2 /**************************************************************************
3 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
5 * Author: The ALICE Off-line Project. *
6 * Contributors are mentioned in the code where appropriate. *
8 * Permission to use, copy, modify and distribute this software and its *
9 * documentation strictly for non-commercial purposes is hereby granted *
10 * without fee, provided that the above copyright notice appears in all *
11 * copies and that both the copyright notice and this permission notice *
12 * appear in the supporting documentation. The authors make no claims *
13 * about the suitability of this software for any purpose. It is *
14 * provided "as is" without express or implied warranty. *
15 **************************************************************************/
19 ///////////////////////////////////////////////////////////////////////////////
21 // TRD cluster finder //
23 ///////////////////////////////////////////////////////////////////////////////
30 #include "AliRunLoader.h"
31 #include "AliLoader.h"
32 #include "AliRawReader.h"
35 #include "AliTRDclusterizerV1.h"
36 #include "AliTRDgeometry.h"
37 #include "AliTRDdataArrayF.h"
38 #include "AliTRDdataArrayI.h"
39 #include "AliTRDdigitsManager.h"
40 #include "AliTRDpadPlane.h"
41 #include "AliTRDrawData.h"
42 #include "AliTRDcalibDB.h"
43 #include "AliTRDSimParam.h"
44 #include "AliTRDRecParam.h"
45 #include "AliTRDCommonParam.h"
46 #include "AliTRDcluster.h"
48 #include "Cal/AliTRDCalROC.h"
49 #include "Cal/AliTRDCalDet.h"
51 ClassImp(AliTRDclusterizerV1)
53 //_____________________________________________________________________________
54 AliTRDclusterizerV1::AliTRDclusterizerV1()
59 // AliTRDclusterizerV1 default constructor
64 //_____________________________________________________________________________
65 AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t *name, const Text_t *title)
66 :AliTRDclusterizer(name,title)
67 ,fDigitsManager(new AliTRDdigitsManager())
70 // AliTRDclusterizerV1 constructor
73 fDigitsManager->CreateArrays();
77 //_____________________________________________________________________________
78 AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
83 // AliTRDclusterizerV1 copy constructor
88 //_____________________________________________________________________________
89 AliTRDclusterizerV1::~AliTRDclusterizerV1()
92 // AliTRDclusterizerV1 destructor
96 delete fDigitsManager;
97 fDigitsManager = NULL;
102 //_____________________________________________________________________________
103 AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
106 // Assignment operator
109 if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
114 //_____________________________________________________________________________
115 void AliTRDclusterizerV1::Copy(TObject &c) const
121 ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
123 AliTRDclusterizer::Copy(c);
127 //_____________________________________________________________________________
128 Bool_t AliTRDclusterizerV1::ReadDigits()
131 // Reads the digits arrays from the input aliroot file
135 AliError("No run loader available");
139 AliLoader* loader = fRunLoader->GetLoader("TRDLoader");
140 if (!loader->TreeD()) {
141 loader->LoadDigits();
144 // Read in the digit arrays
145 return (fDigitsManager->ReadDigits(loader->TreeD()));
149 //_____________________________________________________________________________
150 Bool_t AliTRDclusterizerV1::ReadDigits(AliRawReader *rawReader)
153 // Reads the digits arrays from the ddl file
157 fDigitsManager = raw.Raw2Digits(rawReader);
163 //_____________________________________________________________________________
164 Bool_t AliTRDclusterizerV1::MakeClusters()
167 // Generates the cluster.
178 AliTRDdataArrayI *digitsIn;
179 AliTRDdataArrayI *tracksIn;
182 AliTRDgeometry *geo = AliTRDgeometry::GetGeometry(fRunLoader);
184 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
186 AliFatal("No AliTRDcalibDB instance available\n");
190 AliTRDSimParam *simParam = AliTRDSimParam::Instance();
192 AliError("No AliTRDSimParam instance available\n");
196 AliTRDRecParam *recParam = AliTRDRecParam::Instance();
198 AliError("No AliTRDRecParam instance available\n");
202 AliTRDCommonParam *commonParam = AliTRDCommonParam::Instance();
204 AliError("Could not get common parameters\n");
209 Float_t ADCthreshold = simParam->GetADCthreshold();
210 // Threshold value for the maximum
211 Float_t maxThresh = recParam->GetClusMaxThresh();
212 // Threshold value for the digit signal
213 Float_t sigThresh = recParam->GetClusSigThresh();
215 // Detector wise calibration object for t0
216 const AliTRDCalDet *calT0Det = calibration->GetT0Det();
218 // Iteration limit for unfolding procedure
219 const Float_t kEpsilon = 0.01;
220 const Int_t kNclus = 3;
221 const Int_t kNsig = 5;
222 const Int_t kNdict = AliTRDdigitsManager::kNDict;
223 const Int_t kNtrack = kNdict * kNclus;
227 Double_t ratioLeft = 1.0;
228 Double_t ratioRight = 1.0;
230 Int_t iClusterROC = 0;
232 Double_t padSignal[kNsig];
233 Double_t clusterSignal[kNclus];
234 Double_t clusterPads[kNclus];
237 Int_t chamEnd = AliTRDgeometry::Ncham();
239 Int_t planEnd = AliTRDgeometry::Nplan();
241 Int_t sectEnd = AliTRDgeometry::Nsect();
242 Int_t nTimeTotal = calibration->GetNumberOfTimeBins();
244 Int_t dummy[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
246 AliDebug(1,Form("Number of Time Bins = %d.\n",nTimeTotal));
248 // Start clustering in every chamber
249 for (icham = chamBeg; icham < chamEnd; icham++) {
250 for (iplan = planBeg; iplan < planEnd; iplan++) {
251 for (isect = sectBeg; isect < sectEnd; isect++) {
253 Int_t idet = geo->GetDetector(iplan,icham,isect);
256 digitsIn = fDigitsManager->GetDigits(idet);
257 // This is to take care of switched off super modules
258 if (digitsIn->GetNtime() == 0) {
262 AliTRDdataArrayI *tracksTmp = fDigitsManager->GetDictionary(idet,0);
265 Int_t nRowMax = commonParam->GetRowMax(iplan,icham,isect);
266 Int_t nColMax = commonParam->GetColMax(iplan);
268 AliTRDpadPlane *padPlane = commonParam->GetPadPlane(iplan,icham);
270 // Calibration object with pad wise values for t0
271 AliTRDCalROC *calT0ROC = calibration->GetT0ROC(idet);
272 // Calibration value for chamber wise t0
273 Float_t calT0DetValue = calT0Det->GetValue(idet);
276 Int_t nClusters2pad = 0;
277 Int_t nClusters3pad = 0;
278 Int_t nClusters4pad = 0;
279 Int_t nClusters5pad = 0;
280 Int_t nClustersLarge = 0;
282 // Apply the gain and the tail cancelation via digital filter
283 AliTRDdataArrayF *digitsOut = new AliTRDdataArrayF(digitsIn->GetNrow()
285 ,digitsIn->GetNtime());
286 Transform(digitsIn,digitsOut,idet,nRowMax,nColMax,nTimeTotal,ADCthreshold);
288 // Input digits are not needed any more
289 digitsIn->Compress(1,0);
291 // Loop through the chamber and find the maxima
292 for ( row = 0; row < nRowMax; row++) {
293 for ( col = 2; col < nColMax; col++) {
294 for (time = 0; time < nTimeTotal; time++) {
296 Float_t signalM = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time));
298 // Look for the maximum
299 if (signalM >= maxThresh) {
301 Float_t signalL = TMath::Abs(digitsOut->GetDataUnchecked(row,col ,time));
302 Float_t signalR = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time));
304 if ((TMath::Abs(signalL) <= signalM) &&
305 (TMath::Abs(signalR) < signalM)) {
306 if ((TMath::Abs(signalL) >= sigThresh) ||
307 (TMath::Abs(signalR) >= sigThresh)) {
308 // Maximum found, mark the position by a negative signal
309 digitsOut->SetDataUnchecked(row,col-1,time,-signalM);
318 tracksTmp->Compress(1,0);
320 // The index to the first cluster of a given ROC
321 Int_t firstClusterROC = -1;
322 // The number of cluster in a given ROC
323 Int_t nClusterROC = 0;
325 // Now check the maxima and calculate the cluster position
326 for ( row = 0; row < nRowMax ; row++) {
327 for (time = 0; time < nTimeTotal; time++) {
328 for ( col = 1; col < nColMax-1; col++) {
331 if (digitsOut->GetDataUnchecked(row,col,time) < 0.0) {
333 for (iPad = 0; iPad < kNclus; iPad++) {
334 Int_t iPadCol = col - 1 + iPad;
335 clusterSignal[iPad] =
336 TMath::Abs(digitsOut->GetDataUnchecked(row,iPadCol,time));
339 // Count the number of pads in the cluster
344 while (TMath::Abs(digitsOut->GetDataUnchecked(row,col-ii ,time)) >= sigThresh) {
347 if (col-ii < 0) break;
351 while (TMath::Abs(digitsOut->GetDataUnchecked(row,col+ii+1,time)) >= sigThresh) {
354 if (col+ii+1 >= nColMax) break;
380 // Look for 5 pad cluster with minimum in the middle
381 Bool_t fivePadCluster = kFALSE;
382 if (col < (nColMax - 3)) {
383 if (digitsOut->GetDataUnchecked(row,col+2,time) < 0) {
384 fivePadCluster = kTRUE;
386 if ((fivePadCluster) && (col < (nColMax - 5))) {
387 if (digitsOut->GetDataUnchecked(row,col+4,time) >= sigThresh) {
388 fivePadCluster = kFALSE;
391 if ((fivePadCluster) && (col > 1)) {
392 if (digitsOut->GetDataUnchecked(row,col-2,time) >= sigThresh) {
393 fivePadCluster = kFALSE;
399 // Modify the signal of the overlapping pad for the left part
400 // of the cluster which remains from a previous unfolding
402 clusterSignal[0] *= ratioLeft;
407 // Unfold the 5 pad cluster
408 if (fivePadCluster) {
409 for (iPad = 0; iPad < kNsig; iPad++) {
410 padSignal[iPad] = TMath::Abs(digitsOut->GetDataUnchecked(row
414 // Unfold the two maxima and set the signal on
415 // the overlapping pad to the ratio
416 ratioRight = Unfold(kEpsilon,iplan,padSignal);
417 ratioLeft = 1.0 - ratioRight;
418 clusterSignal[2] *= ratioRight;
423 Double_t clusterCharge = clusterSignal[0]
427 // The position of the cluster
428 clusterPads[0] = row + 0.5;
429 // Take the shift of the additional time bins into account
430 clusterPads[2] = time + 0.5;
432 if (recParam->LUTOn()) {
433 // Calculate the position of the cluster by using the
434 // lookup table method
435 clusterPads[1] = recParam->LUTposition(iplan,clusterSignal[0]
440 // Calculate the position of the cluster by using the
441 // center of gravity method
442 for (Int_t i = 0; i < kNsig; i++) {
445 padSignal[2] = TMath::Abs(digitsOut->GetDataUnchecked(row,col ,time)); // Central pad
446 padSignal[1] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-1,time)); // Left pad
447 padSignal[3] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+1,time)); // Right pad
449 (TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time)) < padSignal[1])) {
450 padSignal[0] = TMath::Abs(digitsOut->GetDataUnchecked(row,col-2,time));
452 if ((col < nColMax - 3) &&
453 (TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time)) < padSignal[3])) {
454 padSignal[4] = TMath::Abs(digitsOut->GetDataUnchecked(row,col+2,time));
456 clusterPads[1] = GetCOG(padSignal);
459 Double_t q0 = clusterSignal[0];
460 Double_t q1 = clusterSignal[1];
461 Double_t q2 = clusterSignal[2];
462 Double_t clusterSigmaY2 = (q1 * (q0 + q2) + 4.0 * q0 * q2)
463 / (clusterCharge*clusterCharge);
466 // Calculate the position and the error
469 // Correct for t0 (sum of chamber and pad wise values !!!)
470 Float_t calT0ROCValue = calT0ROC->GetValue(col,row);
471 Int_t clusterTimeBin = TMath::Nint(time - (calT0DetValue + calT0ROCValue));
472 Double_t colSize = padPlane->GetColSize(col);
473 Double_t rowSize = padPlane->GetRowSize(row);
475 Double_t clusterPos[3];
476 clusterPos[0] = padPlane->GetColPos(col) - (clusterPads[1] + 0.5) * colSize;
477 clusterPos[1] = padPlane->GetRowPos(row) - 0.5 * rowSize;
478 clusterPos[2] = CalcXposFromTimebin(clusterPads[2],idet,col,row);
479 Double_t clusterSig[2];
480 clusterSig[0] = (clusterSigmaY2 + 1.0/12.0) * colSize*colSize;
481 clusterSig[1] = rowSize * rowSize / 12.0;
483 // Add the cluster to the output array
484 // The track indices will be stored later
485 AliTRDcluster *cluster = AddCluster(clusterPos
494 // Store the amplitudes of the pads in the cluster for later analysis
495 Short_t signals[7] = { 0, 0, 0, 0, 0, 0, 0 };
496 for (Int_t jPad = col-3; jPad <= col+3; jPad++) {
498 (jPad >= nColMax-1)) {
501 signals[jPad-col+3] = TMath::Nint(TMath::Abs(digitsOut->GetDataUnchecked(row,jPad,time)));
503 cluster->SetSignals(signals);
505 // Temporarily store the row, column and time bin of the center pad
506 // Used to later on assign the track indices
507 cluster->SetLabel( row,0);
508 cluster->SetLabel( col,1);
509 cluster->SetLabel(time,2);
511 // Store the index of the first cluster in the current ROC
512 if (firstClusterROC < 0) {
513 firstClusterROC = RecPoints()->GetEntriesFast() - 1;
515 // Count the number of cluster in the current ROC
518 } // if: Maximum found ?
520 } // loop: pad columns
527 // Add the track indices to the found clusters
530 // Temporary array to collect the track indices
531 Int_t *idxTracks = new Int_t[kNtrack*nClusterROC];
533 // Loop through the dictionary arrays one-by-one
534 // to keep memory consumption low
535 for (Int_t iDict = 0; iDict < kNdict; iDict++) {
537 tracksIn = fDigitsManager->GetDictionary(idet,iDict);
540 // Loop though the clusters found in this ROC
541 for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) {
543 AliTRDcluster *cluster = (AliTRDcluster *)
544 RecPoints()->UncheckedAt(firstClusterROC+iClusterROC);
545 row = cluster->GetLabel(0);
546 col = cluster->GetLabel(1);
547 time = cluster->GetLabel(2);
549 for (iPad = 0; iPad < kNclus; iPad++) {
550 Int_t iPadCol = col - 1 + iPad;
551 Int_t index = tracksIn->GetDataUnchecked(row,iPadCol,time) - 1;
552 idxTracks[3*iPad+iDict + iClusterROC*kNtrack] = index;
557 // Compress the arrays
558 tracksIn->Compress(1,0);
562 // Copy the track indices into the cluster
563 // Loop though the clusters found in this ROC
564 for (iClusterROC = 0; iClusterROC < nClusterROC; iClusterROC++) {
566 AliTRDcluster *cluster = (AliTRDcluster *)
567 RecPoints()->UncheckedAt(firstClusterROC+iClusterROC);
568 cluster->SetLabel(-9999,0);
569 cluster->SetLabel(-9999,1);
570 cluster->SetLabel(-9999,2);
572 cluster->AddTrackIndex(&idxTracks[iClusterROC*kNtrack]);
578 // Write the cluster and reset the array
590 //_____________________________________________________________________________
591 Double_t AliTRDclusterizerV1::GetCOG(Double_t signal[5])
595 // Used for clusters with more than 3 pads - where LUT not applicable
598 Double_t sum = signal[0]
604 Double_t res = (0.0 * (-signal[0] + signal[4])
605 + (-signal[1] + signal[3])) / sum;
611 //_____________________________________________________________________________
612 Double_t AliTRDclusterizerV1::Unfold(Double_t eps, Int_t plane, Double_t *padSignal)
615 // Method to unfold neighbouring maxima.
616 // The charge ratio on the overlapping pad is calculated
617 // until there is no more change within the range given by eps.
618 // The resulting ratio is then returned to the calling method.
621 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
623 AliError("No AliTRDcalibDB instance available\n");
628 Int_t itStep = 0; // Count iteration steps
630 Double_t ratio = 0.5; // Start value for ratio
631 Double_t prevRatio = 0.0; // Store previous ratio
633 Double_t newLeftSignal[3] = { 0.0, 0.0, 0.0 }; // Array to store left cluster signal
634 Double_t newRightSignal[3] = { 0.0, 0.0, 0.0 }; // Array to store right cluster signal
635 Double_t newSignal[3] = { 0.0, 0.0, 0.0 };
637 // Start the iteration
638 while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
643 // Cluster position according to charge ratio
644 Double_t maxLeft = (ratio*padSignal[2] - padSignal[0])
645 / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
646 Double_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2])
647 / ((1.0 - ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
649 // Set cluster charge ratio
650 irc = calibration->PadResponse(1.0,maxLeft ,plane,newSignal);
651 Double_t ampLeft = padSignal[1] / newSignal[1];
652 irc = calibration->PadResponse(1.0,maxRight,plane,newSignal);
653 Double_t ampRight = padSignal[3] / newSignal[1];
655 // Apply pad response to parameters
656 irc = calibration->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
657 irc = calibration->PadResponse(ampRight,maxRight,plane,newRightSignal);
659 // Calculate new overlapping ratio
660 ratio = TMath::Min((Double_t)1.0,newLeftSignal[2] /
661 (newLeftSignal[2] + newRightSignal[0]));
669 //_____________________________________________________________________________
670 void AliTRDclusterizerV1::Transform(AliTRDdataArrayI *digitsIn
671 , AliTRDdataArrayF *digitsOut
672 , Int_t idet, Int_t nRowMax
673 , Int_t nColMax, Int_t nTimeTotal
674 , Float_t ADCthreshold)
678 // Apply tail cancelation: Transform digitsIn to digitsOut
685 AliTRDRecParam *recParam = AliTRDRecParam::Instance();
687 AliError("No AliTRDRecParam instance available\n");
690 AliTRDcalibDB *calibration = AliTRDcalibDB::Instance();
692 AliError("No AliTRDcalibDB instance available\n");
696 Double_t *inADC = new Double_t[nTimeTotal]; // ADC data before tail cancellation
697 Double_t *outADC = new Double_t[nTimeTotal]; // ADC data after tail cancellation
699 AliDebug(1,Form("Tail cancellation (nExp = %d) for detector %d.\n"
700 ,recParam->GetTCnexp(),idet));
702 // Calibration object with chamber wise values for the gain factor
703 const AliTRDCalDet *calGainFactorDet = calibration->GetGainFactorDet();
704 // Calibration object with pad wise values for the gain factor
705 AliTRDCalROC *calGainFactorROC = calibration->GetGainFactorROC(idet);
706 // Calibration value for chamber wise gain factors
707 Float_t calGainFactorDetValue = calGainFactorDet->GetValue(idet);
709 for (iRow = 0; iRow < nRowMax; iRow++ ) {
710 for (iCol = 0; iCol < nColMax; iCol++ ) {
712 Float_t calGainFactorROCValue = calGainFactorROC->GetValue(iCol,iRow);
713 Double_t gain = calGainFactorDetValue
714 * calGainFactorROCValue;
716 for (iTime = 0; iTime < nTimeTotal; iTime++) {
721 inADC[iTime] = digitsIn->GetDataUnchecked(iRow,iCol,iTime);
722 inADC[iTime] /= gain;
723 outADC[iTime] = inADC[iTime];
727 // Apply the tail cancelation via the digital filter
728 if (recParam->TCOn()) {
729 DeConvExp(inADC,outADC,nTimeTotal,recParam->GetTCnexp());
732 for (iTime = 0; iTime < nTimeTotal; iTime++) {
734 // Store the amplitude of the digit if above threshold
735 if (outADC[iTime] > ADCthreshold) {
736 digitsOut->SetDataUnchecked(iRow,iCol,iTime,outADC[iTime]);
751 //_____________________________________________________________________________
752 void AliTRDclusterizerV1::DeConvExp(Double_t *source, Double_t *target
753 , Int_t n, Int_t nexp)
756 // Tail cancellation by deconvolution for PASA v4 TRF
760 Double_t coefficients[2];
762 // Initialization (coefficient = alpha, rates = lambda)
768 if (nexp == 1) { // 1 Exponentials
774 if (nexp == 2) { // 2 Exponentials
781 coefficients[0] = C1;
782 coefficients[1] = C2;
786 rates[0] = TMath::Exp(-Dt/(R1));
787 rates[1] = TMath::Exp(-Dt/(R2));
792 Double_t reminder[2];
796 // Attention: computation order is important
798 for (k = 0; k < nexp; k++) {
801 for (i = 0; i < n; i++) {
802 result = (source[i] - correction); // No rescaling
805 for (k = 0; k < nexp; k++) {
806 reminder[k] = rates[k] * (reminder[k] + coefficients[k] * result);
809 for (k = 0; k < nexp; k++) {
810 correction += reminder[k];