetState();
2837 // Set for MyTrack: Pixel, Length, TOF, MassTOF
2839 //time=pixelArray[wPixel-1].GetTime();
2840 time=pixelArray[wPixel-1].GetRealTime();
2841 trackArray[itrack-1].SetLength(wLength);
2842 trackArray[itrack-1].SetTof(time);
2844 inverseOfParticleSpeed=time/wLength;
2845 //w=900.*inverseOfParticleSpeed*inverseOfParticleSpeed-1.;
2846 w=(100.*AliTOFConstants::fgkSpeedOfLight)*(100.*AliTOFConstants::fgkSpeedOfLight)*inverseOfParticleSpeed*inverseOfParticleSpeed-1.;
2848 Float_t squareMass=w2*w;
2849 mass=TMath::Sqrt(TMath::Abs(squareMass));
2850 if(w<0.) mass=-mass;
2852 trackArray[itrack-1].SetMassTOF(mass);
2854 // Set for MyTrack: Matching
2856 // if(ipart==pixelArray[wPixel-1].GetTrack()) match=3;
2857 if( (ipart==pixelArray[wPixel-1].GetTrack()) && hitArray[pixelArray[wPixel-1].GetHit()-1].GetNoise()==0)match=3;
2858 imatched=pixelArray[wPixel-1].GetTrackMatched();
2859 // Set for TOFPixel the number of matched track
2860 pixelArray[wPixel-1].SetTrackMatched(itrack);
2863 matchw=trackArray[imatched-1].GetMatching();
2864 if(match==3 && matchw==4) t34++;
2865 if(match==3 && matchw==2) t32++;
2866 if(match==4 && matchw==4) t44++;
2867 if(match==4 && matchw==3) t43++;
2868 if(match==4 && matchw==2) t42++;
2869 if(iTOFpixel[ipart]==0 || iTOFpixel[trackArray[imatched-1].GetTrack()]==0) {
2871 } else if(iTOFpixel[ipart]==iTOFpixel[trackArray[imatched-1].GetTrack()]) {
2875 wPix=iTOFpixel[ipart];
2876 if(PRINT && iPrintM1==10 && iPrintM2<10) {
2878 printf("*** test print for tracks matched with the pixel for with we had matched track\n");
2881 printf(" m=2: ipart=%i, pdgCode=%i, p=%f, theta0=%f, %i Pixel(LP=%i,SP=%i,P=%i) \n",
2882 ipart,pdgCode,p,theta0,wPix,
2883 pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel());
2884 printf(" mat=%i, %i Pixel(LP=%i,SP=%i,P=%i), Test(n=%i,i=%i,w=%f,z=%f), wst=%i \n",
2886 pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetPixel(),
2887 itest,imax,wmax,testZ[imax],wstate);
2889 for(Int_t i=0;i<itest;i++) {
2891 istat=pixelArray[wPix-1].GetState();
2893 if(istat>0) fstat=1;
2894 w=(fpadefficiency*fstat+(1.-fpadefficiency)*(1-fstat))*ntest[i];
2896 printf(" %i: %i Pixel(LP=%i,SP=%i,P=%i), istat=%i, ntest=%i, w=%f\n",i+1,
2897 wPix,pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel(),
2900 printf(" mat=%i, %i Pixel \n",matchw,trackArray[imatched-1].GetPad());
2903 if(wstate>1) m2state++;
2906 trackArray[imatched-1].SetMatching(match);
2911 } else { //else if(istate)
2914 if(iTOFpixel[ipart]==0) m10++;
2915 if(PRINT && iPrintM1<10) {
2917 wPix=iTOFpixel[ipart];
2920 printf("*** test print for tracks fired a pixel but matched with non-fired pixel\n");
2923 printf(" m=1: itra=%i,ipart=%i, pdgCode=%i, p=%f, theta0=%f, %i Pixel(LP=%i,SP=%i,P=%i) \n",
2924 itra,ipart,pdgCode,p,theta0,wPix,
2925 pixelArray[wPix-1].GetSector(),pixelArray[wPix-1].GetPlate(),pixelArray[wPix-1].GetPixel());
2926 printf(" mat=%i, %i Pixel(LP=%i,SP=%i,P=%i), Test(n=%i,i=%i,w=%f,z=%f), wst=%i \n",
2928 pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetPixel(),
2929 itest,imax,wmax,testZ[imax],wstate);
2932 } //end if(PRINT && iPrintM1<10)
2937 match=-1-iMaxTestTracksOutTof;
2941 trackArray[itrack-1].SetMatching(match);
2942 // if(iTestGmax==1) hMTT->Fill(match);
2945 sumOfTheta /= iTestTrack;
2951 if(iTOFpixel[ipart] && match!=3) {
2952 particle = (TParticle*)gAlice->Particle(ipart); //for V3.05
2954 printf(" ipixel=%i (Sector=%i, Plate=%i, Strip=%i, Pixel=%i), fired by %i track\n",iTOFpixel[ipart],pixelArray[iTOFpixel[ipart]-1].GetSector(),pixelArray[iTOFpixel[ipart]-1].GetPlate(),pixelArray[iTOFpixel[ipart]-1].GetStrip(),pixelArray[iTOFpix
2955 el[ipart]-1].GetPixel(),pixelArray[iTOFpixel[ipart]-1].GetTrack());
2956 printf(" indexOfTestTrack=%i itest=%i weightTestTracksOutTof[4]=%f weightTestTracksOutTof[2]=%f weightTestTracksOutTof[1]=%f weightTestTracksOutTof[0]=%f\n",indexOfTestTrack,itest,weightTestTracksOutTof[3],weightTestTracksOutTof[2],weightTestTracksOu
2957 tTof[1],weightTestTracksOutTof[0]);
2960 printf(" take ipixel=%i (Sector=%i, Plate=%i, Strip=%i, Pixel=%i), (fired by %i track), match=%i\n",wPixel,pixelArray[wPixel-1].GetSector(),pixelArray[wPixel-1].GetPlate(),pixelArray[wPixel-1].GetStrip(),pixelArray[wPixel-1].GetPixel(),pixelArray[w
2961 Pixel-1].GetTrack(),match);
2965 if(PRINT && itra<10 ) {
2968 cout << " number of pixels with test tracks=" << itest << endl;
2969 for(Int_t i=0;i<itest;i++) {
2970 cout << " " << i+1 << " tr.=" << ntest[i] << " w=" << testWeight[i] << " pix.= " << testPixel[i] << " (" <<
2971 pixelArray[testPixel[i]-1].GetSector() << " " << " " << pixelArray[testPixel[i]-1].GetPlate() << " " <<
2972 pixelArray[testPixel[i]-1].GetPixel() << " )" << " l= " << testLength[i] << " sig=" <<
2973 theta0*(testLength[i]-tpclength) << " rho= " << testRho[i] << " z= " << testZ[i] << endl;
2975 cout << " pixel=" << wPixel << " state=" << istate << " l=" << wLength << " TOF=" << time << " m=" << mass << " match=" << match << endl;
2976 if(istate>0) cout << " fired by track " << pixelArray[wPixel-1].GetTrack() << endl;
2983 printf(" %f probe tracks per 1 real track\n",snr/itr);
2988 cout << ipixel << " - total number of TOF pixels after matching" << endl;
2992 printf(" %i tracks with delR, %f of them have delR>Rmin \n",idelR,w);
2997 printf(" %i tracks with delR1 (|z|<175), %f of them have delR>Rmin \n",idelR1,w);
3002 printf(" %i tracks with delR2 (|z|>175), %f of them have delR>Rmin \n",idelR2,w);
3005 cout << " ******************** End of matching **********" << endl;
3007 delete [] testPixel;
3008 delete [] testLength;
3011 delete [] testWeight;
3014 //____________________________________________________________________________
3015 void AliTOFReconstructioner::FillNtuple(Int_t ntracks, AliTOFTrack* trackArray, AliTOFRecHit* hitArray, AliTOFPad* pixelArray, Int_t* iTOFpixel, Int_t* iparticle, Float_t* toftime, Int_t& ipixelLastEntry, Int_t itrack){
3017 // itrack : total number of TPC selected tracks
3018 // for the caller is ntotTPCtracks
3020 cout << " ******************** Start of searching non-matched fired pixels **********" << endl;
3021 const Int_t charge[48]={ 0, 1,-1, 0, 1,-1, 0, 1,-1, 0,
3022 1,-1, 0, 1,-1, 0, 0, 0, 1, 0,
3023 -1, 0,-1,-1, 0, 0,-1, 0, 1, 0,
3024 1, 1, 0, 0, 1,-1, 0, 0, 1,-1,
3025 1, 1,-1, 0, 1, 1, 2, 0};
3038 Float_t smat[9],smat0[9],smat1[9];
3039 for(Int_t i=0;i<9;i++) {
3045 Int_t nFiredPixelsNotMatchedWithTracks=0;
3047 for (Int_t i=0; i<ipixelLastEntry; i++) {
3048 istate=pixelArray[i].GetState();
3049 if(istate==0) break;
3050 if(pixelArray[i].GetTrackMatched()==-1) nFiredPixelsNotMatchedWithTracks++;
3052 printf(" %i fired pixels have not matched tracks\n",nFiredPixelsNotMatchedWithTracks);
3053 cout << " ******************** End of searching non-matched fired pixels **********" << endl;
3055 Int_t nTPCHitMissing=0;
3056 for(Int_t i=0; i<ipixelLastEntry; i++) {
3057 if(pixelArray[i].GetHit()>0) {
3058 if(hitArray[pixelArray[i].GetHit()-1].GetNoise()==0) {
3059 if(iparticle[pixelArray[i].GetTrack()]==0) nTPCHitMissing++;
3063 printf(" %i pixels fired by track hit without a hit on the last layer of TPC\n",nTPCHitMissing);
3066 Int_t icharge=0; // total number of charged particles
3067 Int_t iprim=0; // number of primaries
3068 Int_t ipions=0; // number of primary pions
3069 Int_t ikaons=0; // number of primary kaons
3070 Int_t iprotons=0; // number of primary protons
3071 Int_t ielectrons=0;// number of primary electrons
3072 Int_t imuons=0; // number of primary muons
3073 Float_t particleTypeArray[6][5][2];
3075 for (Int_t index1=0;index1<6;index1++) {
3076 for (Int_t index2=0;index2<5;index2++) {
3077 for (Int_t index3=0;index3<2;index3++) {
3078 particleTypeArray[index1][index2][index3]=0.;
3083 Int_t nTOFhitsWithNoTPCTracks=0; // to be moved later when used
3086 TObjArray *Particles = gAlice->Particles();
3087 Int_t numberOfParticles=Particles->GetEntries();
3088 cout << "numberOfParticles " << numberOfParticles << endl;
3090 if(numberOfParticles>fMaxAllTracks) numberOfParticles=fMaxAllTracks;
3093 for (Int_t i=0; i<ntracks; i++) { // starting loop on all primaries charged particles for current event)
3096 cout << "particle " << i << endl;
3097 cout << "total " << numberOfParticles << endl;
3099 TParticle *part = (TParticle *) gAlice->Particle(i);
3100 if(charge[PDGtoGeantCode(part->GetPdgCode())-1]) {
3103 cout << "charged particles " << icharge << endl;
3105 Int_t particleType=0;
3106 Int_t absPdgCode = TMath::Abs(part->GetPdgCode());
3107 switch (absPdgCode) {
3125 if(part->GetFirstMother() < 0) {
3127 switch (particleType) {
3147 Float_t wLength=-1.;
3151 Int_t itr=iparticle[i]; // get the track number for the current charged particle
3153 if(iTOFpixel[i]>0 && itr==0) nTOFhitsWithNoTPCTracks++;
3156 match=trackArray[itr-1].GetMatching();
3157 //cout << "match " << match << endl;
3158 wLength=trackArray[itr-1].GetLength();
3159 //cout << "wLength " << wLength << endl;
3160 time=trackArray[itr-1].GetTof();
3161 mass=trackArray[itr-1].GetMassTOF();
3162 //cout << "mext " << mass << endl;
3163 // if(PRINT && (i>789 && i<800) ) cout << i << " track: l=" << wLength << " TOF=" << time << " m=" << mass << " match=" << match << endl;
3164 if(iTOFpixel[i]==0) {
3169 Int_t ikparen=part->GetFirstMother();
3174 imam=part->GetPdgCode();
3177 Int_t evnumber=gAlice->GetEvNumber();
3178 if(match==-1) macthm1++;
3179 if(match==-2) macthm2++;
3180 if(match==-3) macthm3++;
3181 if(match==-4) macthm4++;
3182 if(match==0) macth0++;
3183 if(match==1) macth1++;
3184 if(match==2) macth2++;
3185 if(match==3) macth3++;
3186 if(match==4) macth4++;
3187 foutputntuple->Fill(evnumber,part->GetPdgCode(),imam,part->Vx(),part->Vy(),part->Vz(),part->Px(),part->Py(),part->Pz(),toftime[i],wLength,match,time,mass);
3191 // -----------------------------------------------------------
3192 // Filling 2 dimensional Histograms true time vs matched time
3193 // Filling 1 dimensional Histogram true time - matched time
3195 // time = time associated to the matched pad [ns]
3196 // it could be the average time of the cluster fired
3198 // toftime[i] = real time (including pulse height delays) [s]
3202 // if (imam==0) TimeTrueMatched->Fill(time, toftime[i]*1E+09);
3203 // if (imam==0) DeltaTrueTimeMatched->Fill(time-toftime[i]*1E+09);
3206 //---------------------------------------------------------------
3208 if(match==-4 || match>0) {
3211 if(match==-4) matchW=1;
3213 particleTypeArray[particleType-1][matchW-1][1]++;
3214 particleTypeArray[5][matchW-1][1]++;
3215 particleTypeArray[particleType-1][4][1]++;
3216 particleTypeArray[5][4][1]++;
3217 if(part->GetFirstMother() < 0) {
3218 particleTypeArray[particleType-1][matchW-1][0]++;
3219 particleTypeArray[5][matchW-1][0]++;
3220 particleTypeArray[particleType-1][4][0]++;
3221 particleTypeArray[5][4][0]++;
3223 // fill histos for QA
3224 //if(particleType==3 && matchW==3) hPiWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3225 //if(particleType==2 && matchW==3) hKWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3226 //if(particleType==1 && matchW==3) hPWithTrueTime->Fill(sqrt((part->Px())*(part->Px())+(part->Py())*(part->Py())+(part->Pz())*(part->Pz())));
3229 } // close if(part->GetFirstMother() < 0)
3230 } // close if(particleType)
3231 } // close if(match==-4 || match>0)
3232 } // close if(charge[PDGtoGeantCode(part->GetPdgCode())-1])
3233 } // close for (Int_t i=0; i<ntracks; i++) {
3235 cout << " macthm1 " << macthm1 << endl;
3236 cout << " macthm2 " << macthm2 << endl;