]> git.uio.no Git - u/mrichter/AliRoot.git/blob - TRD/AliTRDclusterizerV1.cxx
Modified plots and made jet finder use SDigits
[u/mrichter/AliRoot.git] / TRD / AliTRDclusterizerV1.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15
16 /* $Id$ */
17
18 ///////////////////////////////////////////////////////////////////////////////
19 //                                                                           //
20 // TRD cluster finder for the slow simulator. 
21 //                                                                           //
22 ///////////////////////////////////////////////////////////////////////////////
23
24 #include <TF1.h>
25 #include <TTree.h>
26 #include <TH1.h>
27 #include <TFile.h>
28
29 #include "AliRun.h"
30 #include "AliRunLoader.h"
31 #include "AliLoader.h"
32
33 #include "AliTRD.h"
34 #include "AliTRDclusterizerV1.h"
35 #include "AliTRDmatrix.h"
36 #include "AliTRDgeometry.h"
37 #include "AliTRDdigitizer.h"
38 #include "AliTRDdataArrayF.h"
39 #include "AliTRDdataArrayI.h"
40 #include "AliTRDdigitsManager.h"
41 #include "AliTRDparameter.h"
42
43 ClassImp(AliTRDclusterizerV1)
44
45 //_____________________________________________________________________________
46 AliTRDclusterizerV1::AliTRDclusterizerV1():AliTRDclusterizer()
47 {
48   //
49   // AliTRDclusterizerV1 default constructor
50   //
51
52   fDigitsManager = 0;
53
54 }
55
56 //_____________________________________________________________________________
57 AliTRDclusterizerV1::AliTRDclusterizerV1(const Text_t* name, const Text_t* title)
58                     :AliTRDclusterizer(name,title)
59 {
60   //
61   // AliTRDclusterizerV1 default constructor
62   //
63
64   fDigitsManager = new AliTRDdigitsManager();
65   fDigitsManager->CreateArrays();
66
67 }
68
69 //_____________________________________________________________________________
70 AliTRDclusterizerV1::AliTRDclusterizerV1(const AliTRDclusterizerV1 &c)
71 :AliTRDclusterizer(c)
72 {
73   //
74   // AliTRDclusterizerV1 copy constructor
75   //
76
77   ((AliTRDclusterizerV1 &) c).Copy(*this);
78
79 }
80
81 //_____________________________________________________________________________
82 AliTRDclusterizerV1::~AliTRDclusterizerV1()
83 {
84   //
85   // AliTRDclusterizerV1 destructor
86   //
87
88   if (fDigitsManager) {
89     delete fDigitsManager;
90     fDigitsManager = NULL;
91   }
92
93 }
94
95 //_____________________________________________________________________________
96 AliTRDclusterizerV1 &AliTRDclusterizerV1::operator=(const AliTRDclusterizerV1 &c)
97 {
98   //
99   // Assignment operator
100   //
101
102   if (this != &c) ((AliTRDclusterizerV1 &) c).Copy(*this);
103   return *this;
104
105 }
106
107 //_____________________________________________________________________________
108 void AliTRDclusterizerV1::Copy(TObject &c)
109 {
110   //
111   // Copy function
112   //
113
114   ((AliTRDclusterizerV1 &) c).fDigitsManager = 0;
115
116   AliTRDclusterizer::Copy(c);
117
118 }
119
120 //_____________________________________________________________________________
121 Bool_t AliTRDclusterizerV1::ReadDigits()
122 {
123   //
124   // Reads the digits arrays from the input aliroot file
125   //
126
127   if (!fRunLoader) {
128     printf("<AliTRDclusterizerV1::ReadDigits> ");
129     printf("No input file open\n");
130     return kFALSE;
131   }
132   AliLoader* loader = fRunLoader->GetLoader("TRDLoader");
133   if (!loader->TreeD()) loader->LoadDigits();
134
135   // Read in the digit arrays
136   return (fDigitsManager->ReadDigits(loader->TreeD()));
137
138 }
139
140 //_____________________________________________________________________________
141 Bool_t AliTRDclusterizerV1::MakeClusters()
142 {
143   //
144   // Generates the cluster.
145   //
146
147   Int_t row, col, time;
148
149   if (fTRD->IsVersion() != 1) {
150     printf("<AliTRDclusterizerV1::MakeCluster> ");
151     printf("TRD must be version 1 (slow simulator).\n");
152     return kFALSE; 
153   }
154
155   // Get the geometry
156   AliTRDgeometry *geo = fTRD->GetGeometry();
157
158   // Create a default parameter class if none is defined
159   if (!fPar) {
160     fPar = new AliTRDparameter("TRDparameter","Standard TRD parameter");
161     printf("<AliTRDclusterizerV1::MakeCluster> ");
162     printf("Create the default parameter object.\n");
163   }
164
165   Float_t timeBinSize = fPar->GetTimeBinSize();
166   // Half of ampl.region
167   const Float_t kAmWidth = AliTRDgeometry::AmThick()/2.; 
168
169   Float_t omegaTau = fPar->GetOmegaTau();
170   if (fVerbose > 0) {
171     printf("<AliTRDclusterizerV1::MakeCluster> ");
172     printf("OmegaTau = %f \n",omegaTau);
173     printf("<AliTRDclusterizerV1::MakeCluster> ");
174     printf("Start creating clusters.\n");
175   } 
176
177   AliTRDdataArrayI *digits;
178   AliTRDdataArrayI *track0;
179   AliTRDdataArrayI *track1;
180   AliTRDdataArrayI *track2; 
181
182   // Threshold value for the maximum
183   Int_t maxThresh = fPar->GetClusMaxThresh();   
184   // Threshold value for the digit signal
185   Int_t sigThresh = fPar->GetClusSigThresh();   
186
187   // Iteration limit for unfolding procedure
188   const Float_t kEpsilon = 0.01;             
189
190   const Int_t   kNclus   = 3;  
191   const Int_t   kNsig    = 5;
192   const Int_t   kNtrack  = 3 * kNclus;
193
194   Int_t   iType          = 0;
195   Int_t   iUnfold        = 0;
196
197   Float_t ratioLeft      = 1.0;
198   Float_t ratioRight     = 1.0;
199
200   Float_t padSignal[kNsig];   
201   Float_t clusterSignal[kNclus];
202   Float_t clusterPads[kNclus];   
203   Int_t   clusterDigit[kNclus];
204   Int_t   clusterTracks[kNtrack];   
205
206   Int_t chamBeg = 0;
207   Int_t chamEnd = AliTRDgeometry::Ncham();
208   if (fTRD->GetSensChamber()  >= 0) {
209     chamBeg = fTRD->GetSensChamber();
210     chamEnd = chamBeg + 1;
211   }
212   Int_t planBeg = 0;
213   Int_t planEnd = AliTRDgeometry::Nplan();
214   if (fTRD->GetSensPlane()    >= 0) {
215     planBeg = fTRD->GetSensPlane();
216     planEnd = planBeg + 1;
217   }
218   Int_t sectBeg = 0;
219   Int_t sectEnd = AliTRDgeometry::Nsect();
220
221   // Start clustering in every chamber
222   for (Int_t icham = chamBeg; icham < chamEnd; icham++) {
223     for (Int_t iplan = planBeg; iplan < planEnd; iplan++) {
224       for (Int_t isect = sectBeg; isect < sectEnd; isect++) {
225
226         if (fTRD->GetSensSector() >= 0) {
227           Int_t sens1 = fTRD->GetSensSector();
228           Int_t sens2 = sens1 + fTRD->GetSensSectorRange();
229           sens2 -= ((Int_t) (sens2 / AliTRDgeometry::Nsect())) 
230                  * AliTRDgeometry::Nsect();
231           if (sens1 < sens2) {
232             if ((isect < sens1) || (isect >= sens2)) continue;
233           }
234           else {
235             if ((isect < sens1) && (isect >= sens2)) continue;
236           }
237         }
238
239         Int_t idet = geo->GetDetector(iplan,icham,isect);
240
241         Int_t nClusters      = 0;
242         Int_t nClusters2pad  = 0;
243         Int_t nClusters3pad  = 0;
244         Int_t nClusters4pad  = 0;
245         Int_t nClusters5pad  = 0;
246         Int_t nClustersLarge = 0;
247
248         if (fVerbose > 0) {
249           printf("<AliTRDclusterizerV1::MakeCluster> ");
250           printf("Analyzing chamber %d, plane %d, sector %d.\n"
251                 ,icham,iplan,isect);
252         }
253
254         Int_t   nRowMax     = fPar->GetRowMax(iplan,icham,isect);
255         Int_t   nColMax     = fPar->GetColMax(iplan);
256         Int_t   nTimeBefore = fPar->GetTimeBefore();
257         Int_t   nTimeTotal  = fPar->GetTimeTotal();  
258
259         Float_t row0        = fPar->GetRow0(iplan,icham,isect);
260         Float_t col0        = fPar->GetCol0(iplan);
261         Float_t rowSize     = fPar->GetRowPadSize(iplan,icham,isect);
262         Float_t colSize     = fPar->GetColPadSize(iplan);
263
264         // Get the digits
265         digits = fDigitsManager->GetDigits(idet);
266         digits->Expand();
267         track0 = fDigitsManager->GetDictionary(idet,0);
268         track0->Expand();
269         track1 = fDigitsManager->GetDictionary(idet,1);
270         track1->Expand();
271         track2 = fDigitsManager->GetDictionary(idet,2); 
272         track2->Expand();
273
274         // Loop through the chamber and find the maxima 
275         for ( row = 0;  row <  nRowMax;    row++) {
276           //          for ( col = 2;  col <  nColMax;    col++) {
277           for ( col = 4;  col <  nColMax-2;    col++) {
278             for (time = 0; time < nTimeTotal; time++) {
279
280               Int_t signalL = TMath::Abs(digits->GetDataUnchecked(row,col  ,time));
281               Int_t signalM = TMath::Abs(digits->GetDataUnchecked(row,col-1,time));
282               Int_t signalR = TMath::Abs(digits->GetDataUnchecked(row,col-2,time));
283  
284               // Look for the maximum
285               if (signalM >= maxThresh) {
286                 if (((signalL >= sigThresh) &&
287                      (signalL <  signalM))  ||
288                     ((signalR >= sigThresh) &&
289                      (signalR <  signalM))) {
290                   // Maximum found, mark the position by a negative signal
291                   digits->SetDataUnchecked(row,col-1,time,-signalM);
292                 }
293               }
294
295             }  
296           }    
297         }      
298
299         // Now check the maxima and calculate the cluster position
300         for ( row = 0;  row <  nRowMax  ;  row++) {
301           for (time = 0; time < nTimeTotal; time++) {
302             for ( col = 1;  col <  nColMax-1;  col++) {
303
304               // Maximum found ?             
305               if (digits->GetDataUnchecked(row,col,time) < 0) {
306
307                 Int_t iPad;
308                 for (iPad = 0; iPad < kNclus; iPad++) {
309                   Int_t iPadCol = col - 1 + iPad;
310                   clusterSignal[iPad]     = TMath::Abs(digits->GetDataUnchecked(row
311                                                                                ,iPadCol
312                                                                                ,time));
313                   clusterDigit[iPad]      = digits->GetIndexUnchecked(row,iPadCol,time);
314                   clusterTracks[3*iPad  ] = track0->GetDataUnchecked(row,iPadCol,time) - 1;
315                   clusterTracks[3*iPad+1] = track1->GetDataUnchecked(row,iPadCol,time) - 1;
316                   clusterTracks[3*iPad+2] = track2->GetDataUnchecked(row,iPadCol,time) - 1;
317                 }
318
319                 // Count the number of pads in the cluster
320                 Int_t nPadCount = 0;
321                 Int_t ii        = 0;
322                 while (TMath::Abs(digits->GetDataUnchecked(row,col-ii  ,time))
323                                                                   >= sigThresh) {
324                   nPadCount++;
325                   ii++;
326                   if (col-ii   <        0) break;
327                 }
328                 ii = 0;
329                 while (TMath::Abs(digits->GetDataUnchecked(row,col+ii+1,time))
330                                                                   >= sigThresh) {
331                   nPadCount++;
332                   ii++;
333                   if (col+ii+1 >= nColMax) break;
334                 }
335
336                 nClusters++;
337                 switch (nPadCount) {
338                 case 2:
339                   iType = 0;
340                   nClusters2pad++;
341                   break;
342                 case 3:
343                   iType = 1;
344                   nClusters3pad++;
345                   break;
346                 case 4:
347                   iType = 2;
348                   nClusters4pad++;
349                   break;
350                 case 5:
351                   iType = 3;
352                   nClusters5pad++;
353                   break;
354                 default:
355                   iType = 4;
356                   nClustersLarge++;
357                   break;
358                 };
359
360                 // Don't analyze large clusters
361                 //if (iType == 4) continue;
362
363                 // Look for 5 pad cluster with minimum in the middle
364                 Bool_t fivePadCluster = kFALSE;
365                 if (col < nColMax-3) {
366                   if (digits->GetDataUnchecked(row,col+2,time) < 0) {
367                     fivePadCluster = kTRUE;
368                   }
369                   if ((fivePadCluster) && (col < nColMax-5)) {
370                     if (digits->GetDataUnchecked(row,col+4,time) >= sigThresh) {
371                       fivePadCluster = kFALSE;
372                     }
373                   }
374                   if ((fivePadCluster) && (col >         1)) {
375                     if (digits->GetDataUnchecked(row,col-2,time) >= sigThresh) {
376                       fivePadCluster = kFALSE;
377                     }
378                   }
379                 }
380
381                 // 5 pad cluster
382                 // Modify the signal of the overlapping pad for the left part 
383                 // of the cluster which remains from a previous unfolding
384                 if (iUnfold) {
385                   clusterSignal[0] *= ratioLeft;
386                   iType   = 3;
387                   iUnfold = 0;
388                 }
389
390                 // Unfold the 5 pad cluster
391                 if (fivePadCluster) {
392                   for (iPad = 0; iPad < kNsig; iPad++) {
393                     padSignal[iPad] = TMath::Abs(digits->GetDataUnchecked(row
394                                                                          ,col-1+iPad
395                                                                          ,time));
396                   }
397                   // Unfold the two maxima and set the signal on 
398                   // the overlapping pad to the ratio
399                   ratioRight        = Unfold(kEpsilon,iplan,padSignal);
400                   ratioLeft         = 1.0 - ratioRight; 
401                   clusterSignal[2] *= ratioRight;
402                   iType   = 3;
403                   iUnfold = 1;
404                 }
405
406                 Float_t clusterCharge = clusterSignal[0]
407                                       + clusterSignal[1]
408                                       + clusterSignal[2];
409                 
410                 // The position of the cluster
411                 clusterPads[0] = row + 0.5;
412                 // Take the shift of the additional time bins into account
413                 clusterPads[2] = time - nTimeBefore + 0.5;
414
415                 if (fPar->LUTOn()) {
416
417                   // Calculate the position of the cluster by using the
418                   // lookup table method
419                   clusterPads[1] = col + 0.5
420                                  + fPar->LUTposition(iplan,clusterSignal[0]
421                                                           ,clusterSignal[1]
422                                                           ,clusterSignal[2]);
423
424                 }
425                 else {
426
427                   // Calculate the position of the cluster by using the
428                   // center of gravity method
429                   clusterPads[1] = col + 0.5 
430                                  + (clusterSignal[2] - clusterSignal[0]) 
431                                  / clusterCharge;
432
433                 }
434
435                 Float_t q0 = clusterSignal[0];
436                 Float_t q1 = clusterSignal[1];
437                 Float_t q2 = clusterSignal[2];
438                 Float_t clusterSigmaY2 = (q1*(q0+q2)+4*q0*q2) /
439                                          (clusterCharge*clusterCharge);
440
441                 // Correct for ExB displacement
442                 if (fPar->ExBOn()) { 
443                   Int_t   local_time_bin = (Int_t) clusterPads[2];
444                   Float_t driftLength    = local_time_bin * timeBinSize + kAmWidth;
445                   Float_t colSize        = fPar->GetColPadSize(iplan);
446                   Float_t deltaY         = omegaTau*driftLength/colSize;
447                   clusterPads[1]         = clusterPads[1] - deltaY;
448                 }
449                                        
450                 if (fVerbose > 1) {
451                   printf("-----------------------------------------------------------\n");
452                   printf("Create cluster no. %d\n",nClusters);
453                   printf("Position: row = %f, col = %f, time = %f\n",clusterPads[0]
454                                                                     ,clusterPads[1]
455                                                                     ,clusterPads[2]);
456                   printf("Indices: %d, %d, %d\n",clusterDigit[0]
457                                                 ,clusterDigit[1]
458                                                 ,clusterDigit[2]);
459                   printf("Total charge = %f\n",clusterCharge);
460                   printf("Tracks: pad0 %d, %d, %d\n",clusterTracks[0]
461                                                     ,clusterTracks[1]
462                                                     ,clusterTracks[2]);
463                   printf("        pad1 %d, %d, %d\n",clusterTracks[3]
464                                                     ,clusterTracks[4]
465                                                     ,clusterTracks[5]);
466                   printf("        pad2 %d, %d, %d\n",clusterTracks[6]
467                                                     ,clusterTracks[7]
468                                                     ,clusterTracks[8]);
469                   printf("Type = %d, Number of pads = %d\n",iType,nPadCount);
470                 }
471
472                 // Calculate the position and the error
473                 Float_t clusterPos[3];
474                 clusterPos[0] = clusterPads[1] * colSize + col0;
475                 clusterPos[1] = clusterPads[0] * rowSize + row0;
476                 clusterPos[2] = clusterPads[2];
477                 Float_t clusterSig[2];
478                 clusterSig[0] = (clusterSigmaY2 + 1./12.) * colSize*colSize;
479                 clusterSig[1] = rowSize * rowSize / 12.;
480
481                 // Add the cluster to the output array 
482                 fTRD->AddCluster(clusterPos
483                                 ,idet
484                                 ,clusterCharge
485                                 ,clusterTracks
486                                 ,clusterSig
487                                 ,iType);
488
489               }
490             } 
491           }   
492         }     
493
494         // Compress the arrays
495         digits->Compress(1,0);
496         track0->Compress(1,0);
497         track1->Compress(1,0);
498         track2->Compress(1,0);
499
500         // Write the cluster and reset the array
501         WriteClusters(idet);
502         fTRD->ResetRecPoints();
503
504         if (fVerbose > 0) {
505           printf("<AliTRDclusterizerV1::MakeCluster> ");
506           printf("Found %d clusters in total.\n"
507                 ,nClusters);
508           printf("                                    2pad:  %d\n",nClusters2pad);
509           printf("                                    3pad:  %d\n",nClusters3pad);
510           printf("                                    4pad:  %d\n",nClusters4pad);
511           printf("                                    5pad:  %d\n",nClusters5pad);
512           printf("                                    Large: %d\n",nClustersLarge);
513         }
514
515       }    
516     }      
517   }        
518
519   if (fVerbose > 0) {
520     printf("<AliTRDclusterizerV1::MakeCluster> ");
521     printf("Done.\n");
522   }
523
524   return kTRUE;
525
526 }
527
528 //_____________________________________________________________________________
529 Float_t AliTRDclusterizerV1::Unfold(Float_t eps, Int_t plane, Float_t* padSignal)
530 {
531   //
532   // Method to unfold neighbouring maxima.
533   // The charge ratio on the overlapping pad is calculated
534   // until there is no more change within the range given by eps.
535   // The resulting ratio is then returned to the calling method.
536   //
537
538   Int_t   irc               = 0;
539   Int_t   itStep            = 0;      // Count iteration steps
540
541   Float_t ratio             = 0.5;    // Start value for ratio
542   Float_t prevRatio         = 0;      // Store previous ratio
543
544   Float_t newLeftSignal[3]  = {0};    // Array to store left cluster signal
545   Float_t newRightSignal[3] = {0};    // Array to store right cluster signal
546   Float_t newSignal[3]      = {0};
547
548   // Start the iteration
549   while ((TMath::Abs(prevRatio - ratio) > eps) && (itStep < 10)) {
550
551     itStep++;
552     prevRatio = ratio;
553
554     // Cluster position according to charge ratio
555     Float_t maxLeft  = (ratio*padSignal[2] - padSignal[0]) 
556                      / (padSignal[0] + padSignal[1] + ratio*padSignal[2]);
557     Float_t maxRight = (padSignal[4] - (1-ratio)*padSignal[2]) 
558                      / ((1-ratio)*padSignal[2] + padSignal[3] + padSignal[4]);
559
560     // Set cluster charge ratio
561     irc = fPar->PadResponse(1.0,maxLeft ,plane,newSignal);
562     Float_t ampLeft  = padSignal[1] / newSignal[1];
563     irc = fPar->PadResponse(1.0,maxRight,plane,newSignal);
564     Float_t ampRight = padSignal[3] / newSignal[1];
565
566     // Apply pad response to parameters
567     irc = fPar->PadResponse(ampLeft ,maxLeft ,plane,newLeftSignal );
568     irc = fPar->PadResponse(ampRight,maxRight,plane,newRightSignal);
569
570     // Calculate new overlapping ratio
571     ratio = TMath::Min((Float_t)1.0,newLeftSignal[2] / 
572                           (newLeftSignal[2] + newRightSignal[0]));
573
574   }
575
576   return ratio;
577
578 }
579