Corrected Rotation Matrix and CVS log
[u/mrichter/AliRoot.git] / TOF / AliTOFv0.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /*
17 $Log$
18 Revision 1.10  1999/10/15 15:35:20  fca
19 New version for frame1099 with and without holes
20
21 Revision 1.9  1999/09/29 09:24:33  fca
22 Introduction of the Copyright and cvs Log
23
24 */
25
26 ///////////////////////////////////////////////////////////////////////////////
27 //                                                                           //
28 //  Time Of Flight: design of C.Williams                FCA                  //
29 //  This class contains the functions for version 1 of the Time Of Flight    //
30 //  detector.                                                                //
31 //
32 //  VERSION WITH 5 MODULES AND TILTED STRIPS 
33 //  
34 //   WITH HOLES FOR PHOS AND HMPID inside the 
35 //   SPACE FRAME WITH HOLES
36 //
37 //
38 //   Authors:
39 //  
40 //   Alessio Seganti
41 //   Domenico Vicinanza
42 //
43 //   University of Salerno - Italy
44 //
45 //
46 //Begin_Html
47 /*
48 <img src="picts/AliTOFv0Class.gif">
49 */
50 //End_Html
51 //                                                                           //
52 ///////////////////////////////////////////////////////////////////////////////
53
54 #include "AliTOFv0.h"
55 #include "AliRun.h"
56 #include "AliConst.h"
57  
58 ClassImp(AliTOFv0)
59  
60 //_____________________________________________________________________________
61 AliTOFv0::AliTOFv0()
62 {
63   //
64   // Default constructor
65   //
66 }
67  
68 //_____________________________________________________________________________
69 AliTOFv0::AliTOFv0(const char *name, const char *title)
70        : AliTOF(name,title)
71 {
72   //
73   // Standard constructor
74   //
75 }
76  
77 //_____________________________________________________________________________
78 void AliTOFv0::CreateGeometry()
79 {
80   //
81   // Create geometry for Time Of Flight version 0
82   //
83   //Begin_Html
84   /*
85     <img src="picts/AliTOFv0.gif">
86   */
87   //End_Html
88   //
89   // Creates common geometry
90   //
91   AliTOF::CreateGeometry();
92 }
93  
94 //_____________________________________________________________________________
95 void AliTOFv0::TOFpc(Float_t xtof, Float_t ytof, Float_t zlen1,
96                      Float_t zlen2, Float_t zlen3, Float_t ztof0)
97 {
98   //
99   // Definition of the Time Of Fligh Resistive Plate Chambers
100   // xFLT, yFLT, zFLT - sizes of TOF modules (large)
101   
102   Float_t  ycoor;
103   Float_t par[10];
104   Int_t idrotm[100];
105   Int_t nrot = 0;
106   
107   Int_t *idtmed = fIdtmed->GetArray()-499;
108
109
110   par[0] =  xtof / 2.;
111   par[1] =  ytof / 2.;
112   par[2] = zlen1 / 2.;
113   gMC->Gsvolu("FTO1", "BOX ", idtmed[506], par, 3);
114   par[2] = zlen2 / 2.;
115   gMC->Gsvolu("FTO2", "BOX ", idtmed[506], par, 3);
116   par[2] = zlen3 / 2.;
117   gMC->Gsvolu("FTO3", "BOX ", idtmed[506], par, 3);
118
119
120 // Positioning of modules
121
122    Float_t zcoor;
123
124    Float_t zcor1 = ztof0 - zlen1/2;
125    Float_t zcor2 = ztof0 - zlen1 - zlen2/2.;
126    Float_t zcor3 = 0.;
127
128    AliMatrix(idrotm[0], 90., 0., 0., 0., 90, -90.);
129    AliMatrix(idrotm[1], 90., 180., 0., 0., 90, 90.);
130    gMC->Gspos("FTO1", 1, "BTO1", 0,  zcor1, 0, idrotm[0], "ONLY");
131    gMC->Gspos("FTO1", 2, "BTO1", 0, -zcor1, 0, idrotm[1], "ONLY");
132    zcoor = (zlen1/2.);
133    gMC->Gspos("FTO1", 1, "BTO2", 0,  zcoor, 0, idrotm[0], "ONLY");
134    zcoor = 0.;
135    gMC->Gspos("FTO1", 1, "BTO3", 0,  zcoor, 0, idrotm[0], "ONLY");
136    
137    gMC->Gspos("FTO2", 1, "BTO1", 0,  zcor2, 0, idrotm[0], "ONLY");
138    gMC->Gspos("FTO2", 2, "BTO1", 0, -zcor2, 0, idrotm[1], "ONLY");
139    zcoor = -zlen2/2.;
140    gMC->Gspos("FTO2", 0, "BTO2", 0,  zcoor, 0, idrotm[0], "ONLY");
141
142    gMC->Gspos("FTO3", 0, "BTO1", 0, zcor3,  0, idrotm[0], "ONLY");
143
144 // Subtraction the distance to TOF module boundaries 
145
146   Float_t db = 7.;
147   Float_t xFLT, yFLT, zFLT1, zFLT2, zFLT3;
148
149   xFLT = xtof -(.5 +.5)*2;
150   yFLT = ytof;
151   zFLT1 = zlen1 - db;
152   zFLT2 = zlen2 - db;
153   zFLT3 = zlen3 - db;
154     
155 // Sizes of MRPC pads
156
157   Float_t yPad = 0.505; 
158   
159 // Large not sensitive volumes with CO2 
160   par[0] = xFLT/2;
161   par[1] = yFLT/2;
162
163   cout <<"************************* TOF geometry **************************"<<endl;
164
165   par[2] = (zFLT1 / 2.);
166   gMC->Gsvolu("FLT1", "BOX ", idtmed[506], par, 3); // CO2
167   gMC->Gspos("FLT1", 0, "FTO1", 0., 0., 0., 0, "ONLY");
168
169   par[2] = (zFLT2 / 2.);
170   gMC->Gsvolu("FLT2", "BOX ", idtmed[506], par, 3); // CO2
171   gMC->Gspos("FLT2", 0, "FTO2", 0., 0., 0., 0, "ONLY");
172
173   par[2] = (zFLT3 / 2.); 
174   gMC->Gsvolu("FLT3", "BOX ", idtmed[506], par, 3); // CO2
175   gMC->Gspos("FLT3", 0, "FTO3", 0., 0., 0., 0, "ONLY");
176
177 ////////// Layers before detector ////////////////////
178
179 // Alluminium layer in front 1.0 mm thick at the beginning
180   par[0] = -1;
181   par[1] = 0.1;
182   par[2] = -1;
183   ycoor = -yFLT/2 + par[1];
184   gMC->Gsvolu("FMY1", "BOX ", idtmed[508], par, 3); // Alluminium
185   gMC->Gspos("FMY1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
186   gMC->Gsvolu("FMY2", "BOX ", idtmed[508], par, 3); // Alluminium
187   gMC->Gspos("FMY2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
188   gMC->Gsvolu("FMY3", "BOX ", idtmed[508], par, 3); // Alluminium 
189   gMC->Gspos("FMY3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
190
191 // Honeycomb layer (1cm of special polyethilene)
192   ycoor = ycoor + par[1];
193   par[0] = -1;
194   par[1] = 0.5;
195   par[2] = -1;
196   ycoor = ycoor + par[1];
197   gMC->Gsvolu("FPL1", "BOX ", idtmed[503], par, 3); // Hony
198   gMC->Gspos("FPL1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
199   gMC->Gsvolu("FPL2", "BOX ", idtmed[503], par, 3); // Hony
200   gMC->Gspos("FPL2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
201   gMC->Gsvolu("FPL3", "BOX ", idtmed[503], par, 3); // Hony
202   gMC->Gspos("FPL3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
203
204 ///////////////// Detector itself //////////////////////
205
206   const Float_t StripWidth = 7.81;//cm
207   const Float_t DeadBound = 1.;//cm non-sensitive between the pad edge and the boundary of the strip
208   const Int_t nx = 40; // number of pads along x
209   const Int_t nz = 2;  // number of pads along z
210   const Float_t Gap=4.; //cm  distance between the strip axis
211   const Float_t Space = 5.5; //cm distance from the front plate of the box
212
213   Float_t zSenStrip;
214   zSenStrip = StripWidth-2*DeadBound;//cm
215
216   par[0] = -1;
217   par[1] = yPad/2; 
218   par[2] = StripWidth/2.;
219   
220   // Glass Layer of detector
221   gMC->Gsvolu("FSTR","BOX",idtmed[514],par,3);
222
223   // Freon for non-sesitive boundaries
224   par[0] = -1;
225   par[1] = 0.110/2;
226   par[2] = -1;
227   gMC->Gsvolu("FNSF","BOX",idtmed[512],par,3);
228   gMC->Gspos("FNSF",0,"FSTR",0.,0.,0.,0,"ONLY");
229   // Mylar for non-sesitive boundaries
230   par[1] = 0.025;
231   gMC->Gsvolu("FMYI","BOX",idtmed[510],par,3); 
232   gMC->Gspos("FMYI",0,"FNSF",0.,0.,0.,0,"ONLY");
233
234   // Mylar for outer layers
235   par[1] = 0.035/2;
236   ycoor = -yPad/2.+par[1];
237   gMC->Gsvolu("FMYX","BOX",idtmed[510],par,3);
238   gMC->Gspos("FMYX",1,"FSTR",0.,ycoor,0.,0,"ONLY");
239   gMC->Gspos("FMYX",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
240   ycoor += par[1];
241  
242   // Graphyte layers
243   par[1] = 0.003/2;
244   ycoor += par[1];
245   gMC->Gsvolu("FGRL","BOX",idtmed[502],par,3);
246   gMC->Gspos("FGRL",1,"FSTR",0.,ycoor,0.,0,"ONLY");
247   gMC->Gspos("FGRL",2,"FSTR",0.,-ycoor,0.,0,"ONLY");
248
249   // Freon sensitive layer
250   par[0] = -1;
251   par[1] = 0.110/2.;
252   par[2] = zSenStrip/2.;
253   gMC->Gsvolu("FCFC","BOX",idtmed[513],par,3);
254   gMC->Gspos("FCFC",0,"FNSF",0.,0.,0.,0,"ONLY");
255   
256   // Pad definition x & z
257   gMC->Gsdvn("FLZ","FCFC", nz, 3); 
258   gMC->Gsdvn("FLX","FLZ" , nx, 1); 
259
260 ////  Positioning the Strips  (FSTR) in the FLT volumes  /////
261
262  
263   // 3 (Central) Plate 
264   Float_t t = zFLT1+zFLT2+zFLT3/2.+7.*2.5;//Half Width of Barrel
265   Float_t zpos = 0;
266   Float_t ang;
267   Float_t Offset;  
268   Float_t last;
269   nrot = 0;
270   Int_t i=1,j=1;
271   zcoor=0;
272   Int_t UpDown=-1; // UpDown=-1 -> Upper strip, UpDown=+1 -> Lower strip
273  
274   do{
275      ang = atan(zcoor/t);
276      ang = ang*kRaddeg;
277      AliMatrix (idrotm[nrot],  90.,  0.,90.-ang,90.,-ang,90.);
278      AliMatrix (idrotm[nrot+1],90.,180.,90.+ang,90., ang,90.);
279      ycoor = -14.5+ Space; //2 cm over front plate
280      ycoor += (1-(UpDown+1)/2)*Gap;
281      gMC->Gspos("FSTR",j  ,"FLT3",0.,ycoor, zcoor,idrotm[nrot],  "ONLY");
282      gMC->Gspos("FSTR",j+1,"FLT3",0.,ycoor,-zcoor,idrotm[nrot+1],"ONLY");
283      ang  = ang/kRaddeg;
284      
285      zcoor=zcoor-(zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang);
286      UpDown*= -1; // Alternate strips 
287      i++;
288      j+=2;
289   } while (zcoor-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+zFLT2+7*2.5);
290   
291   ycoor = -29./2.+ Space; //2 cm over front plate
292
293   // Plate  2
294   zpos = -zFLT3/2-7.;
295   ang  = atan(zpos/sqrt(2*t*t-zpos*zpos));
296   Offset = StripWidth*TMath::Cos(ang)/2;
297   zpos -= Offset;
298   nrot = 0;
299   i=1;
300   // UpDown has not to be reinitialized, so that the arrangement of the strips can continue coherently
301
302   do {
303      ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
304      ang = ang*kRaddeg;
305      AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang,270.);
306      ycoor = -29./2.+ Space ; //2 cm over front plate
307      ycoor += (1-(UpDown+1)/2)*Gap;
308      zcoor = zpos+(zFLT3/2.+7+zFLT2/2); // Moves to the system of the centre of the modulus FLT2
309      gMC->Gspos("FSTR",i, "FLT2", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
310      ang  = ang/kRaddeg;
311      zpos = zpos - (zSenStrip/2)/TMath::Cos(ang)+UpDown*Gap*TMath::Tan(ang)-(zSenStrip/2)/TMath::Cos(ang);
312      last = StripWidth*TMath::Cos(ang)/2;
313      UpDown*=-1;
314      i++; 
315   } while (zpos-(StripWidth/2)*TMath::Cos(ang)>-t+zFLT1+7);
316
317   // Plate  1
318   zpos = -t+zFLT1+3.5;
319   ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
320   Offset = StripWidth*TMath::Cos(ang)/2.;
321   zpos -= Offset;
322   nrot = 0;
323   i=0;
324   ycoor= -29./2.+Space+Gap/2;
325
326  do {
327      ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
328      ang = ang*kRaddeg;
329      AliMatrix (idrotm[nrot], 90., 0., 90.-ang,90.,ang,270.);
330      i++;
331      zcoor = zpos+(zFLT1/2+zFLT2+zFLT3/2+7.*2.);
332      gMC->Gspos("FSTR",i, "FLT1", 0., ycoor, zcoor,idrotm[nrot], "ONLY");
333      ang  = ang /kRaddeg;
334      zpos = zpos - zSenStrip/TMath::Cos(ang);
335      last = StripWidth*TMath::Cos(ang)/2.;
336   }  while (zpos>-t+7.+last);
337
338 printf("#######################################################\n");
339 printf("     Distance from the bound of the FLT3: zFLT3- %f cm \n", zpos+(zSenStrip/2)/TMath::Cos(ang));
340      ang = atan(zpos/sqrt(2*t*t-zpos*zpos));
341      zpos = zpos - zSenStrip/TMath::Cos(ang);
342 printf("NEXT Distance from the bound of the FLT3: zFLT3- %f cm \n", zpos+(zSenStrip/2)/TMath::Cos(ang));
343 printf("#######################################################\n");
344
345 ////////// Layers after detector /////////////////
346
347 // Honeycomb layer after (3cm)
348
349   Float_t OverSpace = Space + 7.3;
350 ///  StripWidth*TMath::Sin(ang) + 1.3;
351
352   par[0] = -1;
353   par[1] = 0.6;
354   par[2] = -1;
355   ycoor = -yFLT/2 + OverSpace + par[1];
356   gMC->Gsvolu("FPE1", "BOX ", idtmed[503], par, 3); // Hony
357   gMC->Gspos("FPE1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
358   gMC->Gsvolu("FPE2", "BOX ", idtmed[503], par, 3); // Hony
359   gMC->Gspos("FPE2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
360   gMC->Gsvolu("FPE3", "BOX ", idtmed[503], par, 3); // Hony
361   gMC->Gspos("FPE3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
362
363 // Electronics (Cu) after
364   ycoor += par[1];
365   par[0] = -1;
366   par[1] = 1.43*0.05 / 2.; // 5% of X0
367   par[2] = -1;
368   ycoor += par[1];
369   gMC->Gsvolu("FEC1", "BOX ", idtmed[501], par, 3); // Cu
370   gMC->Gspos("FEC1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
371   gMC->Gsvolu("FEC2", "BOX ", idtmed[501], par, 3); // Cu
372   gMC->Gspos("FEC2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
373   gMC->Gsvolu("FEC3", "BOX ", idtmed[501], par, 3); // Cu
374   gMC->Gspos("FEC3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
375
376 // Cooling water after
377   ycoor += par[1];
378   par[0] = -1;
379   par[1] = 36.1*0.02 / 2.; // 2% of X0
380   par[2] = -1;
381   ycoor += par[1];
382   gMC->Gsvolu("FWA1", "BOX ", idtmed[515], par, 3); // Water
383   gMC->Gspos("FWA1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
384   gMC->Gsvolu("FWA2", "BOX ", idtmed[515], par, 3); // Water
385   gMC->Gspos("FWA2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
386   gMC->Gsvolu("FWA3", "BOX ", idtmed[515], par, 3); // Water
387   gMC->Gspos("FWA3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
388
389 //back plate honycomb (2cm)
390   par[0] = -1;
391   par[1] = 2 / 2.;
392   par[2] = -1;
393   ycoor = yFLT/2 - par[1];
394   gMC->Gsvolu("FEG1", "BOX ", idtmed[503], par, 3); // Hony
395   gMC->Gspos("FEG1", 0, "FLT1", 0., ycoor, 0., 0, "ONLY");
396   gMC->Gsvolu("FEG2", "BOX ", idtmed[503], par, 3); // Hony
397   gMC->Gspos("FEG2", 0, "FLT2", 0., ycoor, 0., 0, "ONLY");
398   gMC->Gsvolu("FEG3", "BOX ", idtmed[503], par, 3); // Hony
399   gMC->Gspos("FEG3", 0, "FLT3", 0., ycoor, 0., 0, "ONLY");
400 }
401
402 //_____________________________________________________________________________
403 void AliTOFv0::DrawModule()
404 {
405   //
406   // Draw a shaded view of the Time Of Flight version 1
407   //
408   // Set everything unseen
409   gMC->Gsatt("*", "seen", -1);
410   // 
411   // Set ALIC mother transparent
412   gMC->Gsatt("ALIC","SEEN",0);
413   //
414   // Set the volumes visible
415   gMC->Gsatt("ALIC","SEEN",0);
416   gMC->Gsatt("FBAR","SEEN",1);
417   gMC->Gsatt("FTO1","SEEN",1);
418   gMC->Gsatt("FTO2","SEEN",1);
419   gMC->Gsatt("FTO3","SEEN",1);
420   gMC->Gsatt("FBT1","SEEN",1);
421   gMC->Gsatt("FBT2","SEEN",1);
422   gMC->Gsatt("FBT3","SEEN",1);
423   gMC->Gsatt("FDT1","SEEN",1);
424   gMC->Gsatt("FDT2","SEEN",1);
425   gMC->Gsatt("FDT3","SEEN",1);
426   gMC->Gsatt("FLT1","SEEN",1);
427   gMC->Gsatt("FLT2","SEEN",1);
428   gMC->Gsatt("FLT3","SEEN",1);
429   gMC->Gsatt("FPL1","SEEN",1);
430   gMC->Gsatt("FPL2","SEEN",1);
431   gMC->Gsatt("FPL3","SEEN",1);
432   gMC->Gsatt("FLD1","SEEN",1);
433   gMC->Gsatt("FLD2","SEEN",1);
434   gMC->Gsatt("FLD3","SEEN",1);
435   gMC->Gsatt("FLZ1","SEEN",1);
436   gMC->Gsatt("FLZ2","SEEN",1);
437   gMC->Gsatt("FLZ3","SEEN",1);
438   gMC->Gsatt("FLX1","SEEN",1);
439   gMC->Gsatt("FLX2","SEEN",1);
440   gMC->Gsatt("FLX3","SEEN",1);
441   gMC->Gsatt("FPA0","SEEN",1);
442   //
443   gMC->Gdopt("hide", "on");
444   gMC->Gdopt("shad", "on");
445   gMC->Gsatt("*", "fill", 7);
446   gMC->SetClipBox(".");
447   gMC->SetClipBox("*", 0, 1000, -1000, 1000, -1000, 1000);
448   gMC->DefaultRange();
449   gMC->Gdraw("alic", 40, 30, 0, 12, 9.5, .02, .02);
450   gMC->Gdhead(1111, "Time Of Flight");
451   gMC->Gdman(18, 4, "MAN");
452   gMC->Gdopt("hide","off");
453 }
454
455 //_____________________________________________________________________________
456 void AliTOFv0::CreateMaterials()
457 {
458   //
459   // Define materials for the Time Of Flight
460   //
461   AliTOF::CreateMaterials();
462 }
463  
464 //_____________________________________________________________________________
465 void AliTOFv0::Init()
466 {
467   //
468   // Initialise the detector after the geometry has been defined
469   //
470   AliTOF::Init();
471   fIdFTO2=gMC->VolId("FTO2");
472   fIdFTO3=gMC->VolId("FTO3");
473   fIdFLT1=gMC->VolId("FLT1");
474   fIdFLT2=gMC->VolId("FLT2");
475   fIdFLT3=gMC->VolId("FLT3");
476 }
477  
478 //_____________________________________________________________________________
479 void AliTOFv0::StepManager()
480 {
481   //
482   // Procedure called at each step in the Time Of Flight
483   //
484   TLorentzVector mom, pos;
485   Float_t hits[8];
486   Int_t vol[3];
487   Int_t copy, id, i;
488   Int_t *idtmed = fIdtmed->GetArray()-499;
489   if(gMC->GetMedium()==idtmed[514-1] && 
490      gMC->IsTrackEntering() && gMC->TrackCharge()
491      && gMC->CurrentVolID(copy)==fIdSens) {
492     TClonesArray &lhits = *fHits;
493     //
494     // Record only charged tracks at entrance
495     gMC->CurrentVolOffID(1,copy);
496     vol[2]=copy;
497     gMC->CurrentVolOffID(3,copy);
498     vol[1]=copy;
499     id=gMC->CurrentVolOffID(8,copy);
500     vol[0]=copy;
501     if(id==fIdFTO3) {
502       vol[0]+=22;
503       id=gMC->CurrentVolOffID(5,copy);
504       if(id==fIdFLT3) vol[1]+=6;
505     } else if (id==fIdFTO2) {
506       vol[0]+=20;
507       id=gMC->CurrentVolOffID(5,copy);
508       if(id==fIdFLT2) vol[1]+=8;
509     } else {
510       id=gMC->CurrentVolOffID(5,copy);
511       if(id==fIdFLT1) vol[1]+=14;
512     }
513     gMC->TrackPosition(pos);
514     gMC->TrackMomentum(mom);
515     //
516     Double_t ptot=mom.Rho();
517     Double_t norm=1/ptot;
518     for(i=0;i<3;++i) {
519       hits[i]=pos[i];
520       hits[i+3]=mom[i]*norm;
521     }
522     hits[6]=ptot;
523     hits[7]=pos[3];
524     new(lhits[fNhits++]) AliTOFhit(fIshunt,gAlice->CurrentTrack(),vol,hits);
525   }
526 }
527